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Abstract15

We propose a method for Global Ionospheric Maps of Total Electron Content fore-16

casting using the Nearest Neighbour method. The assumption is that in a database of17

global ionosphere maps spanning more than two solar cycles, one can select a set of past18

observations that have similar geomagnetic conditions to those of the current map. The19

assumption is that the current ionospheric condition can be expressed by a linear com-20

bination of conditions seen in the past. The average these maps leads to common geo-21

magnetic components being preserved and those not shared by several maps being re-22

duced. The method is based on searching the historical database for the dates of the maps23

closest to the current map and using as a prediction the maps in the database that cor-24

respond to time shifts on the prediction horizons. In contrast to other methods of ma-25

chine learning, the implementation only requires a distance computation and does not26

need a previous step of model training and adjustment for each prediction horizon. Also27

provides confidence intervals for the forecast. The method has been analyzed for two full28

years (2015 and 2018), for selected days of 2015 and 2018, i.e., two storm days and two29

non-storm days and the performance of the system has been compared with CODE (24-30

and 48-hour forecast horizons).31

Plain Language Summary32

In this paper we present a method for the prediction of Global Ionospheric Maps33

of Total Electron Content. In this paper we argue that the prediction can be performed34

from information contained in a database spanning two solar cycles. We also show why35

the use of previous maps with similar properties allows successful prediction. We then36

compare the performance of the algorithm for various horizons.37

1 Introduction38

The variations in electron density, and correspondingly in its line-of-sight integral,39

the vertical total ionospheric electron content (TEC) affect satellite telecommunication40

services and Global Navigation Satellite Systems (GNSS) due to the effect these fluc-41

tuations have on radio wave propagation. The TEC variations induce changes that af-42

fect the transmission quality either, as reduced transmission rate and positioning errors.43

This justifies the importance of monitoring and predicting global TEC maps, as the knowl-44

edge of the spatial distribution of TEC would allow corrections to be made. The TEC45

measurement consists of the total number of electrons integrated along a 1 m2 cross-section46

tube, using as a unit the TECU defined as = 1016electrons/m2. The prediction of Global47

Ionospheric Maps (GIM) at different horizons is important because the ionospheric de-48

lay is main limiting factor in high-accuracy positioning. These predictions may allow achiev-49

ing sub-meter accuracy for mass-market single-frequency receivers (Garćıa-Rigo et al.,50

2011). In this paper we propose a method for Global Ionospheric Maps of Total Elec-51

tron Content forecasting using the Nearest Neighbour method which we denote as NNGIM.52

2 Issues regarding the TEC map prediction.53

The difficulty in predicting TEC maps of the ionosphere stems from the fact that54

the quality of the prediction depends on geomagnetic activity, season, geographical lo-55

cation, ionospheric structures, such as equatorial ionization anomaly (EIA), and storm-56

enhanced density (SED). Besides, the sparsity in the geographical distribution of sta-57

tions leads to problems related to interpolation in regions not covered by these stations.58

Added to the problem of variability and dependence on external factors, the prediction59

of GIM maps by machine learning techniques is affected by the need for machine learn-60

ing techniques to infer prediction rules from examples. This means that the database61
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to train the system has to be rich enough to represent most of the combinations of ef-62

fects acting on the ionosphere. One intrinsic limitation of machine learning-based sys-63

tems is the availability of a database that sufficiently covers the multiple forms of phe-64

nomena that can occur. In the works cited below, most of the prediction proposals are65

made using databases covering at most one solar cycle. In this work, we will be using66

UPC-IonSAT’s database, which covers more than two solar cycles. It is important to high-67

light the importance of having more than one solar cycle to infer the structure and pa-68

rameters of the forecasting system. Within the long-term solar cycle periodicity, there69

is large variability. As an example analized in this paper, we can mention two dates when70

storms occur. I.e., the Saint Patrick storm of 17 March 2015 (maximum of solar cycle71

C23) and the storm of 25-26 August 2018 (minimum of solar cycle C23). These are dates72

in different phases of the solar cycle, in which we have high solar and geomagnetic ac-73

tivity superimposed on different basal levels of ionization. In Appendix 9 Tables 5 and74

7, summarise the Kp values and the solar flares that occurred on these days. In these75

two days, the activity in terms of Kp values and magnitude of the flares is similar. There-76

fore, within the periodicity associated with the solar cycles and the season of the year,77

there is a high variability that makes it difficult to infer prediction rules. This high vari-78

ability, in addition to the baseline levels of activity due to the periodicity components,79

justifies the need for a long enough database.80

The need for a database that sufficiently covers the variability of GIMs presents81

significant technical problems from the point of view of prediction algorithms. In the case82

of two solar cycles, with maps at a rate of one every 15 minutes, the resulting database83

consists of more than one million maps. The use of databases of this size makes the hard-84

ware requirements demanding, and the computational time requirements to perform topol-85

ogy and parameter tuning of the machine learning system are substantial.86

To address the problem the above mentioned problem, ie., of training a machine87

learning system for forecasting the GIMs, making, there are two approaches.88

• Local approach: In this case, a specific subset of the database is constructed from89

the current observation. An example is Monte Moreno et al. (2018), in which maps90

immediately before the current map are used, and based on these maps and the91

tangent spaces a linear combination is generated that predicts the maps in the im-92

mediate future. This approach assumes that the change in the maps has inertia93

that determines the future evolution. In C. Wang et al. (2018) they apply a sim-94

ilar idea to calculate the autoregression coefficients that predict the values of the95

spherical harmonics that allow the GIMs to be reconstructed. Another approach96

is the one followed in this article, in which prediction is made based on past ex-97

amples that have a small distance to the current observation. This approach as-98

sumes that conditions similar to the one observed in the current map have occurred99

in the near past and that the temporal evolution of the current map can be in-100

ferred from the evolutions seen in the previous history. A noteworthy aspect of101

the local approximation is that increasing the number of prediction horizons does102

not lead to a significant increase in computation time, as most of the computa-103

tion time comes from determining the coefficients in a window that spans a lim-104

ited amount of time.105

• Global approach: In this case, the prediction model uses all the historical GIMs.106

One consequence of this is that to make a reliable prediction, the model has to107

be estimated from a sufficiently rich set of examples. This leads to problems of108

implementation. For Support Vector Machines, this approach is infeasible, since109

it is necessary to create the Gram matrix, which is the square of the number of110

examples, and it must be kept in memory. In the case of Deep Learning (Goodfellow111

et al., 2016), the training has to be carried out in Graphical Processing Units (GPU),112

which have limited memory. In the author’s experience (EMM), when trying to113

solve this problem with Convolutional Neural Networks, on a high-end GPU, train-114
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ing one model took about a week. This is without taking into account the need115

to repeat the training to test different topologies and adjust parameters. This com-116

putational requirements were for the case where to reduce the model’s complex-117

ity and take advantage of seasonal similarities in mapping, one model per month118

of all the years was trained. Even with this partitioning of the database, the re-119

sulting model occupied between 1 Gigabyte and 5 Gigabytes depending on the topol-120

ogy. The resources needed to perform the prediction in production, in this case,121

were significant, as the model has to be loaded into memory and the prediction122

operations have to be performed.123

Another significant limitation in the approach using Deep Learning and similar124

methods is that either a completely new model or a more complicated topology125

has to be trained when increasing the number of prediction horizons. In contrast,126

in the method we propose NNGIM, which is based on finding the nearest map,127

increasing or changing the values of the horizons has minimal repercussions on the128

execution time.129

A natural model for forecasting the GIM maps that has been used literature (see130

