loading page

Forecast of the Global TEC by Nearest neighbour technique
  • Enric Monte-Moreno,
  • Manuel Hernández-Pajares,
  • Heng Yang
Enric Monte-Moreno
Universitat Politècnica de Catalunya

Corresponding Author:[email protected]

Author Profile
Manuel Hernández-Pajares
Universitat Politècnica de Catalunya
Author Profile
Heng Yang
School of Electronic Information and Engineering,Yangtze Normal University
Author Profile


We propose a method for Global Ionospheric Maps of Total Electron Content forecasting using the Nearest Neighbour method. The assumption is that in a database of global ionosphere maps spanning more than two solar cycles, one can select a set of past observations that have similar geomagnetic conditions to those of the current map. The assumption is that the current ionospheric condition can be expressed by a linear combination of conditions seen in the past. The average these maps leads to common geomagnetic components being preserved and those not shared by several maps being reduced. The method is based on searching the historical database for the dates of the maps closest to the current map and using as a prediction the maps in the database that correspond to time shifts on the prediction horizons. In contrast to other methods of machine learning, the implementation only requires a distance computation and does not need a previous step of model training and adjustment for each prediction horizon. Also provides confidence intervals for the forecast. The method has been analyzed for two full years (2015 and 2018), for selected days of 2015 and 2018, i.e., two storm days and two non-storm days and the performance of the system has been compared with CODE (24- and 48-hour forecast horizons).
11 Mar 2022Published in Remote Sensing volume 14 issue 6 on pages 1361. 10.3390/rs14061361