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Abstract

Land scarcity is increasing over time, driven by complex multi-sector dynamics. The impacts of land scarcity on the economy

and environment are multi-faceted and regional, so any action to convert land will contain inherent tradeoffs. These impacts

are complicated by the deeply uncertain evolution of the various sectors influencing land scarcity. A need therefore exists to

provide multi-metric and multi-sector assessments that are robust to myriad uncertainties. Land conservation effectively limits

the supply of productive land, while biofuel consumption increases the demand and competition for that land, and how these

dynamics individually and jointly propagate to economic and environmental impacts is an important open question. To address

this, we adopt the Global Change Analysis Model (GCAM) that has representations of various important sectors including

the climate, land-use economy, energy systems, agriculture, and water resources. Scenarios of increased land demand (from

biofuels) and decreased land supply (from conservation) under various socioeconomic pathways drawn from the SSPs were

simulated using GCAM. We find that while biofuel consumption and land conservation reduce carbon emissions, this comes at

the cost of higher food prices, reduced crop production, and increased water withdrawals. Additionally, some regions experience

these tradeoffs more severely than others and are more heavily impacted from the same biofuel mandate or by an additional

percent of protected land. These and other findings highlight the importance of multi-sector modeling frameworks that capture

many cross-sector linkages, and acknowledge the important uncertainties confronting the human-Earth system when making

any analysis of the land scarcity impacts.
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Key Points:12

• Growing food demands coupled with expanded protected lands and bioenergy pro-13

duction intensify land scarcity impacts across sectors.14
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• Tradeoffs between sectors and across regions necessitate studying land manage-16

ment in the context of multi-sector dynamics.17
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Abstract18

Land scarcity is increasing over time, driven by complex multi-sector dynamics. The im-19

pacts of land scarcity on the economy and environment are multi-faceted and regional,20

so any action to convert land will contain inherent tradeoffs. These impacts are compli-21

cated by the deeply uncertain evolution of the various sectors influencing land scarcity.22

A need therefore exists to provide multi-metric and multi-sector assessments that are ro-23

bust to myriad uncertainties. Land conservation effectively limits the supply of produc-24

tive land, while biofuel consumption increases the demand and competition for that land,25

and how these dynamics individually and jointly propagate to economic and environmen-26

tal impacts is an important open question. To address this, we adopt the Global Change27

Analysis Model (GCAM) that has representations of various important sectors includ-28

ing the climate, land-use economy, energy systems, agriculture, and water resources. Var-29

ious scenarios of increased land demand (from biofuels) and decreased land supply (from30

conservation) under various socioeconomic scenarios drawn from the SSPs were simu-31

lated using GCAM. We find that while biofuel consumption and land conservation re-32

duce carbon emissions, this comes at the cost of higher food prices, reduced crop pro-33

duction, and increased water withdrawals. Additionally, some regions experience these34

tradeoffs more severely than others and are more heavily impacted from the same bio-35

fuel mandate or by an additional percent of protected land. These and other findings36

highlight the importance of multi-sector modeling frameworks that capture many cross-37

sector linkages, and acknowledge the important uncertainties confronting the human-Earth38

system when making any analysis of the land scarcity impacts.39

1 Introduction40

Productive land is a scarce resource with a decreasing supply(Gomiero, 2016) but41

ever growing demands(Gomiero, 2016; Lambin & Meyfroidt, 2011). Increasing popula-42

tion and wealth cause greater demand for crops, meat, and other agricultural products43

and therefore for the water and energy resources needed to produce these products. At44

the same time, non-commercial land is an integral part of most environmental objectives.45

Land conservation is necessary to maintain biodiversity and healthy stable ecosystems(Thompson,46

Mackey, McNulty, & Mosseler, 2009), and forests and soils are valuable carbon sinks that47

aid in mitigating severe climate change(Asner, Nepstad, Cardinot, & Ray, 2004; Lal, 2004).48

These services improve the long-term quality of life on Earth and help achieve the rel-49

atively near-term goals of international environmental agreements such as the Conven-50

tion on Biodiversity and the Paris Accords. The competing multi-sector demands for land(Carrasco,51

Webb, Symes, Koh, & Sodhi, 2017; Dooley, Christoff, & Nicholas, 2018; Grass et al., 2020;52

Meyfroidt, 2018) emphasize the importance of modeling land scarcity in the context of53

the complex coupled human-Earth system. To more fully understand the multi-sector54

dynamics that drive land scarcity and its impacts, multiple metrics should be evaluated55

so that synergies and tradeoffs between competing sectors are made known(Kroll, War-56

chold, & Pradhan, 2019; van Vuuren et al., 2015). Further, these dynamics should be57

analyzed in the context of the abundant uncertainty present in the system. Dynamics58

may shift depending on the circumstances and it is important to understand the drivers59

of these dynamical shifts so that planners can make decisions that are robust to future60

changes. Other land use studies assess multiple impact metrics without explicitly account-61

ing for future uncertainty(Kroll et al., 2019; van Vuuren et al., 2015) or assess economic(Waldron62

et al., 2020) or environmental(Borrelli et al., 2020; Mouratiadou et al., 2016) impacts un-63

der uncertainty, but few studies implement all of these elements(Gao & Bryan, 2017).64

Considering only one metric may lead to myopic decisions and high regret, whereas fail-65

ing to account for uncertainty can lead to decisions that leave the population vulnera-66

ble to high losses(Reckhow, 1994).67

This study addresses these issues by using a global integrated multi-sector model68

to analyze a suite of economic and environmental metrics under a wide range of uncer-69
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tainties to understand the impacts of land scarcity. Specifically, this study aims to un-70

cover a) the economic and environmental implications of land scarcity, b) the drivers of71

land scarcity impacts, and c) the tradeoffs and synergies between impacts in different72

sectors. We use a leading integrated assessment model(Krey et al., 2014) to evaluate the73

impacts of constraints that induce land scarcity through different channels: biofuel pro-74

duction changes the amount of land demanded for a specific purpose while land conser-75

vation changes the supply of land that is available for development.76

Both biofuel production and land conservation have increased historically and in-77

crease further in the future under many modeled pathways(Masson-Delmotte et al., 2018).78