Section 3) is the Long Short Time Memory (LSTM) (Goodfellow et al., 2016) ar-131

chitecture. A very significant limitation of the LSTM architectures is that they132

consist of units that have saturating nonlinearities, such as hyperbolic tangent and133

sigmoid. Since the GIM statistics are long tail (see the last section of Monte Moreno134

et al. (2018)), the units work much of the time in saturation and cannot model135

large amplitudes. One consequence is that precisely the regions of interest where136

there are large TEC gradients cannot be modelled correctly by these units. This137

is why (EMM), in a first approach to the problem, opted for CNN with Relu-type138

non-linearities. The complexity of Deep Learning based methods was one of the139

motivations for seeking a more simple approach to the problem.140

3 Precedents and limitations of the GIM forecast performances141

We will now discuss some precedents to put the NNGIM in context. The features142

and limitations of other GIM prediction methods will allow us to justify NNGIM design143

decisions. This section will also serve to establish the limitations of the global approach144

to forecasting.145

• Global approach: A first approach to the problem of predicting TEC maps con-146

sists of predicting TEC values for specific stations, thus obtaining a local descrip-147

tion of the TEC distribution. This is the case of Xiong et al. (2021), where they148

predict the TEC over China using a variant of the LSTM type networks (ED-LSTM).149

This type of method differs from ours in the sense that the prediction is done at150

the station level and there is no interpolation process. One point to note is the151

use of data from one solar cycle (Jan 2006 to April 2018). The authors use train-152

ing data from 2006 to 2016, validation between Jan 2017 and April 2018. To avoid153

the problem of the solar cycle-dependent baseline TEC level, and to adapt the data154

to the structure of the LSTM grids, the authors normalise the data. This assumes155

that the variations around the baseline TEC value are similar between different156

times of the solar cycle. This solves the problem of the variation of the mean TEC157

level with the solar cycle. One problem related to their approach is that the neu-158

ral network units they apply have saturation-type non-linearities, which has as a159

consequence that for extreme values, the units work on saturation. Note that the160

statistics of the TEC distribution is Leptokurtic, i.e., long tail. On the other hand,161

an advantage of the type of neural network they employ is that it allows the use162

of external data naturally in the architecture (solar flux and geomagnetic activ-163

ity data). In addition to the LSTM architecture (ED-LSTM), the authors explore164

other architectures and provide a performance hierarchy. The forecast horizons165

are 2-hour, 3-hour, and 4-hour, using as input a window of past samples between166
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one day and three days. An important lesson from this work is that the inertia167

hypothesis, in the sense that the temporal evolution of the TEC follows a trajec-168

tory specified by the near past, leads to a prediction barrier at a horizon of a few169

hours. This limit on the prediction horizon under these conditions was also found170

in Monte Moreno et al. (2018).171

An article reporting a related architecture is Cherrier et al. (2017). Unlike the pre-172

vious case, the objective was to predict global TEC maps, with a resolution of 5173

x 2.5 degrees in longitude and latitude. The temporal resolution was 2 hours. To174

solve the diurnal cyclicity problem, they use a solar centred reference frame. The175

authors propose the prediction of global maps with prediction horizons increas-176

ing in two-hour steps up to 48 hours. The input data were the maps for the three177

immediately preceding days. The type of architecture they propose is based on178

a sequence to sequence, in which CNN-type networks are combined with memory179

networks, either LSTM or Gated Recurrent Units (GRU), both with saturating180

nonlinearities. The authors report that prediction at intervals longer than 24 hours181

did not achieve good results; in fact, in the 24-hour prediction, they obtain a re-182

sult that improves the cyclic prediction by only 6%. The study was conducted us-183

ing the data from 1/1/2014 to 12/31/2016. Note also, that the use of LSTM or184

GRU also suffers from the limitation that the observations are leptokurtic, which185

means that the nolinearities work in saturation for extreme values.186

In Liu et al. (2020) they propose a system based on the use of two LSTM layers187

followed by a fully connected dense layer for the prediction of the global TEC maps.188

Unlike the previous cases, the prediction is performed directly on the spherical har-189

monic (SH) used to build the GIMs. In this approach, in addition to using the in-190

formation in the recent past (24h) regarding the SH, they also use external infor-191

mation that helps to make the prediction, such as the solar extreme ultraviolet192

(EUV) flux, the hour of the day, and disturbance storm time (Dst) index. The pre-193

diction horizon is set to 1 hour and 2 hours. It is interesting to note that the pre-194

diction has an error with respect to frozen maps (persistence) of 60 % at one hour195

and 63 % at two hours. Note that (although the experiment is not totally com-196

parable) this gain is similar to the obtained by the frozen cyclic approach vs. the197

persistence hypothesis, see section 7. As a test base, the intervals before and af-198

ter the interval used for the training base were used. That is, for the training base199

the interval: 1 January 2015 to 26 May 2016 and for the test base the intervals200

19 October to 31 December 2014 and 27 May to 31 December 2016, thus ensur-201

ing a similarity between the training and test conditions.202

The methodology of the above-mentioned works is correct from the point of view203

of Deep Learning type network design, however, despite the correctness, it reflects204

the limitations of this type of technique. These limitations are typical of the gen-205

eral approach to the TEC prediction problem using Deep Learning and do not in-206

dicate a misuse of the technique by the authors. Limitations of Deep Learning are207

the need to process the input data such as normalisation or de-trending of the TEC,208

the difficulty of performing a test under train-like conditions, the fact that some209

networks require saturating nonlinearities that are not fit for long-tail input dis-210

tributions, and the presence of a prediction horizon lower than 24 hours.211

• Local approach:212

This approach uses information from recent activity to estimate the parameters213

of the prediction model.214

In C. Wang et al. (2018), the authors describe a system based on autoregressive215

models, with coefficients computed from a history covering the previous 30 days.216

The prediction is made on the SH coefficients, which allow the GIM to be recon-217

structed. By estimating the model locally, they can adapt the system to short-term218

climatology. This allows them to test the model at different times of the solar cy-219

cle, without the need for special partitioning of the database, as is done in the case220

of deep learning. The performance of the model is tested against CODE, IGS prod-221
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ucts, and TEC measurements via JASON. The prediction result is different de-222

pending on the activity at the time, with worse results at times of high activity.223

One result is that the RMSE error of prediction during a low activity period was224

1.5 TECUs at 24 hours. In Krankowski et al. (2005) the authors use autoregres-225

sive moving average (ARMA) for VTEC prediction for stations in Northern Eu-226

rope. In this article, they use information related to the analysis in wavelets to227

establish the prediction at 1, 2, and 3-hour horizons, calculating the ARMA co-228

efficients from the last 7 days. The TEC profiles follow a daily pattern, so an ARMA-229

type method is suitable for modeling the cyclicities.230

In Garćıa-Rigo et al. (2011), the authors propose a method for the prediction of231

GIMs with horizons of up to 2 days. It is based on a method that predicts the co-232

efficients of the discrete cosine transform (DCT) by an autoregressive method. The233

autoregressive coefficients are calculated locally using information from the last234

week’s maps. From the predicted DCT coefficients, the map at the horizon of in-235

terest is computed. By calculating the coefficients using a recent past and using236

the maps of the previous 24 hours for the prediction, the system can adapt to the237

current weather conditions. The results were validated with JASON measurements.238

