Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

A.A.O. Huseynov

and 5 more

Fluid inclusions in mineralized fracture infillings (i.e. veins) could preserve information about subsurface fluids like temperature and salinity. The isotopic composition of water in these fluid inclusions could provide direct evidence of the provenance of these mineral forming fluids. So far, the isotope compositions of fluid inclusions have been mainly derived from carbonate veins and other precipitates, like speleothems. The aim of this study is to analyse the δ18O and δ2H isotopic compositions of aqueous fluid inclusions of quartz veins using a Cavity Ring-Down Spectroscopy (CRDS) analyser in combination with a moisturized nitrogen background and mechanical crusher. For this study, we analysed δ18O and δ2H values of fluid inclusions in quartz veins from three north-western European locations formed during the Variscan orogeny. Prior to crushing, the fluid-rich quartz fraction was separated from the pure quartz fraction, from other mineral phases and host rock by using conventional heavy liquids and magnet separation. Raman spectrometry detected some rare occurrences of hydrocarbon, methane and nitrogen in the fluid inclusions. The samples were sequentially crushed to elucidate the potential impact of different fluid inclusion assemblages (FIA) on the δ18O and δ2H values. The results from single and sequential mechanical crushing, together with interlaboratory comparisons, exhibit reliable and consistent isotopic patterns across locations with high precision (for δ18O: 1σ SD < 0.8 ‰; for δ2H: 1σ SD < 1.5 ‰). The obtained data trends three different clusters for three study zones, providing evidence for the presence of meteoric-derived fluids in the fold-and-thrust belt of the Variscan orogeny. These findings demonstrate that the CRDS approach can be successfully applied to quartz minerals, investigating fluid pathways within the upper crust and the formation of these secondary minerals.