More ambitious land conservation efforts have been discussed and increasingly imple-79

mented through the ’30 by 30’ initiative, where countries pledge to protect 30% of their80

land and oceans by 2030(Showstack, 2020). While the long-term environmental effects81

of land conservation are clearly desirable, lawmakers may be concerned that prohibit-82

ing development will harm local economies(Turkewitz, 2017). A meta-analysis of 171 pro-83

tected area case studies found that protected areas typically benefit local economies but84

negatively impact the livelihood of communities’ inhabitants(Oldekop, Holmes, Harris,85

& Evans, 2016). These impacts were highly regionally dependent, but were often pos-86

itive if the protected areas were co-managed by the state and local community and and87

if the conservation program maintained cultural and livelihood benefits (e.g., by allow-88

ing the sustainable use of natural resources for subsistence farming). At the global scale,89

a comprehensive economic impact study led by the International Institute for Applied90

Systems Analysis found net benefits from protecting 30% of land on Earth(Waldron et91

al., 2020). While this study incorporated uncertainty by simulating a range of conser-92

vation scenarios in four separate general equilibrium models, a research gap exists in the93

conservation literature of studying socioeconomic and environmental uncertainties and94

their impacts on metrics of interest.95

There is an extensive literature devoted to assessing the environmental and eco-96

nomic impacts of different biofuel policy implementations(Chen, Ale, Rajan, & Munster,97

2017; Hertel, Tyner, & Birur, 2010; Popp, Lakner, Harangi-Rákos, & Fári, 2014; Weng,98

Chang, Cai, & Wang, 2019; Zhao et al., 2020). As biofuel is primarily derived from plant99

matter, mandating or subsidizing its consumption is highly favorable to agricultural pro-100

ducers, which in turn often renders those policies politically tenable(Hertel, 2011; Lawrence,101

2010). However, bioenergy use is controversial because of its ambiguous effect on the global102

food system, land use, and water withdrawals(Ai, Hanasaki, Heck, Hasegawa, & Fuji-103

mori, 2021; Hasegawa et al., 2018). First generation biofuels (i.e., agricultural crops grown104

for use as fuel) are still the most widely used form of bioenergy and have been shown105

to cause crop price increases in models(Rajagopal, Sexton, Hochman, Roland-Holst, &106

Zilberman, 2009; Wise, Dooley, Luckow, Calvin, & Kyle, 2014), although this result has107

seen mixed support from studies analyzing real-world data(Renzaho, Kamara, & Toole,108

2017; Shrestha, Staab, & Duffield, 2019; Zilberman, Hochman, Rajagopal, Sexton, & Tim-109

ilsina, 2013). A consistent finding, however, is that the second generation of biofuels (e.g.,110

crop residue, switchgrass, and industrial waste) are more economical than their prede-111

cessors and result in fewer emissions from land use change if implemented on marginal112

or otherwise unused land(Bhatia, Kim, Yoon, & Yang, 2017; Fargione, Hill, Tilman, Po-113

lasky, & Hawthorne, 2008; Robertson et al., 2017).114

Both land conservation and biofuel production have implications for the land sys-115

tem, restricting the amount of land available for other uses. Hereafter, we will refer to116

land conservation and biofuel production as ’constraints’ to emphasize the implication117

they both share. Land is a binding constraint to development as it is a non-substitutable118

good. While fertilizer and other agricultural technologies may enable production onto119

previously unsuitable land, there is ultimately a limit on the total area of land available120

for development. One estimate has shown that the reserve of all productive land may121

be exhausted as soon as the end of the decade(Lambin & Meyfroidt, 2011) while other122
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work maintains that land and agricultural prices will soar and reduce demand before the123

supply of productive land is exhausted(Hertel, 2011).124

As nations ramp up implementation of biofuels and land conservation, it is impor-125

tant to understand what impact these efforts have on the economy as well as the envi-126

ronment under different future conditions. Several studies have assessed the environmen-127

tal impacts from scenarios designed to meet sustainable development objectives. Tallis128

et al. (2018) model a scenario that meets many sustainable development objectives, in-129

cluding the 50% land protection target(Tallis et al., 2018), however, their study does not130

consider socioeconomic or technological uncertainty nor the effects of climate change on131

crop yields. Additionally, van Vuuren et al. (2015) find different pathways to meet sev-132

eral of the Sustainable Development Goals (SDGs) and calculate their impacts on mul-133

tiple environmental metrics(van Vuuren et al., 2015) though do not perform an uncer-134

tainty analysis.135

This study develops a scenario ensemble to find the key multi-sector drivers of land136

scarcity impacts. We account for uncertainties in socioeconomic, agricultural yield, and137

climate changes and structural uncertainty in the climate and biophysical system. The138

uncertainties represented in this study are deep, meaning that there is no one agreed upon139

probability distribution to characterize them nor a universal representation of the sys-140

tem in which they act(Walker, Lempert, & Kwakkel, 2012). The characterization of fu-141

ture socioeconomic and climate change as deeply uncertain has been well-established(Hallegatte,142

Shah, Brown, Lempert, & Gill, 2012; Lempert, 2003; Maier et al., 2016). The integrated143

nature of these deeply uncertain dynamics in turn renders tangential system dynamics144

to be deeply uncertain as well. To contend with this ambiguity, this study employs ex-145

ploratory modeling to simulate possible futures throughout the represented uncertainty146

space. As opposed to traditional modeling approaches that aim to produce accurate pre-147

dictions, the main goal of exploratory modeling is to obtain a deeper understanding of148

the system in question and uncover the relevant uncertainties that drive outcomes(Moallemi,149