In Monte Moreno et al. (2018) a prediction system is proposed based on an au-239

toregressive model of the maps of the last 24 hours, together with the components240

of the tangent spaces associated with each of the previous maps. The forecast hori-241

zons range from half an hour to 24 hours. The tangent space information allows242

to increase the information on the possible trajectory and deformation of the map243

over time, and in some way to reflect how the ionospheric climatology changes the244

shape of the high ionisation regions. One feature related to the comparison with245

other methods, is the improvement in % of the prediction method compared to246

a frozen reference in a sun-fixed reference frame. The reference will be the pre-247

diction error of keeping the map frozen (see section 7 for more information). As248

shown in Table 1, the prediction performance has a concave profile. The perfor-249

mance is computed using the recent past, and with autoregressive model coeffi-250

cients calculated with recent values as well, The best prediction compared to frozen251

is at a 3-hour horizon, increasing thereafter. At 24 hours, the improvement is only252

5 %, which is in line with methods based on deep learning. This leads us to think253

that there is a certain horizon barrier in terms of prediction using the recent past254

as input.255

Table 1: Forcast vs. Frozen (% RMSE) for the Tangent Space.

Horizon: 1/2 h 1 h 2 h 3 h 6 h 24 h

Forcast vs. Frozen: 84.99 % 77.65% 71.35% 69.34% 87.23% 95.76%

The analysis of the precedents leads us to the conclusion that the information im-256

mediately prior to the current map does not allow reliable predictions of GIM maps at257

horizons longer than a few hours. They also indicate the limitations and difficulties of258

training prediction models, and the complexity of the models and partitions of the database.259

This leads us to look for a different approach, in which the prediction is made by260

searching for situations similar to the current one in a sufficiently large database. A by-261

product of this approach is that it allows to create confidence margins of the forecast in262

a natural way (see Section 8.4)263
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4 UPC-IonSAT real-time Global Ionospheric Maps and Data prepro-264

cessing265

The GIMs are generated from data gathered from several hundred worldwide GNSS266

stations. This data stream is obtained through the protocol used by the RT IGS work-267

ing group and the data processing is performed using the UPC-IonSAT ionosphere model.268

The streaming protocol referred to as “Networked Transport of Radio Technical269

Commission for Maritime Services (RTCM) via Internet Protocol” (NTRIP), was de-270

veloped by the German Federal Agency for Cartography and Geodesy (BKG), enables271

the streaming of the observation data from the worldwide permanent GNSS receivers272

(Weber et al., 2005).273

The UPC-IonSAT’s RT TOMographic IONosphere Model (RT-TOMION) is a 4D274

(3D+time) model of the global state of the ionosphere, focused on RT estimation of TEC,275

mainly based on GPS dual-frequency measurements with the hybrid geodetic and tomo-276

graphic ionospheric model, and robust to various types of deterioration. This model is277

the extension of the Tomographic Ionospheric Model (TOMION) developed by UPC in278

the 1990s and has been employed for UPC RT/near-RT ionosphere service of IGS since279

2011 (Hernández-Pajares et al., 1999, 2000; Hernández Pajares, 2014; Roma Dollase et280

al., 2015; Orús et al., 2005).281

Also, the VTEC interpolation techniques of the UPC RT- TOMION model is per-282

formed either by spherical harmonics or Kriging (Orús et al., 2005) so to fill the gaps283

where data is lacking. In addition, the most recent maps are interpolated by means of284

the ADDGIM algorithm presented in Yang et al. (2021). For more details of the process-285

ing and interpolation of the GIMs, see Yang et al. (2021).286

5 NNGIM algorithm287

In this section, we will define the Nearest Neighbour GIM (NNGIM) algorithm. This288

algorithm consists of searching for the N maps closest (in Euclidean metric) to the cur-289

rent one in the database of past maps (more than one solar cycle). Then, from these maps,290

the GIMs with an offset equal to the prediction horizon are retrieved and averaged.291

The assumption underlying the NNGIM algorithm is that in a database that en-292

compasses more than one solar cycle, a small number of maps with a small distance to293

the current one can be found, and that have ionosphere conditions in common with the294

current one, might characterize the maps at a time shift equal to the forecast horizon.295

Although each ionosphere condition is unique, it is assumed that in the past there have296

been conditions with a similar composition of external features and that the average of297

all of them will reflect the specific features of the current one. The set of similar maps298

therefore take into account the cyclical aspects that influence the overall distribution of299

TEC along with the various external influences. That is, if we select a set of future map300

values closer to the current one when averaging, common values in subsets of the future301

maps will be retained, while non-common conditions will be attenuated. Note that the302

idea behind the assumption is that there will be subsets of maps representing similar iono-303

spheric conditions, and the overall composition of these parts will allow us to approx-304

imate previously unseen situations. We assume that these previously unseen situations305

are composed of subgroups that characterize part of the previous conditions common to306

the current situation.307

The UPC-IonSat GIMs database, which spans over two solar cycles and consists308

of more than 106 maps, was used to implement the method (see Yang et al. (2021) for309

details).310
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In the Algorithm diagram 1 we present the summary of the NNGIM algorithm. A311

detailed explanation of the algorithm is given below, defining also the variables involved.312

The input of the algorithm consists of a database spanning more than two solar313

cycles (DbAllMaps). Note that for consistency in the computation of the distance between314

maps at different moments, the database and the current map are transformed to sun-315

fixed geomagnetic coordinates. After the forecast, the inverse transform is performed.316

Since the maps have a seasonal component with a mean TEC value that depends317

on the season of the year (see Figure 4), the search for the nearest map will be carried318

out in the vicinity of the current month. Therefore, given the date of the current map319

DateTest, the month is extracted (MTst), and maps the current month and a window320

of ±WNeighMonths months are selected from the database. In the experiments, a neigh-321

bourhood of WNeighMonths = 1 was taken. Other parameters are the forecast horizon322

in hours (Horizon) and the number of nearest neighbours (NumNN ). The next step is323

to construct a second database ( DbIma), which will consist of the maps with the cur-324

rent map month and the neighbouring months for all years. The Euclidean distance be-325

tween the current map Map(DateTest) and the maps in the DbIma database is then cal-326

culated. (lines 3 to 7 of the Algorithm diagram 1). The vector of distances is then sorted327

from smallest to largest (line 8 of the Algorithm diagram 1) and assigned to the vector328

of indices IndexMinDist.329

We define NumNN as the number of maps to be used for prediction estimation.330

The Algorithm diagram 1, lines 9 to 15 describe the process for generating the predic-331

tion. For the nearest NumNN maps, we find the corresponding index IndexMap and332

the associated date Date[IndexMap]. Next, we add the offset Horizon to generate the333

date DateNNMap associated with each of the maps. The maps associated with each date334

DateFutMap ← DateNNMap+Horizon are combined to generate the future map ForecastMap.335

