loading page

Deforestation increases vegetation vulnerability to drought across biomes
  • +7
  • Chenwei Xiao,
  • Sönke Zaehle,
  • Stephen Sitch,
  • Gregory Duveiller,
  • Daniel E. Pabon-Moreno,
  • Anthony P. Walker,
  • Jürgen Knauer,
  • Fabienne Maignan,
  • Christiane Schmullius,
  • Ana Bastos
Chenwei Xiao
Max Planck Institute for Biogeochemistry

Corresponding Author:[email protected]

Author Profile
Sönke Zaehle
Max Planck Institute for Biogeochemistry
Author Profile
Stephen Sitch
University of Exeter
Author Profile
Gregory Duveiller
Max Planck Institute for Biogeochemistry
Author Profile
Daniel E. Pabon-Moreno
Max Planck Institute for Biogeochemistry
Author Profile
Anthony P. Walker
Oak Ridge National Laboratory (DOE)
Author Profile
Jürgen Knauer
Western Sydney University
Author Profile
Fabienne Maignan
Laboratoire des Sciences du Climat et de l'Environnement (LSCE)
Author Profile
Christiane Schmullius
Friedrich-Schiller-Universität Jena
Author Profile
Ana Bastos
Leipzig University
Author Profile

Abstract

Land use and land cover changes have altered terrestrial ecosystem carbon storage, but their impacts on ecosystem sensitivity to drought and temperature fluctuations have not been evaluated spatially over the globe. We estimate drought and temperature sensitivities of ecosystems using vegetation greenness from satellite observations and vegetation biomass from dynamic global vegetation model (DGVM) simulations. Using a space-for-time substitution with satellite data, we first illustrate the effects of vegetation cover changes on drought and temperature sensitivity and compare them with the effects estimated from DGVMs. We also compare simulations forced by scenarios with and without land cover changes to estimate the historical land cover change effects. Satellite data and vegetation models both show that converting forests to grasslands results in a more negative or decreased positive sensitivity of vegetation greenness or biomass to drought. Significant variability exists among models for other types of land cover transitions. We identify substantial effects of historical land cover changes on drought sensitivity from model simulations with a generally positive direction globally. Deforestation can lead to either an increased negative sensitivity, as drought-tolerant forests are replaced by grasslands or croplands, or a decreased negative sensitivity since forests under current land cover are predicted to exhibit greater drought resistance compared to those under pre-industrial land cover. Overall, our findings emphasize the critical role of forests in maintaining ecosystem stability and resistance to drought and temperature fluctuations, thereby implying their importance in stabilizing the carbon stock under increasingly extreme climate conditions.
15 Oct 2024Submitted to ESS Open Archive
15 Oct 2024Published in ESS Open Archive