Kwakkel, de Haan, & Bryan, 2020). Practitioners may then use techniques such as sce-150

nario discovery(Kwakkel & Jaxa-Rozen, 2016) to elucidate pathways to consequential151

outcomes without claiming to have the necessary understanding of the system to offer152

predictions.153

Instead of delineating certain scenarios as consequential, this study focuses on the154

outcomes of land scarcity overall. In the outcome space, we focus on carbon emissions,155

crop prices, crop production, and water stress. To produce these impacts, we implement156

a land conservation constraint that increases protected land by over 30%, two biofuel con-157

straints mandating the use of either first and second generation biofuels or only second158

generation biofuels, and the combinations of both conservation and biofuel constraints.159

2 Methods160

The impacts of land scarcity depend on a myriad of factors. The type of constraint161

implemented, the characteristics of the world in which the constraint acts, and the rep-162

resentation of the dynamics between sectors all strongly shape the observed impacts. In163

the following section, we will outline the scenario elements chosen to represent plausi-164

ble states of the world (section 2.1), the type of constraint(s) implemented (section 2.2),165

and the chosen model of the coupled human-Earth system (section 2.3). We will end the166

section with a discussion on the method used to discover the drivers of impacts (section167

2.4) as well as the metrics used to characterize the impacts themselves (section 2.5).168

2.1 Scenario Design169

We develop a scenario ensemble to represent the deep uncertainty present in so-170

cioeconomic and environmental influences on the land-use economy. To model uncertainty171
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in socioeconomic change, we use GCAM’s implementation of the Shared Socioeconomic172

Pathways (SSPs)(Calvin et al., 2017; O’Neill et al., 2017). The SSPs contain assump-173

tions regarding population, wealth distribution, energy costs, food preferences, and agri-174

cultural yields, among others. The five SSPs correspond to the combinations of high and175

low challenges to adaptation and mitigation of climate change, with one lying in the mid-176

dle of this challenge plane (SSP 2). SSP 1 is the sustainable or ’green’ scenario, with low177

challenges to adaptation and mitigation. In this scenario, population peaks mid-century178

and decreases until reaching around 7 billion by 2100. People are relatively wealthy and179

rely on renewable sources of energy. On the opposite end of the challenge plane, SSP 3180

envisions high and continued population growth with the lowest GDP per capita of all181

SSPs. Food demands are high, but regions do not have the technological capacity to sub-182

stantially improve agricultural yields. In SSP 4, most of the world is still relatively poor,183

but wealth is fragmented such that there are distinct groups in the population. Finally,184

SSP 5 envisions a wealthy world, but this wealth is obtained by relying heavily on fos-185

sil fuels. To assess the impacts of socioeconomics and agricultural productivity specif-186

ically, we disaggregated those components along the extremes of the SSP challenge plane187

(i.e., SSP 1 and 3) so that some scenarios combine different elements of each (e.g., SSP1188

socioeconomics combined with SSP3 agricultural productivity). This hybridization thus189

yields three scenarios in SSPs 1 and 3 for every combination of additional variables (e.g.,190

the canonical SSP, the canonical SSP with altered socioeconomic assumptions, and the191

canonical SSP with altered agricultural assumptions) where the remaining SSPs only have192

one (see Figure 1).193

It is possible to reach several different forcing levels with each SSP. We use the Rep-194

resentative Concentration Pathways (RCPs) to model uncertainty in climatic forcing(van195

Vuuren et al., 2011). Specifically, this study uses the SSP-RCP combinations modeled196

in CMIP5 with RCPs 2.6, 4.5, 6.0 and 8.5(Taylor, Stouffer, & Meehl, 2012). We vary car-197

bon prices dynamically in time to ensure our modeled forcing levels are consistent with198

the RCP through GCAM’s target finding functionality. Not every SSP-RCP combina-199

tion is possible, therefore some SSPs have more combinations than others (see Figure200

1).201

The climate system itself is also deeply uncertain. While the main physical mech-202

anisms are well-understood, there is substantial uncertainty in climate feedbacks(Bradford203

et al., 2016; Lombardozzi, Bonan, Smith, Dukes, & Fisher, 2015) which prompts non-204

negligible differences in output variables between climate models(Arora et al., 2013). We205

represent this uncertainty by including archived CMIP5 outputs from four Earth Sys-206

tem Models (ESMs) in the scenario ensemble: GFDL(Donner et al., 2011), HadGEM(Collins207

et al., 2011), IPSL(Marti et al., 2005), and NorESM(Bentsen et al., 2013).208

Finally, we use available archives from two different crop models of global gridded209

crop yield time series to evaluate uncertainty in biophysical processes under tempera-210

ture and water stresses. One model, GEPIC(Liu, Williams, Zehnder, & Yang, 2007), re-211

stricts Nitrogen availability while the LPJmL model(Lapola, Priess, & Bondeau, 2009)212

does not. Importantly, the GEPIC and LPJmL models do not capture the entire agri-213

cultural yield uncertainty space within AGMIP models(Rosenzweig et al., 2013). Rather,214

these models were chosen because they showed the same relative trends in yield across215

various crops(Calvin et al., 2020). Based on the representation of physical processes within216

each model, yields will be affected by changing temperatures, CO2 concentrations, and217

precipitation patterns due to climate change. We calculate exogenous yield changes (ex-218

cluding the endogenous changes from shifting irrigation and fertilizer) for each SSP, RCP,219

ESM, and Crop Model combination. Changes in yield will determine the degree to which220

the land-use economy will be impacted after implementing one of the constraints.221
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2.2 Land Constraints Considered222

For every combination of scenario elements, the impacts of land scarcity are assessed223

by finding the difference between a scenario with a constraint imposed and one without,224

all other elements held equal. We evaluate the effects of land conservation, biofuel con-225

straints, and the combination of the two.226

To implement land conservation constraints, we change the definition of protected227

land in the model using the Moirai Land Data System(Di Vittorio & Narayan, 2021; Di Vit-228

torio, Vernon, & Shu, 2020). The land conservation constraint defines protected land as229