Finally, from the maps of the horizon shift, the standard deviation at the pixel level336

is calculated, as shown in line 17.337

Various strategies for combining the maps were tested, such as a simple average,338

a distance-weighted average, or weight that diminishes with the time difference. We also339

tried a trim mean, defined as the average of the values of each specific pixel in the maps,340

using only the values between the 25th percentile and the 75th percentile. The median341

of the pixels of the nearest NumNN maps was also tested. The combination that gave342

the best results was a simple average of the maps.343

One parameter to be adjusted is the number NumNN used to calculate the fore-344

cast. This value depends on the forecast horizon and the month of the year. For all ex-345

periments we chose a value NumNN = 500. The choice was made based on the perfor-346

mance during June 2019 and was explored for values between 1 and 1000. The ration-347

ale for the choice of date was to have a date in a cycle (C24) different from the cycle in348

which the results are presented (C23), and also at a season of low activity. The exper-349

iments showed that for this month and horizons between 3 hours and 48 hours the op-350

timum value was between 150 and 700. In the real-time implementation, a look-up ta-351

ble will be used in which the month and horizon will be related to the NumNN value.352

An interesting result is that using only the nearest neighbour, i.e., NumNN = 1353

provided results with a quality equal to using the cyclic version of the map, (defined as354

M̂apcyclic(t+τ) = Map(t−24h+τ)). The performance did not improve until using a355

number of NumNN greater than 50. This leads us to think that the use of a large num-356

ber of maps allows us to create a representation of the possible contributions of the fac-357

tors that affect ionisation. The explanation is that the combination of external factors358

is larger than the number of examples in the database. The underlying assumption is359

that the current combination of factors affecting ionisation can be expressed as a linear360

combination of similar situations in the past.361
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Algorithm 1: The NNGIM algorithm

Data: Inputs to the algorithm:
DateTest ← Date of the test GIM;
DbAllMaps ← All GIMs of two solar cycles in sun-fixed geomagnetic coordinates;
WNeigh ← Window of Neighbouring Months;
NumNN ← Number of elements for computing the mean of the Nearest
Neighbours;
Date← Dictionary of Dates, indexed by Map number;
Horizon← Forecast Horizon in hours;

Result: ForecastMap,Forecast
Std
Map

1 Generate the Forecast Database;
2 MTst ← GetMonth(DateTest) ; /* Month of the current map */

3 DbIma ← ∅ ; /* DbIma Map DataBase of Current and Neighbouring Months

*/

4 for M=MTst −WNeigh to MTst +WNeigh do
5 DbIma ← (Add to set)DbAllMaps(M) ; /* Add maps for month M */

6 end
7 MatDist ← Distance(DbIma,Map(DateTest)) ; /* Distance from

Map(DateTest) to MatDist */

8 IndexMinDist = Argsort(MatDist) ; /* Argsort returns the Indices of the

sorted MatDist */

9 ForMap ← ∅ ; /* Compute mean value of the nearest maps at timestamp

+ horizon */

10 for NumMap=1 to NumNN do
11 IndexMap← IndexMinDist[NumMap];
12 DateNNMap ← Date[IndexMap];
13 DateFutMap ← DateNNMap +Horizon;
14 ForMap ← ForMap +DbAllMaps[DateFutMap];

15 end
16 ForecastMap ← ForMap/NumNN ;

17 ForecastStdMap ← ComputeSTD(DbAllMaps, Date, IndexMinDist, Horizon);
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A product of this algorithm is that it can provide confidence intervals for the GIMs,362

i.e. the local standard deviation of the ionisation values. The estimation of confidence363

intervals can be done directly, as a collection of several hundred maps is available. One364

of the features of the maps from which the prediction is constructed is the variability around365

a central value, as shown in Figure 2. Therefore from the set of maps used to generate366

the prediction, one can estimate a standard deviation ForecastStdMap at a pixel level, defin-367

ing this standard deviation as the deviation of the maps from the mean value of the pre-368

diction ForecastMap. One point that we show in section 8.4 is that the prediction cov-369

ers most of the area of the reference map RefMap, so we can consider that this variance370

provides us with an adequate measure of uncertainty for the prediction.371

Improvements372

The improvements we envisage in the next step are to change the average distance,373

using a metric on the manifold in which the map is located. This is the distance defined374

in L. Wang et al. (2005) in which coefficients of the angle between coordinates gi,j =<375

ei, ej > are used to weight the Euclidean distance. The advantage of using this distance376

is that it allows considering in the similarity measure between maps, distortions such as377

shifts, rotations, etc. The reason why it has not been used in this implementation is that378

it requires a computational load proportional to the square of the number of map ele-379

ments. With the current hardware capabilities at 202, the computation of MatDist took380

about ten minutes, so it was not implemented in the final prototype.381

Another improvement is to use a heuristic that decreases the computational needs382

to determine the nearest neighbors. That is, an algorithm with a suitable heuristic for383

the dimensionality of the maps and with a lower search cost, as is the case of Omohundro384

(1989). The fact that the GIMs have the ionisation levels distributed in clear and dis-385

tinct regions makes this algorithm efficient. This might allow implementing a distance386

with higher computational cost as the nearest neighbour search cost can be decreased.387

The computational cost on an iMac i7 using one core of applying the algorithm was388

as follows. The Euclidean distance MatDist from a map Map(DateTest) to the database389

DbIma consisting of the current month and the two neighbouring months (with 170,000390

maps) was of the order of 135 ms, and the cost of sorting the distances Argsort(MatDist)391

of 9 ms, the calculation of the average map ForecastMap, was less than 1 ms.392

The most time-consuming part of the algorithm is the loading into memory of the393

pre-computed database DbIma, which occupies 2 Gigabytes. The time cost on an SSD394

is in the order of 2 seconds. However, in a real-time application, the database can be kept395

permanently in memory.396

The real-time prediction of the implementation of this algorithm can be found at397

the following URL: NNGIM forecasts at different horizons (n.d.), with the following nam-398

ing convention:399

The three regions where the forecast was done: Global Forecast (un*g), North-Pole400

Forecast (un*n), South-Pole Forecast (un*s) And the different horizons that were im-401

plemented in real time:402

1 un0g/un0n/un0s: 1 hour Forecast403

2 un1g/un1n/un1s: 6 hour Forecast404

3 un2g/un2n/un2s: 12 hour Forecast405

4 un3g/un3n/un3s: 18 hour Forecast406

5 un4g/un4n/un4s: 24 hour Forecast407

6 un8g/un8n/un8s: 48 hour Forecast408
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The Polar predictions consist of segments of the global map clipped at 45 degrees of lat-409

itude.410

6 Illustration of how the algorithm works411

To understand how the algorithm works, we will consider two points of view.412

1. How the dates of the nearest maps are distributed along the solar cycles: C23, C24413

and C25.414

2. Examples of actual maps to understand how is the variability of the nearest neigh-415

bours.416

We will perform the analysis on day 2019-05-21 16:15:00 UTC a C25 cycle day417

during summer.418

Figure 1: Nearest maps are distributed along solar cycles C24 and C25. Histograms of
the years (left), months (center) and time of day (right) of the nearest maps to the map
at 2019-05-21 16:15:00 UTC.

Figure 2: Current map at 2018-07-13 20:45:00 UTC (subplot at upper left corner), and
the seven Nearest Neighbours. All maps in sun-fixed geomagnetic coordinates

1. In Figure 1 we show that the nearest neighbours are distributed over years in the419

same phase of the cycle. Using only examples from the two cycles C23 and C24.420

The algorithm does not select any maps from the previous month, and most of421

the closest maps are from the next month. As we will see later, there is a signif-422

icant dependence of the behaviour of the algorithm on the month in which the pre-423

diction is made. As for the time of day, most of the examples are at the same time424

of day plus or minus one hour.425
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2. Next, we consider the variability of the closest maps. The variability of these maps426

reflects the ionospheric conditions that are common and those that differ. In Fig-427

ure 2 we show the map for 2018-07-13 20:45:00 UTC and the seven nearest neigh-428

bours in the Euclidean distance sense. To facilitate the comparison, we present429

the maps in sun-fixed geomagnetic coordinates, which are the setting in which the430

software computes the distance between maps. The selected maps are from the431

same time of the year and at similar moments of the solar cycle. On the other hand,432

the morphology is variable, which indicates that each of the maps reflects iono-433

spheric conditions that have parts in common with the current map as well as spe-434

cific components. The hypothesis underlying the NNGIM model is that the com-435

ponents common to the current map are preserved by the average, and those that436

are not common are smoothed out. This variability around common values allows437

to estimate confidence intervals can capture the most likely ranges in the true ref-438

erence value. The maps at a future shift equal to the prediction horizon exhibit439

very similar visual features. For reasons of space and similarity between figures,440

we do not show them.441

7 Selection of the Benchmark442

In this section, we will define the benchmark to assess the performance of the al-443

gorithm. A commonly used reference as benchmark predictor is either a prediction us-444

ing the current frozen map or as a prediction the cyclic map, that is, the immediately445

preceding map of the same time as the time to be predicted. We will formally define the446

two predictors as follows:447

• Frozen: M̂apfrozen(t+ τ) = Map(t)448

• Cyclic: M̂apcyclic(t+ τ) = Map(t− 24h+ τ)449

As a benchmark in the following sections, we will use the cyclical prediction M̂apcyclic(t+450

τ).451

Table 2: Forecasting RMSE (TECU) for M̂apfrozen(t+ τ) vs. M̂apcyclic(t+ τ) (June 2019)

Horizon: τ (hours) 3h 6h 8h 12h 16h 20h 24h 28h 32h 36h 48h

M̂apfrozen(t+ τ) (TECU) 1.87 2.35 2.51 2.59 2.51 2.18 1.42 2.19 2.57 2.61 1.54

M̂apcyclic(t+ τ) (TECU) 1.43 1.43 1.41 1.45 1.41 1.42 1.42 1.42 1.42 1.44 1.42

We argue this decision through Table 2, in which we show the prediction errors in452

RMSE (TECU) for prediction horizons ranging from 3 hours to 48 hours. In this case453

one can see that the prediction cyclic M̂apcyclic(t + τ) RMSE error and the standard454

deviation are constant regardless of the prediction horizon, and equal to the 24-hour er-455

ror of the frozen predictor M̂apfrozen(t+ τ). This is to be expected since at all times456

the cyclic predictor behaves as a 24-hour predictor. On the other hand, an important457

limitation of the use of the frozen prediction M̂apfrozen(t+τ) as a benchmark is that458

the comparison is made under non-comparable ionospheric conditions. This results in459

a sinusoidal behaviour of the RMSE, which increases from 3 hours to 12 hours and then460

decreases to a minimum at 24 hours. This behaviour is then repeated, reaching a new461

minimum at 48 hours. Therefore, since the frozen version M̂apfrozen(t + τ) is a very462

pessimistic benchmark, and has a component that depends on the time of day, we will463

use as a benchmark only the M̂apcyclic(t+ τ).464

To get an idea of the differences between benchmarks and NNGIM prediction, in465

Figure 3 we present the comparison of the reference map (6-hour a head ground truth),466
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(a) Mapref (t+ τ) (b) M̂apnngim(t+ τ) (c) M̂apcyclic(t+ τ) (d) M̂apfrozen(t+ τ)

Figure 3: Comparison of the reference map (a) at 2019-07-07 03:00:00 UTC, with the
NNGIM prediction (b), with the cyclic prediction (c) and with the frozen prediction (i.e.,
using current map). Note that the maps are in the original coordinates.

with the predictions using the NNGIM algorithms, the cyclic and the frozen reference.467

The cyclic reference provides local features of the TEC distribution similar to the ref-468

erence map, while the frozen map has a very different morphology. On the other hand,469

the NNGIM prediction, despite using maps from other years, captures the structure of470

the TEC distribution of the reference map.471

8 Results472

For the analysis of the algorithm, we have selected two years of the C24 cycle and473

two days of each year. The criterion for selecting the years was to have a sample of one474

year of high activity in the cycle and one year of low activity. Likewise for the days, in475

order to contrast the behaviour of the algorithm in the case of storm days vs. quiet days,476

we chose two storm days of each year and two adjacent days without a storm. In appendix477

9, we present a summary of the solar activity on these days (i.e., Kp number and solar478

flares by the hour).479

8.1 Analysis of selected years: 2015 and 2018480

Figure 4 shows the time series of the average monthly TEC value for the two se-481

lected years. The first difference observed in the two years is the underlying monthly av-482

erage TEC level and the fact that in the most active year (2015), the monthly profile of483

the TEC level has a marked cyclical component with a minimum in the summer. On the484

other hand, in the least active year (2018), the cyclical component has a lower ampli-485

tude. The mean annual TEC value for 2015 is 20 TECU, while in 2018 it is 8.8 TECU.486

First, we show the performance of the NNGIM algorithm in TECU values and then487

for comparison purposes in percentages concerning the prediction using the frozen cyclic.488

Figure 4: Mean monthly TEC for the years 2015 (in blue) and 2018 (in orange)
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In Table 3 we show the average TECU prediction RMSE for 4 prediction horizons.489

In 2015 the prediction error increases as we increase the horizon from 17% to 20% of the490

average TEC value. On the other hand, the error in 2018 remains almost constant re-491

gardless of the horizon and stands at 18% of the average TEC value in that year. How-492

ever, as we will see below, the prediction error has an annual cyclical component, being493

lower in the summer.

Table 3: RMSE error of the NNGIM algorithm for several horizons

Horizon 6h 12h 24h 48h Mean TECU

2015 (TECU) 3.50 3.70 3.72 4.00 20.0 TECU
2018 (TECU) 1.59 1.66 1.59 1.66 8.8 TECU

494

In Figure 5 we present the percentage change of the RMSE value for the cyclical
prediction vs. NNGIM for various horizons. That is, we plot the ratio

M̂apnngim(t+ τ)

M̂apcyclic(t+ τ)
× 100%

The first conclusion derived from the figures is that the use of NNGIM provides495

a decrease that follows an annual pattern and in the summer months for 6 and 12-hour496

horizons provides a decrease in error in the order of 20% to 25%. This contrasts with497

the experience with Tangent Spaces predictions (see Monte Moreno et al. (2018)) and498

Deep Learning based methods (see section 3), where a significant degradation in qual-499

ity is reported at prediction horizons of the order of 6 hours. The prediction at 24 and500