90% of all unmanaged land while the baseline uses the protected land definitions pro-230

vided by the International Union for Conservation of Nature(Ravenel & Redford, 2009)231

and only allows expansion into unprotected land that is deemed ”suitable”. Levels of suit-232

ability are derived from Zabel (2014) who use membership functions of soil and climate233

characteristics to classify land(Zabel, Putzenlechner, & Mauser, 2014). The change in234

definition results in 58-60% of total land (90% of forest and pasture) protected in the235

conservation scenario while under the baseline definition, only 26-27% of land is protected236

(see Figure 2). Changes in areas of protected land are highly heterogeneous (see Figure237

2). The regions that see the highest increases in protected area (in some cases over 60%)238

are those that have the highest areas of undeveloped arable land. Importantly, the land239

conservation constraint simulates protecting an additional 30% of land relative to the240

baseline rather than a total of 30%. Hence, the simulated constraint would only be com-241

parable to the 30 by 30 initiative in regions that currently do not protect any of their242

land. However, as conservation initiatives increase in ambition (50% by 2050), higher changes243

in protected land may become a reality.244

We implemented two biofuel constraints (first and second generation and second245

generation only) that are consistent with biofuel production pathways reported in the246

literature(Creutzig et al., 2015; Marcucci, Panos, Kypreos, & Fragkos, 2019; Popp et al.,247

2014). The constraints ensure that a certain quantity of biofuel is produced and consumed248

globally in each timestep. The constraint begins at 64 EJ in 2025 and increases until 202249

EJ in 2100 (see Figure 2). These quantities are based off of the ’High Biofuel’ scenario250

in Wise et al. 2014 and are extrapolated until the end of the century(Wise et al., 2014).251

As some studies have placed the limits of sustainable biomass production at around 120252

EJ/year(Searle & Malins, 2015), our constraint pathway simply represents a high yet plau-253

sible biofuel constraint to conduct a sensitivity analysis. It should not be mistaken as254

a projection or a policy recommendation.255

In this study, first generation biofuels are derived from corn, sugar crops, oil crops,256

soy, and palm fruit(Wise et al., 2014). This demand is added to the total food demand257

for each crop. Second generation biofuels are modeled from a wide range of sources. Some258

non-food crops are grown specifically for use as bioenergy including switchgrass, miscant-259

hus, jatropha, willow, and eucalyptus. These crops are aggregated into the biomass crop260

class in the model. Energy is also produced from crop and forest residues and from in-261

dustrial waste(Wise et al., 2014). Residues and wastes do not take up any additional land262

as they are byproducts from other uses. Importantly, the biofuel constraints were im-263

plemented on a global scale and consistently across regions. This minimizes the risk of264

leakage and indirect land-use change caused by conserving land(Lambin & Meyfroidt,265

2011).266

In total, we modeled the land conservation constraint, the first and second gener-267

ation biofuel constraint, the second generation only biofuel constraint, land conservation268

with the first and second generation biofuel constraint, and land conservation with the269

second generation biofuel constraint.270
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2.3 Model271

This study uses the Global Change Analysis Model (GCAM) 5.4, a dynamic re-272

cursive partial equilibrium model that has been used extensively in past climate assess-273

ment reports(Calvin et al., 2019; Krey et al., 2014). GCAM couples the land use, en-274

ergy, hydrologic, climate, and economic systems to simulate global changes until the end275

of the century. GCAM splits the world into 32 geopolitical regions, 235 water basins, and276

384 global land units (the intersection of geopolitical regions and water basins). Equi-277

librium prices for various goods and services in each region are solved for in five year timesteps278

to the end of the century. Demands (e.g., for energy, water, or food) are endogenous and279

depend on population, GDP, preferences, and price. The use of specific technologies (e.g.,280

electricity from coal versus solar) is calculated based on a logit-based choice model and281

depends on the relative cost or profit of the competing technologies(Calvin et al., 2019).282

Logit coefficients and exponents are calibrated to a historical base year of 2010 to match283

historical demands.284

The same approach is used to allocate land types. The logit coefficients reflect the285

ease/difficulty of transitioning to a different land use. For instance, it is much easier to286

transition among agricultural crops (e.g., wheat to corn) than between commercial and287

non-commercial uses (e.g., wheat to protected grassland). These allocations only occur288

in arable land. Non-arable land types (e.g., tundra, desert, urban) cannot be expanded289

into and are constant through time. To increase agricultural production, more agricul-290

tural land can be allocated or existing agricultural land can be intensified. Intensifica-291

tion occurs by either transitioning from rainfed to irrigated land, by increased use of fer-292

tilizers, or by a combination of the two (Calvin et al., 2019). Fertilizer increases yields293

by around 50% and irrigation can more than double yields or have no effect on yields294

depending on the crop type. Agricultural yields also change exogenously through changes295

in technology and climate. Initial yields are based on data from Moirai, which relies on296

input data from the FAO, GTAP, MIRCA, and HYDE(Di Vittorio & Narayan, 2021; Di Vit-297

torio et al., 2020). GCAM aggregates all commodities into 15 classes: wheat, corn, rice,298

sugar crop, palm fruit, other grain, oil crop, miscellaneous crop, fiber crop, root tuber,299

biomass, forest, pasture, fodder herb, and fodder grass. The forest and pasture classes300

have ’protected’ and ’unmanaged’ counterparts and the shrubland and grassland classes301

also have ’protected’ counterparts where protected land cannot be converted to other302

land types.303

2.4 Exploratory Modeling304

In complex systems such as the land use system, it is difficult to anticipate what305

system components will drive outcomes and how the components will interact to amplify306

or dampen impacts. When studying such systems, researchers can simulate over many307

plausible future eventualities to capture the range of impacts and the relative importance308

of each component(Lempert, Bryant, & Bankes, 2008). This exploratory modeling ap-309

proach weights all scenarios equally and avoids statements of likelihood so as to not as-310

sume more knowledge of system dynamics than is appropriate in systems subject to deep311

uncertainty(Dolan et al., 2021; Lamontagne et al., 2018; Rozenberg, Guivarch, Lempert,312