48 hours reported as a percentage of frozen in Cherrier et al. (2017) using Deep Learn-501

ing is similar to the one shown in the lower row of Figure 5.502

(a) Horizon 6 hours (b) Horizon 12 hours

(c) Horizon 24 hours (d) Horizon 48 hours

Figure 5: Percentage of RMSE reduction with regard to cyclic freezing for the horizons of
6h, 12h, 24h, 48.
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The 12-hour forecast results are worse than the 24-hour ones except for the months503

of May and June. This is because this is the moment in the interval ( t, t+24h) when504

the ionosphere configuration is maximally different from the current state.505

On the other hand, 48 hours seems to be a natural limit for the method, as the er-506

ror reduction for frozen cyclic is on an annual average of 95%.507

8.2 Performance on selected days of 2015 and 2018508

To evaluate the performance of the NNGIM method, we selected two days at the509

maximum of cycle 24 and two days at the minimum of the same cycle. The criterion for510

selecting the days was that one of them coincided with a geomagnetic storm and the other511

one coincided with a nearby day without significant activity. The selected days were:512

1. 17 March 2015 (St.Patrick Day storm) and 5 March 2015 (non storm day).513

2. 25-26 August 2018 (storm day) and 13-14 August 2018 (non storm day).514

In both cases, the Kp number and the solar flares are shown in appendix 9, Tables 4,515

5, 7 and 6516

8.2.1 Performance on 5 and 17 March 2015517

In Figure 6 we present the comparison of the NNGIM predictor versus the cyclic518

frozen for various horizons in the form of a time series, at a rate of one map every 15 min-519

utes.520

In the top row, the performances of NNGIM vs. frozen cyclic are compared for the521

5th of March 2015, which is a day with no significant events (see the Tables 4 and 5).522

The difference in performance is irregular for the 6-hour forecast, while for the 24-hour523

forecast the average reduction over the day is a little more than a 10% error. The worse524

behaviour towards the end of the day could be due to the increase of the Kp indicator525

and the presence of three solar flares in close temporal proximity. Since the NNGIM method526

assumes that similar situations have been seen in the past and are used for prediction,527

the changes in this particular configuration might not have been seen in the past.528

In the bottom row, we show the performance throughout the 17th March 2015 (529

Saint Patrick’s Day storm). The RMSE level compared to the 5 March is between two530

and three times higher. However, in this case, the NNGIM predictor shows on average531

a better performance than the cyclic frozen with variations depending on the forecast532

horizon. For the first hours of the day, the NNGIM predictor performs similarly to cyclic533

frozen, for the 6 and 24-hour horizons, improving throughout the day. An interesting be-534

haviour is that at 48 hours the RMSE remains at low levels throughout the day, while535

the frozen cyclic in the early hours provides twice the error.536

8.2.2 Performance on 13-14 and 25-26 August 2018537

Figure 7, shows the RMSE time series for the two selected days at a time of the538

low activity solar cycle. On that day, the RMSE level is similar to that of the 5th of March539

2015 analysed above, which was a day of low geomagnetic activity, while being in a high540

activity phase of the solar cycle.541

On 13-14 August 2018, the NNGIM prediction is better or equal to that of the cyclic542

frozen, except for a brief interval on the 14th of March at a 6-hour horizon. The aver-543

age improvement over the day is in the order of 25% for 6 hours, 13% for 24 hours, and544

18% for 48 hours. However, there are significant fluctuations throughout the day and the545

slopes/error patterns vary from horizon to horizon.546
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(a) 5 March 2015. Horizon: 6h (b) 5 March 2015. Horizon: 24h (c) 5 March 2015. Horizon: 48h

(d) 17 March 2015. Horizon: 6h (e) 17 March 2015. Horizon: 24h (f) 17 March 2015. Horizon: 48h

Figure 6: Comparison of the NNGIM forecast vs. frozen cyclic RMSE. Upper row: 5
March 2015 (12 days before the storm). Lower row: 17 March 2015 (the St.Patrick storm
day)

On 25-26 August 2018 (storm day) for the 6- and 24-hour horizons NNGIM sys-547

tematically performs better than the frozen cyclical. The performances at the 6- and 24-548

hour horizons are practically the same for the 25th day, while they differ significantly549

for the 26th day, with NNGIM being 25-50% better over long time intervals.550

(a) 13 August 2018. Horizon: 6h (b) 13 August 2018. Horizon: 24h (c) 13 August 2018. Horizon: 48h

(d) 25-26 August 2018. Horizon:

6h

(e) 25-26 August 2018. Horizon:

24h

(f) 25-26 August 2018. Horizon:

48h

Figure 7: Comparison of the NNGIM forecast vs. frozen cyclic RMSE. Upper row: 13-14
August 2018 (12 days before the storm). Lower row: 25-26 August 2018 (storm day)

8.3 RMSE, Bias and Standard Deviation by latitude551

In this section, we will study the relationship of RMSE with standard deviation552

and bias. In Figure 8, we show the performance for a horizon T = 6 hours. In the Fig-553

ure we present by latitude a) the RMSE of the NNGIM and frozen cyclic predictions and554

b) the standard deviation and bias components of the NNGIM. The study period con-555

sists of the dates studied above, i.e., August 2015 and May 2018. The values were cal-556

culated on 3007 maps corresponding to 31 days, with maps every 15 min.557
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The first observation is that the NNGIM prediction has a lower RMSE at all lat-558

itudes on the two studied dates. The RMSE maxima are located in the case of NNGIM559

at the same latitude, while in the case of frozen cyclic the latitude in one case differs.560

On the other hand, the maxima in the standard deviation do not coincide with the RMSE561

maxima, noting that the difference is explained in the case of March 2015 by a very high562

bias at about 10 degrees north latitude. The bias of -3 TECU observed in this case is563

rare, in the maps observed by the author, the bias, in general, was less than 1 TECU,564

as illustrated in the case of August 2018.

(a) RMSE March 2015 (b) Std/Bias March 2015 (c) RMSE August 2018 (d) Std/Bias August 2018

Figure 8: Performance for a horizon T = 6 hours. RMSE, Bias and Standard Deviation
by latitude. (a) Comparison of the RMSE between the NNGIM and the frozen cyclic
March 2015, (b) Standard Deviation and Bias for the NNGIM March 2015, (a) Compar-
ison of the RMSE between the NNGIM and the frozen cyclic August 2018, (b) Standard
Deviation and Bias for the NNGIM August 2018. Note that the Bias and Standard Devia-
tion are not the same scale.

565

8.4 Reliability of the standard deviation estimated from NNGIM566

In this section, we will study the reliability of the standard deviation estimated from567

the nearest neighbours provided by the algorithm. The purpose is to show that the stan-568

dard deviation computed on the nearest future maps correctly represents the variabil-569

ity of the predicted map. We will show the reliability from two points of view, the first570

one consists of plotting several maps and showing the regions not covered by the con-571

fidence margin given by the standard deviation provided by NNGIM. The second point572

of view will consist in showing the decrease of the error obtained when the prediction573

is considered to be included within the confidence margin given by the standard devi-574

ation.575

In Figure 9, we show maps for different dates for the month of June 2019, in which576

we mark in green the region covered by the interval ForecastMap±ForecastStdMap, and577

in red the areas of the prediction that fall outside this interval. The images show that578

the areas of the Forecastref maps not covered by a standard deviation margin are lo-579

cated in the periphery or at the areas of sharp transition.580
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(a) Map at 2019-06-29 23:00:00 (b) Map at 2019-06-22 17:45:00 (c) Map at 2019-06-12 10:15:00

Figure 9: Areas included in the confidence margin of the Forecast map. Green ar-
eas: show the areas where the reference Forecastref is included in ForecastMap ±
ForecastStdMap. Red areas: areas where Forecastref is outside the margin.