& Hallegatte, 2014). Using this approach, we generate scenarios using all possible com-313

binations of factors discussed in the Scenario Design section to find the drivers of im-314

pact (i.e., the number of possible paths in Figure 1) for each of the constraints or com-315

bination of constraints implemented.316

To discover driving factors of impact in the land sector, we calculate the variance317

explained by each factor by performing an Analysis of Variance(Girden, 1992) (ANOVA)318

for each combination of metric and constraint and finding the fraction of the sum of squares319

contributed by each variable out of the total sum of squares. An additional ANOVA was320

performed using the constraint type as a variable in the model to uncover the influence321
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of the constraints on the impacts. By calculating the variance explained, we can uncover322

the relative influence of each variable on the outcome. From a decision-maker’s viewpoint,323

some variables are more manageable than others; for instance, while decision-makers can324

decide to share agricultural productivity advances across regions, climate feedbacks can-325

not be controlled, even if they were fully understood. Recognizing significant factors and326

their respective ease of manipulation may help decision-makers construct impactful con-327

straints that are robust to the uncertainty that will most determine the success of ob-328

jectives. If this is not possible with the results of the analysis, uncovering influential vari-329

ables sheds light on where further research is needed.330

2.5 Metrics Considered331

Changes in the land sector reverberate across sectors and regions. These multi-sector332

dynamics imply that a change implemented in one sector may have unanticipated detri-333

mental or beneficial effects in others. This study therefore considers multiple metrics span-334

ning environmental and economic objectives to capture potential tradeoffs or synergies335

between objectives. The economic metrics considered include changes in crop produc-336

tion and crop prices.337

Changes in crop prices and production offer an intuitive explanation of economic338

impact: price increases benefit producers but injure consumers while increases in pro-339

duction are beneficial to all parties. Changes in production differ across crop types for340

the same relative price increase. Production of staple crops such as wheat and corn is341

more stable than other non-staple crops that have a higher price elasticity of demand.342

The combination of changes in price and production (i.e., change in price multiplied by343

change in quantity) is the revenue lost or gained from implementing the constraints.344

The environmental metrics analyzed include changes in water withdrawals and car-345

bon emissions. Increasing socioeconomic demands coupled with changing supply due to346

climate change will exacerbate water scarcity across the world(Vorosmarty, Douglas, Green,347

& Revenga, 2005). Thus, it is important to consider the water use implications of con-348

straining land. Likewise, there is an ever-dwindling carbon budget for climate tipping349

points and it is therefore imperative to consider the direct and indirect emissions of land350

use scenarios. We therefore differentiate between emissions from fossil fuel and indus-351

trial sources (FFI) and emissions from land use change (LUC). All metrics are computed352

by subtracting the baseline quantity in a scenario from the quantity of its correspond-353

ing constraint scenario with all other factors (e.g., crop model, socioeconomic scenario)354

held equal.355

3 Results356

Before interpreting the results, it is important to note that the scenarios are intended357

to be illustrative and span a wide range of potential outcomes to aid interpretation of358

uncertainty across different variables. Indeed, the land conservation constraint conserves359

an average of around 30% additional land meaning that some regions (including heavy360

agricultural producers like Brazil) conserve far more (see Figure 2). The biofuel constraint,361

though in the range of technical and economic potential, is still high by present day stan-362

dards. Thus, though we present numerical results, the values should be evaluated in rel-363

ative terms compared to those of other constraints and will largely be reported as such.364

In line with the objectives of the study, the first section (3.1) of the results will de-365

scribe the impacts of the constraints across the metrics included in the study, the next366

section (3.2) will discuss the drivers of the observed impacts, and the final section (3.3)367

will outline the tradeoffs and synergies between them.368
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3.1 Impacts of Land Constraints369

3.1.1 Land conservation370

The land conservation constraint resulted in the largest increases in crop prices and371

the largest decreases in crop production out of the single constraints across the scenario372

ensemble (see Figures 3 and 5). The order of magnitude difference in price increases be-373

tween the land conservation and biofuel constraints can largely be explained by the dis-374

parity in the amount of land use change induced by both both kinds of constraints (see375

Figure 4). Around 44 million square kilometers of land is protected under the conser-376

vation constraint while only 2-3 million square kilometers of land is converted to pro-377

duce biomass under the biofuel mandates. Out of this area, up to 2 million square kilo-378

meters of cropland is converted per year under the conservation constraint while the bio-379

fuel constraints remove up to only 550,000 square kilometers of cropland. This large re-380

duction in the supply of available cropland drives the high crop price increases and pro-381

duction decreases under the land conservation constraint. Out of the scenarios under the382

land conservation constraint, SSP 3 scenarios produced on average both the highest mag-383

nitudes and the highest variability in the economic metrics (see Figures 3 and 5). The384

large magnitudes occur because high food demands from high population lead to steep385

price increases while low productivity leads to high production losses when land is con-386

strained. The combination of high population and low productivity in SSP 3 renders the387

food system more sensitive to hydroclimatic variability, thus producing a wide range of388

outcomes across the other dimensions of the scenario ensemble.389

Even among high impact scenarios, regions experienced highly variable price changes390

in food commodities. Much of this heterogeneity can be explained by the varying con-391

servation constraints imposed across regions (see Figure 2), although normalizing by change392

in protected area reveals heterogeneous impacts as well (see SI Figure 1). Poorer nations393

are disproportionately affected by land conservation. This effect is demonstrated by the394

inverse relationship between GDP and percent change in price in Figure 6 in the land395

conservation policies. When normalized by protected area, average crop prices can in-396

crease by over 6% in India and Pakistan while prices barely change or even decrease in397

the USA (see SI Figure 1). This occurs because when wealthier countries import food,398

prices barely increase or go down compared to domestic prices but increase in poorer coun-399

tries. The regional differences are exacerbated by the representation of how land is con-400

served in this study. Developing regions typically have higher amounts of unmanaged401

land and thus more land is protected using the changed definitions of protected areas.402

The regional differences in impact underscore the importance of considering regional so-403

cioeconomic contexts in deeply uncertain conditions before making land use decisions.404

Globally, crop prices increased on average around 15% by the end of the century and up405

to 50% in SSP 3 scenarios (see Figure 3). Because of the low price elasticity of demand406

of food commodities in GCAM, the relative decreases in production are considerably lower407

than their corresponding price increases across the scenario ensemble (see Figure 5).408

While all regions experience negative economic outcomes from land conservation,409

the environmental outcomes are mixed across regions. Water withdrawals increase on410

average under the land conservation constraint but decrease in some regions when agri-411

cultural production declines (see Figure 7). Even though production decreases in the ma-412

jority of regions, water withdrawals increase because producers are forced to intensify413

their yields when agricultural land is constrained. To accomplish this, producers switch414

from rainfed agriculture to irrigated agriculture, thus prompting water withdrawals. When415

normalized by renewable supply, the impact of land conservation is more apparent. Land416

conservation increases the Water Stress Index (WSI) (water withdrawals over renewable417

supply) by over 0.2 in several regions in at least a quarter of scenarios across the ensem-418

ble (see the 75th percentile of change in WSI in Figure 8). Regions are typically consid-419

ered water stressed if they have a WSI above 0.4(Vorosmarty et al., 2005), thus increases420

of this magnitude are substantial. Land conservation also yields mixed impacts in terms421
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of carbon emissions. Potential emissions from land use change are averted when land is422

conserved in its undeveloped state. Conversely, when land is constrained, the price of423

biomass increases and prompts the transition from biofuels to oil. This results in higher424

emissions from FFI sources (red in Figure 9). Overall however, the savings from land use425

change outweigh the increased FFI emissions to yield net emission reductions from land426

conservation.427

3.1.2 Biofuels428

The biofuel constraints on the whole produce lower magnitude economic impacts429

but similar environmental impacts compared to those under the land conservation con-430

straint. Changes in average crop price are similar between the combined biofuel and sec-431

ond generation biofuel constraints at a maximum of 5% by the end of the century. How-432

ever, the two constraints produce diverse effects on crop production. While agricultural433

production decreases under the second generation constraint, it increases by a higher mag-434

nitude under the combined biofuel constraint (see Figure 5). Because the combined bio-435

fuel constraint includes food products that are used for energy (i.e., first generation fu-436

els), the mandated production prompts increases in the production of those crops. Mean-437

while, the second generation constraint reduces the production of first generation crops438

because the mandated energy consumption excludes those crops in favor of biomass.439

The increased production of biomass and other food crops prompts increases in wa-440

ter withdrawals (see Figure 7). Both constraints produce similar changes in regional WSI441

(see Figure 8) despite differences in their agricultural production. The production in-442

creases occur largely in regions with relatively higher amounts of runoff (e.g., Brazil) and443

thus the differences in the WSI are minimal. Changes in carbon emissions are also sim-444

ilar between the two constraints. In the median SSP scenarios (i.e., the lines in Figure445

S2), the emission reductions range from 0.5-1 GtC. Both biofuel constraints produce net446

positive LUC emissions from converting unmanaged land to biomass production, but save447

a higher magnitude of FFI emissions to generate net negative emissions overall (as shown448

by the purple lines in Figure 9 and by all lines in SI Figure 2).449

3.1.3 Joint constraints450

Across the scenario ensemble, the joint constraints amplify the impacts of single451

constraints when both single constraints are acting in the same way. For instance, if the452

single constraints both increase some metric, their combination results in a larger increase453

than either of the single constraints. While this result is intuitive in itself, the resulting454

magnitude of the amplification of impact in some metrics is notable. For example, the455

amplification effect is demonstrated clearly by change in agricultural prices under the456

joint constraints. Average crop prices can increase up to 100% in SSP 3 scenarios un-457

der the joint constraints as opposed to 50% and 5% under the single land conservation458

and biofuel constraints respectively (see Figure 3). When the single constraints gener-459

ate impacts in opposite directions, the impacts under the joint constraints are dampened460

relative to the single constraints. For example, production under the joint land conser-461

vation and combined biofuel constraint doesn’t fall as much as it would under land con-462

servation alone (see Figure 5). Both the amplification and dampening mechanisms may463

be favorable or detrimental depending on the desired effect but need to be considered464

in the context of the effects on other metrics as well.465

3.2 Sensitivity Analysis466

Land scarcity impacts varied substantially depending on the constraint implemented.467

Indeed, ANOVA sensitivity analysis of the included variables showed that the type of468

constraint implemented held the most explanatory power out of all dimensions varied469

in the experiment (see Figure 10). This result signifies that the magnitude and direc-470

–10–



manuscript submitted to Earth’s Future

tion of impacts are largely controllable. Within a single constraint, SSP assumptions (ex-471

cluding agriculture and socioeconomic components) were the most influential variable472

in almost every metric assessed.473

The agricultural dimension of the SSPs explained very little of the variance in out-474

comes under the biofuel constraint but was significant in driving crop prices in scenar-475

ios that implemented land conservation. Meanwhile, the socioeconomic dimension of the476