In Figure 10 we show the error decrease regarding the NNGIM prediction if we con-581

sider only data outside the interval within the confidence margin. That is, we consider582

the error to be zero if the predicted map is contained in the margin, i.e., Forecastref ⊂583

ForecastMap±ForecastStdMap. It is seen that systematically for the two years and pre-584

diction horizons, the error decreases between 15 and 20%. In other words, assuming the585

correct value is within the confidence interval significantly reduces the error. An inter-586

esting feature is that this error reduction does not depend on either the season of the587

year or the prediction horizon.588

(a) Horizon 6 hours (b) Horizon 12 hours

(c) Horizon 24 hours (d) Horizon 48 hours

Figure 10: Performance for Forecastref ⊂ ForecastMap ± ForecastStdMap. Percentage of
RMSE reduction with regard to cyclic freezing for the horizons of 6h, 12h, 24h, 48.
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8.5 Validation of the method with JASON3 and CODE data.589

Next we show the results of the validation of the NNGIM VTEC in terms of the590

differences with respect to JASON3 VTEC measurements (see Figure 11) and the com-591

parison with other GNSS VTEC products in terms of Bias, Variance and RMS (see Fig-592

ure 12).593

This part of the study was conducted in the interval of the first 100 days of the year594

2021. Note that for the sake of completeness of the analysis of the method, we have per-595

formed the experiments at different times of the solar cycle. Given the space limitation,596

we think that in this way we can provide the maximum information of the algorithm from597

the point of view of each issue to be evaluated. The CODE data was downloaded from598

the NOAA website Code Data (n.d.).599

The comparison was made between the products based on NNGIM prediction at600

24 hours (UN4G) and 48 hours (UN8G), vs. IGSG and Center for Orbit Determination601

in Europe (CODE) VTEC prediction model products, at 24 hours (C1PG) and 48 hours602

(C2PG).603

In Figure 11, we show the histogram of the VTEC residual defined as δV = V TECJASON3−604

V TECForecastGIM on a logarithmic scale to enhance the details in the low-density parts605

of the histogram, i.e., regions where the number of samples per bin is much lower than606

at the mode of the distribution. For comparison purposes on the figure, there is a sum-607

mary of the relevant statistics of each product, i.e., bias, standard deviation, and RMS.608

Note that the Std. Dev and RMS of the NNGIM prediction at 24 hours (UN4G) and609

48 hours (UN8G) are systematically lower than the CODE and IGSG. Note that the tails610

of the distributions are similar. Also the distribution related to the NNGIM product hav-611

ing a lower width compared with the CODE products. This indicates that the proba-612

bility of a high-value positive error in the NNGIM products is much lower than the other613

products.614
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JASON3 VTEC Assessment (within days 001,2021 to 100,2021)
Bias / Std.Dev. / RMS in TECUs

VTECJASON3:   7.70/  6.91/ 10.35
VTECJASON3 VTECUN4G:  -3.22/  2.87/  4.32
VTECJASON3 VTECUN8G:  -3.30/  2.94/  4.42
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VTECJASON3 VTECIGSG:  -3.70/  2.54/  4.49

Figure 11: Histogram, in log scale for the number of counts, of VTEC difference of JA-
SON3 measurement minus GIMs value for the first 100 days of 2021, the color code in-
dicates the comparison for different forecasting products. The histogram of the reference
values of JASON3 is represented in gray. The corresponding overall bias, standard devia-
tion (Std.Dev.), and RMS are indicated in the upper right legend.
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Next, we will compare, concerning the JASON3 measurements, the products by615

latitude, as a function of the differences in standard deviation, bias, and RMS.616

In Figure 12, on the left, we show the standard deviation of the VTEC residual vs.617

JASON3 at 5-degrees longitudinal intervals. Note that the standard deviation is weighted618

by the number of JASON3 observations in cells in the same 5-degree latitude range. The619

24-hour prediction product based on NNGIM, UN4G consistently has a lower standard620

deviation than the equivalent CODE, C1PG except for the sample at 15 degrees latitude621

north where they are the same. The largest differences are observed at the equator and622

in areas of north/south latitude greater than 35 degrees. In the case of the 48-hour fore-623

cast products (UN8G vs. C2PG), the trend is very similar, with NNGIM having a lower624

standard deviation at all latitudes except at 15 degrees north latitude.625

In Figure 12, in the center, we show the bias of the products. In this case, the bias626

of the NNGIM products is lower, except in the region below -35 degrees south latitude627

and above 45 degrees north latitude. The explanation for this bias corresponds to the628

fact that there is a different ionosphere sampling model, as explained in Yang et al. (2021).629

Finally, in Figure 12, on the right, we show the RMS value by latitude, in this case,630

the RMS of the prediction is better for the NNGIM products between -30 degrees south631

latitude and 50 degrees north latitude. Note that from 50 degrees north latitude the dif-632

ference concerning CODE is less than half a TECU, and on the other hand in the equa-633

torial region the UN4G and UN8G products provide an improvement of 2 TECUs. The634

difference in the south polar region could be because there are fewer stations, and there-635

fore the GIMs are less accurate.636
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Figure 12: Jason assessment for latitudinal zones, the color representing different prod-
ucts. Note that the measures are weighted by the number of JASON3 observations in cells
with the same 5-degree intervals of latitude

Note that the availability of the NNGIM forecasting depends on the delay of gen-637

erating the GIM maps, which is the case of the UPC-IonSAT is of about half an hour,638

while the availability of the CODE maps can be with a delay of up to 5 or 7 hours, which639

makes the effective forecasting horizon shorter.640

8.6 Considerations about the quality assessment by means of JASON3641

VTEC measurements642

The importance of the VTEC measures obtained by JASON3 lies in the fact that643

it provides us with an objective reference of the real value for the comparison purposes.644

The measures provided by JASON3, allow us to determine whether the estimate made645

by the prediction product provides a correct value or introduces biases. As the orbit al-646

titude of JASON3 is about ∼1300 km, the altimeter can count almost all the VTEC of647
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the ionospheric state above the ocean region. It is important to emphasize that over the648

ocean areas, the GIM used for the prediction might have large interpolating errors ap-649

pear due to their far distance from GNSS ground stations. Therefore the use of JASON3650

VTEC measurement allows for a critical evaluation of the forecast products in adverse651

circumstances. In this work, the raw observations of the JASON3 VTEC were prepro-652

cessed to reduce the measurement noise. The process carried out included the use of a653

temporal sliding window, removal of outliers, and so on, as explained in Hernández-Pajares654

et al. (2017) and Roma-Dollase et al. (2018).655

Evaluation using dSTEC may be an alternative for evaluating VTEC values of GIM656

prediction products. However in this particular case the use of dSTEC may not be ap-657

propriate because of the following. Typically, the JASON3 VTEC assessment is a val-658

idation method for GIMs only over the ocean region, so it may be appropriate to con-659

sider the complementary assessment for GIMs over the land region, namely the dSTEC660

assessment, which compares the difference between the observed STEC along the phase-661

continuous satellite-station arc and the calculated STEC from GIM, see details in Hernández-662