SSPs stands out as explaining a high proportion of the variance in the outcomes in most477

metrics under the biofuel constraints and water withdrawals in land conservation sce-478

narios (see Figure 10). The combination of the agricultural and socioeconomic compo-479

nents of the SSPs did not explain a high proportion of the variance within the SSPs in480

most scenarios. Therefore, further work should disaggregate other SSP components to481

assess their relative influence over land scarcity impacts.482

Notably, the RCP, ESM, and crop model variables had comparatively negligible483

explanatory power over the outcomes. In this study, anthropogenic uncertainties were484

the main drivers determining the impacts of the land-restricting constraints though fu-485

ture work could expand the number of climate scenarios and crop models to test the ro-486

bustness of these results.487

3.3 Tradeoffs and synergies488

Considering the potential tradeoffs between metrics helps to guard against unan-489

ticipated consequences that may have occurred if considering a single objective(Giuliani,490

Herman, Castelletti, & Reed, 2014). Fortunately, multi-metric analysis has been gain-491

ing traction in the policy sphere in recent years, most notably with the implementation492

and measurement of the Sustainable Development Goals (SDGs)(Colglazier, 2015; Full-493

man et al., 2017; Huan, Liang, Li, & Zhang, 2021) and the recent success of the ’donut’494

model of the economy(Golias, 2019; Meredith, 2021; Raworth, 2017; Yamaguchi, Taka-495

hashi, Vlad, Kaneko, & Damaschin, 2020). Both the SDGs and the donut model balance496

environmental and social objectives to ensure stable ecosystems and equitable commu-497

nities. While this study does not consider equality as a metric in itself, we address het-498

erogeneous impacts by assessing tradeoffs and synergies at the regional scale.499

The relationships between metrics are relatively consistent across the scenario en-500

semble under the single constraints. Among the relationships between metrics, one of501

the clearest tradeoffs is between crop production and water withdrawals, where higher502

increases in crop production yield higher water withdrawals. Favorable conditions (e.g.,503

lower water withdrawals, lower prices, higher production) are plotted as positive values504

in Figure 11 and thus tradeoffs can be seen wherever the values change sign. The sever-505

ity of the tradeoff is shown by the vertical axis where the values are the log modulus of506

the percent change in a metric. The log modulus is given by L = sign(x)∗log(|x|+1)507

so that a value of -1 would correspond to a loss of 10%. For example, in the land con-508

servation scenarios, water withdrawals in Eastern Africa decrease by 10% although av-509

erage crop prices increase around 50% and production decreases by 16%. Some relation-510

ships between metrics are synergistic, such as between carbon emissions and agricultural511

production under the biofuel constraints. Even though the added production increases512

LUC emissions when land is converted from forest to biomass, there is a higher magni-513

tude of FFI emission reductions so that carbon emissions are reduced overall. The re-514

lationship between carbon emissions and water withdrawals is dependent on the region515

and on the constraint implemented. Producing more biofuels necessarily increases wa-516

ter consumption (forcing a tradeoff), though land conservation yields substantial water517

savings and carbon mitigation in certain regions because less land is under production518

(allowing a synergy). On the global scale, however, land conservation leads to increased519

irrigation and thus increased water withdrawals overall.520
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The biofuel constraints yield less variability between regions compared to the land521

conservation constraint. The only noticeable outlier between regions is carbon emission522

mitigation in Brazil (shown in orange), which increases under the combined biofuel con-523

straint and falls under the second generation constraint. Brazil’s production in Mt of sugar524

crops (a first generation biofuel crop) in the baseline is higher than any other region’s525

output of a single crop, and therefore Brazil is able to meet the biofuel mandate under526

the combined biofuel constraint with the existing sugar crop production. However, un-527

der the second generation biofuel constraint, Brazil must switch to biomass production528

from sugar crops and thus produce LUC emissions. The biofuel constraints also show529

relatively low levels of uncertainty in the different metrics across SSPs compared to land530

conservation and the joint constraints. Among the land conservation and joint constraints,531

African regions stand out as exhibiting the strongest tradeoffs between metrics. The joint532

constraints amplify the tradeoffs exhibited in land conservation scenarios.533

4 Discussion/Conclusions534

It has long been understood that land is a necessary component to economic de-535

velopment, and that its proper management is paramount for sustained growth(Barbier,536

2002). Many different uses compete for a limited amount of land, and converting to one537

use type may permanently preclude using it for other purposes in the future (e.g., con-538

version from old growth forest to agriculture). Agricultural development, logging, or other539

commercial purposes for land could compete with conservation-based practices imple-540

mented solely for mitigation purposes or to maintain biodiversity and stable ecosystems.541

This multi-metric problem is complicated by the vast amount of uncertainties that im-542

pact land and land use and the complex relationships between affected sectors. In this543

respect, land management is an inherently wicked problem(Rittel & Webber, 1973) in544

that objectives differ across stakeholder groups, the system or the problem formulation545

itself is in a constant state of flux, decisions may ultimately be irreversible, and improve-546

ments in one sector may result in degradation in another. In such a problem, there may547

be no right answer but there are severe consequences for getting it wrong(Rittel & Web-548

ber, 1973). How then, does one address the wicked problem of land management? We549

maintain that there are several crucial elements in a land management study. To begin,550

the multi-sector dynamics of the system must be accounted for. The human and earth551

systems are inextricably linked, and failing to model the feedbacks between sectors will552

only result in a mischaracterization of the system. Many elements that drive these dy-553

namics (e.g., technologic change) are deeply uncertain and cannot be predicted. Rather,554

modeling a spectrum of conceivable eventualities motivates the implementation of ro-555

bust plans. Further, impacts must be measured using a range of metrics. Stakeholders556

may have different objectives and the complex multi-sector dynamics of the system of-557

ten force tradeoffs between objectives. Understanding these tradeoffs and how they dif-558

fer across regions helps avert the consequences of myopic decisions.559

This study aimed to characterize the human-Earth system response of restricting560

land available for agriculture, and in doing so, illustrated the importance of these three561

elements. We evaluated the effects of representative land constraints on economic and562

environmental metrics of interest. As the future is deeply uncertain, we simulated these563

constraints under a wide range of future conditions. The results of these simulations led564

us to three key points. First, we found that in general, land constraints have a substan-565

tial beneficial impact on reductions in carbon emissions but at the cost of increased wa-566

ter withdrawals and food prices, and reductions in food production. Second, these im-567

pacts may be amplified or dampened if multiple constraints are added together. Intended568

amplification of impacts in one sector (e.g., carbon emission reductions) may lead to am-569

plified negative impacts in another (e.g., agricultural prices). This is an especially salient570

consideration in regions that are disproportionately impacted. We observe that African571

regions suffer the most negative impacts overall from implementing the constraints, al-572
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though impacts are heavily dependent on the constraint implemented and the SSP in573

which they act. Third, we found that the type of constraint implemented was a greater574

determinant of impact than all of the uncertainties present in the ensemble. Within a575

constraint, the SSP assumptions held the most explanatory power of impacts in all met-576

rics. The emission pathways, climate models and crop models had a much smaller im-577

pact than SSP assumptions on most of the metrics evaluated. This means that overall,578

uncertainties in the human system were far more influential than environmental uncer-579

tainties in determining environmental and economic impacts. The drivers of impact are580

either factors that decision-makers can control completely (i.e., the constraints) or else581

have at least some influence over (e.g., agricultural yield increases). This finding presents582

a more hopeful outlook for the future.583

As with any study, these key findings come with caveats. For instance, the final584

result of the sensitivity of impacts to deep uncertainties is highly conditional on the ex-585

perimental design. Future work is needed to test the robustness of our findings using a586

broader sampling of climate and biophysical uncertainty. Further, this study only assessed587

impacts on the land-use economy. Future work could conduct a similar exploratory im-588

pact analysis using a general equilibrium framework to assess impacts on the entire econ-589

omy. Future work could also include the value of ecosystem services to provide a more590

complete view of the impact of land scarcity. Finally, while GCAM models the average591

consumer with an average income in a particular region, it is important to consider the592

distributional effects of price increases as the poor will be more heavily impacted by the593

same price increases than the average consumer. This shortcoming is shared by many594

other Integrated Assessment Models but must be resolved so that these models can more595

effectively help guide the path toward a more equitable and sustainable future.596
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Figure 1. Schematic of the scenario design. SSPs are represented as circles, RCPs by squares,

ESMs by diamonds, and crop models by ovals. Connections (224 in total) show all possible com-

binations.
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Figure 2. Protected land under the conservation constraint (a) and in the baseline (b) in each

geographic land unit in the model. Missing data is represented by gray. Panel (c) depicts the

biofuel mandate in both constraints and the production of different bioenergy inputs to meet the

mandate. The plotted bioenergy sources do not reach the mandated amount in the All Biofuels

scenario because food crops are being converted to fuel as well, though are not plotted here.
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Figure 3. The percent change in the price of food crops due to implementing the constraints

averaged across crop types and regions through time. The top left panel shows the baseline prices

(i.e., with no constraint imposed) averaged across regions and crop types in $/kg. Colors indicate
the SSP scenario. The solid lines depict the median within the SSP group while the transparent

ribbons show the range over all scenarios within the SSP group.
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Figure 4. The amount of global land use change over the century due to imposing each of

the single constraints in thousands of kilometers squared. Land types are represented by colors.

Values are averaged across the scenario ensemble.
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Figure 5. The change in total food production (sum of all crop types for all regions) through

time in Mt. The interpretation of the colors, ribbons, and set up of the panels is the same as in

Figure 3.

Figure 6. Average change in crop price across crop commodities plotted against regional

GDP in 2100. Values are averaged across crop model, RCP, and ESM. Colors depict different

regions and shapes depict SSPs.
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Figure 7. Change in total water withdrawals (sum of all regions) through time in cubic kilo-

meters. The interpretation of the colors, ribbons, and set up of the panels is the same as in

Figure 3.
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Figure 8. Boxplots of the change in Water Stress Index (WSI), or withdrawals over renewable

supply, in each region with the addition of a single constraint. The midline of the boxplots depict

the median and the lower and upper hinges depict the 25th and 75th percentiles, respectively.

The whiskers are plotted to a distance of 1.5 times the inter-quartile range.
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Figure 9. Empirical cumulative distribution function of changes in global carbon emissions

in megatonnes (Mt) from implementing a single constraint for every scenario-year combination.

Colors represent the source of the emissions while linetypes specify the constraint.

Figure 10. The variance explained by each variable (represented by colors) in the experi-

mental design for all metrics as calculated by an ANOVA of first-order effects. The SSP variable

contains all assumptions within the SSPs except for those included in the agriculture and so-

cioeconomic variables. The top left panel includes the constraints as a variable while the others

depict the variance explained by the other variables within a constraint.
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Figure 11. Tradeoffs and synergies between the economic and environmental metrics. Lines

are the average across scenarios within an SSP, while SSPs are denoted by line types. Regions are

represented by colors. The values depict the log modulus of percent change in the metric. red-

Positive values are considered favorable while negative values are detrimental. Values for carbon

emissions, prices, and water withdrawals are reversed so that reductions are viewed as favorable.

Note that positive values are considered from the consumer standpoint. Increases in agricultural

prices are plotted as not favorable yet would be favorable to producers.
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X - 2 DOLAN ET AL.: IMPACTS OF LAND SCARCITY UNDER DEEP UNCERTAINTY

Figure S1. The percent change in price of food crops normalized by percent protected land

plotted against regional GDP in 2100. Regions are depicted by colors and SSPs are depicted by

shapes.
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DOLAN ET AL.: IMPACTS OF LAND SCARCITY UNDER DEEP UNCERTAINTY X - 3

Figure S2. Change in total carbon emissions (from land use change and fossil fuel and

industrial sources) through time in metric tonnes of Carbon. The top left panel shows global

carbon emissions at the baseline (i.e., with no constraint imposed). Colors indicate the SSP

scenario. The solid lines depict the median within the SSP group while the transparent ribbons

show the range over all scenarios within the SSP group.
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