Pajares et al. (2017). However, the usage of altimeter VTEC measurements to assess GIMs663

has been proven to be a good external assessment procedure, consistent with other meth-664

ods based on GNSS data (behaving similarly to the dSTEC test, Hernández-Pajares et665

al. (2017)) but independent from GNSS and globally distributed. These are the main666

reasons behind focusing on altimeter data, being the JASON3 the one available during667

the whole period of analysis, see the former studies that used JASON2, JASON1, and668

TOPEX altimeters.669

9 Conclusion670

In this work, we have introduced a method to predict GIMs at various horizons based671

on the Nearest Neighbour technique. This technique allows to implement predictors with-672

out the need to train a model, and the computation time is small. The assumption on673

which the model is based is that a database covering more than one solar cycle is avail-674

able, and that the geomagnetic conditions affecting the current map have somehow hap-675

pened in the past, and that similar geomagnetic effects are distributed among several676

maps, whose linear combination allows a better approximation of the prediction. An ad-677

vantage of the method is also that from the similar maps found in the historical database,678

a confidence margin can be created. The prediction using this confidence margin allows679

a significant decrease in the prediction error. We have performed a real-time implemen-680

tation. The computational cost of adding a prediction horizon is very low, so in the im-681

plementation, predictions are made with almost no additional cost for arbitrary horizons.682

The prediction results improve compared to the frozen cyclic up to a 48-hour horizon,683

which seems to be a natural barrier for this method. Finally the method has been as-684

sessed in different moments of the solar cycle, taking into account days with storm and685

without significant geomagnetic perturbations. Also the method has been assessed by686

comparing with the forecast at 24 and 48 hours of the Center for Orbit Determination687

in Europe (CODE) prediction model products.688
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Appendix: Example of forecasts at several horizons698

Figure 13: Selected sequence of predictions for the map at 2018-07-14 20:45:00 UT. The
upper row shows the reference to 3h, 6h, 8h, and 12h horizons, the second row shows the
prediction result. Note that the color bars are not at the same scale.

In Figures 13 and 14 we show a selected sequence of predictions for the map at 2018-699

07-14 20:45:00 UT, at horizons ranging from 3h to 48h. In the first row we show the ref-700

erence to 3h, 6h, 8h, and 12h horizons, and in the second row we show the prediction701

result. The third and fourth rows show the results for horizons of 16h, 20h, 24, 48h. In702

order to assess the results it has to be taken into account that the colour bars are not703

at the same scale. This means that local maxima can distort the level of the overall colour704

gradation. In any case, an indication of the effectiveness of the algorithm lies in com-705

paring the medium/high ionisation regions (not maxima) between reference and predic-706

tion. In these cases, the shape of the regions is found to be similar.707

Figure 14: Selected sequence of predictions for the map at 2018-07-14 20:45:00 UT. The
upper row shows the reference to 16h, 20h, 24, 48h, the second row shows the prediction
result. Note that the color bars are not at the same scale.

Appendix: Kp number and Solar flares in the analysed days708

In this section we present the time distribution of geomagnetic and solar flare ac-709

tivity indices (i.e., Kp and solar flares occurrences) that can be used to study the con-710

sistency of the patterns that appear in the temporal distributions of the RMSE forecast711

error of the method. The data was obtained from internet at Space Weather Live (n.d.).712
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Table 4: Hourly Kp and Solar Flares for the 5 March 2015 (day 64)

Hourly Kp values

Hour 00-03h 03-06h 06-09h 09-12h 12-15h 15-18h 18-21h 21-00h

Kp 1 0 0 1 2 2 2 1

.

Solar Flares 5 March 2015

Flare C1.3 C3.5 M1.2 C4 C1.9

Start 04:13 08:46 17:06 19:35 22:45

Maximum 04:19 09:47 18:11 19:55 22:59

End 04:26 10:02 18:26 20:04 23:06

Table 5: Hourly Kp and Solar Flares for the 17 March 2015 (days 75,76)

Hourly Kp values

Hour 00-03h 03-06h 06-09h 09-12h 12-15h 15-18h 18-21h 21-00h

Kp (17 March) 2 5 6 6 8 8 7 8

.

Solar Flares 16 March 2015

Flare Start Maximum End

B8 04:17 04:21 04:24

B6.4 07:21 07:25 07:31

B8.7 08:18 08:23 08:28

C1.8 08:33 09:52 09:59

C1.9 09:38 09:52 09:59

B9.6 10:16 10:20 10:24

M1.6 10:39 10:58 11:17

C1.1 12:55 12:59 13:01

C2.8 13:49 13:54 13:59

B8.7 17:55 17:59 18:01

B6.2 18:42 18:45 18:47

C5.5 20:12 20:15 20:20

C8.1 20:38 20:49 21:00

Solar Flares 17 March 2015

C1.9 01:45 01:52 01:54

C1.1 21:14 21:19 21:25

M1 22:49 23:34 23:48
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Table 6: Hourly Kp and Solar Flares for the 13,14 August 2018 (days 225, 226)

Hourly Kp values

Hour 00-03h 03-06h 06-09h 09-12h 12-15h 15-18h 18-21h 21-00h

Kp (13 August) 1 1 1 1 1 1 0 1

Kp (14 August) 2 1 1 1 1 0 0 2

.

Solar Flares 13 August 2018

Flare B3.3 B3.6 B5.8 B2.9 B4.1 B4.3

Start 02:00 08:34 10:30 13:39 17:24 17:51

Maximum 02:04 08:38 10:45 13:53 17:27 18:03

End 02:07 08:51 11:00 13:57 17:32 18:10

.

Solar Flares 14 August 2018

Flare C1.1 C1.1 C1.9 C1.6 B4.4 B5.2

Start 00:26 00:51 01:55 03:00 05:30 07:32

Maximum 00:33 01:04 02:00 03:04 05:38 07:35

End 00:37 01:10 02:04 03:08 05:40 07:37
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Table 7: Hourly Kp and Solar Flares for the 25-26 August 2018 (day 238)

Hourly Kp values

Hour 00-03h 03-06h 06-09h 09-12h 12-15h 15-18h 18-21h 21-00h

Kp (25 August) 1 1 2 2 3 2 4 4

Kp (26 August) 5 7 7 5 5 6 5 3

.

Solar Flares 25 August 2018

Flare Start Maximum End

B7.6 01:40 01:46 01:54

B9.2 02:00 02:03 02:06

B8.2 02:12 02:18 02:20

C3.6 02:35 02:42 02:47

B8.7 03:26 03:30 03:32

C1.1 04:14 04:20 04:24

B8.5 05:46 05:50 05:52

C4.3 06:18 06:31 06:37

C2.3 07:58 08:03 08:05

C1.7 10:23 10:34 10:41

C2.3 11:55 11:59 12:03

C1.3 12:33 12:38 12:44

B9.5 13:56 14:02 14:05

C1.1 14:48 14:53 14:58

B9.7 15:37 15:40 15:43

C1 17:14 17:17 17:22

C1.3 18:01 18:05 18:08

C2.2 19:23 19:27 19:31

B8.6 19:47 19:50 19:53

B9.1 22:01 22:17 22:28

C2.8 23:40 23:53 00:04

.

Solar Flares 26 August 2018

Flare Start Maximum End

C1.5 02:56 03:01 03:04

C9.5 13:41 13:53 14:20

C5 14:51 15:07 15:13

C1.7 19:20 19:22 19:24

C1.7 19:32 19:43 19:50

C1.3 20:22 20:28 20:33
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