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Abstract15

Monitoring groundwater tables (GWTs) is challenging due to limited spatial and temporal16

observations. This study presents an innovative approach utilizing supervised deep learning,17

specifically a Multilayer Perceptron (MLP), and continuous passive-Multichannel Analysis18

of Surface Waves (passive-MASW) for constructing 2D GWT level maps. The study site,19

geologically well-constrained, features two 20-meter-deep piezometers and a permanent 2D20

geophone array capturing train-induced surface waves. For each point of the 2D array,21

dispersion curves (DCs), displaying Rayleigh-wave phase velocities (VR) across a frequency22

range of 5 to 50 Hz, have been computed each day between December 2022 and September23

2023. In the present study, these DCs are resampled in wavelengths ranging from 4 to 15 m24

in order to focus the monitoring on the expected GWT levels (between -1 and -5 m). Nine25

months of daily VR data around one of the two piezometers is used to train the MLP model.26

GWT levels are then estimated across the entire geophone array, generating daily 2D GWT27

maps. Model’s performance is tested through cross-validation and comparisons with GWT28

level data at the second piezometer. Model’s efficiency is quantified with the root-mean-29

square error (RMSE) and the coefficient of determination (R²). The R² is estimated at30

80% for data surrounding the training piezometer, and at 68% for data surrounding the31

test piezometer. Additionally, the RMSE is impressively low at 0.03 m at both piezometers.32

Results showcase the effectiveness of DL in estimating GWT level maps from passive-MASW33

data, offering a practical and efficient monitoring solution across broader spatial extents.34

Plain Language Summary35

This study introduces an innovative method for monitoring groundwater table lev-36

els, using a combination of deep learning and passive surface-wave data. The study site,37

features two piezometers, and a sensor array capturing seismic waves induced by passing38

trains providing daily seismic wave velocity data, from December 2022 to September 2023.39

A Multilayer Perceptron model was trained using groundwater table level data from one40

piezometer and seismic data at the same location. Subsequently, the trained model was41

applied to estimate groundwater table levels across the entire sensor array area, generating42

daily maps. The accuracy of the model was tested, revealing an 80% accuracy around the43

piezometer used in training, and 68% for the other piezometer. Notably, the estimation44

errors were remarkably low. This research demonstrates the effective use of deep learn-45

ing in estimating groundwater table levels from passive surface-wave data. It contributes46
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to the understanding of underground water dynamics, offering a valuable tool for water47

resource management and environmental hazard monitoring. Importantly, this method al-48

lows for efficient groundwater monitoring across large areas using limited data from a single49

piezometer.50

1 Introduction51

Groundwater (GW) systems are in dynamic balance between climatic forcing and hu-52

man pressure. They play a pivotal role in addressing various water resource management53

and civil engineering matters. Monitoring the dynamics of groundwater table (GWT) ge-54

ometry is essential for evaluating the resilience and quality of aquifers, predicting water55

availability, and allowing for sustainable extraction and use, particularly during extreme56

floods and droughts. Additionally, this understanding proves equally crucial for identifying57

high-risk infrastructures susceptible to GW-induced natural hazards. In fact, GW floods,58

landslides (Rahardjo et al., 2010; Panda et al., 2022), and sinkholes (Waltham et al., 2004;59

Gutiérrez et al., 2014; Parise, 2019; Xiao et al., 2020) are potential threats that can be60

anticipated and mitigated more effectively by incorporating knowledge of GWT dynamics.61

GWTs evolve beneath our feet and still represent a terra incognita (Kleinhans, 2005).62

The assessment of their geometry and dynamics remains a scientific barrier to be lifted.63

While piezometers can punctually measure GWT levels with high precision and accuracy,64

it is important to acknowledge that their deployment is often spatially limited, resulting65

in sparse estimations across larger areas. To reduce this limitation, GWT maps are of-66

ten interpolated from piezometric data, through techniques such as linear estimators and67

kriging (Maillot et al., 2019), and represent an important tool for hydrogeologists and civil68

engineers. While interpolation techniques offer unbiased results for GWT geometry, they69

do not account for the soil spatial heterogeneity between piezometers and are limited by70

the spatial distribution and number of piezometers. The effectiveness of the interpolation is71

contingent on the availability and strategic placement of these monitoring points, impacting72

the overall accuracy and reliability of the generated GWT maps.73

One effective solution to address this limitation involves the conversion of lithofacies74

into hydrofacies information to constrain GWT map interpolations and simulations (Dagan,75

1982; Tsai & Li, 2008). The integration of geophysical data can significantly enhance hydro-76

logical knowledge by providing spatial information where conventional hydrological measure-77
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ment techniques are limited (Dafflon et al., 2009). Time-lapse geophysical methods, offer78

real-time data on changes in subsurface proprieties, aiding in the characterization of GWT79

geometry and the identification of spatial variability and temporal trends (Dangeard et al.,80

2021; Hermans et al., 2023). Methods such as ground-penetrating radar (GPR), induced81

polarization, self-potential, and resistivity, use the electrical and magnetic properties of the82

near-surface and are relevant in assessing soil water content (Garambois et al., 2002; Lo-83

effler & Bano, 2004; Samouëlian et al., 2005; Jougnot et al., 2015; Klotzsche et al., 2018).84

However, they can be ineffective in very electrically conductive or resistive environments.85

Active seismic approaches, such as seismic reflection, refraction and Multichannel Analysis86

of Surface Waves (MASW) (Park et al., 1999) have been successfully used for water con-87

tent monitoring (Lu, 2014; Bergamo et al., 2016) and 1D GWT geometry characterization88

(Pasquet et al., 2015a, 2015b; Dangeard et al., 2021). They mostly rely one the study of89

the pressure-(P) and shear-(S) wave velocities (VP and VS) to estimate VP /VS or Poisson’s90

ratios (Biot, 1956a, 1956b), which are sensitive indicators of fluid presence. However they91

face limitations due to the difficulty to regularly deploy active sources in adverse conditions,92

making continuous characterizations impossible.93

Passive seismic methods, use continuous and coherent ambient seismic noise generated94

by natural or anthropogenic activities. They rely on seismic interferometry and consist in95

the Green’s function retrieval by cross-correlation between recording sensors pairs to provide96

a characterization of the propagation medium (Aki, 1957; Derode et al., 2003; Weaver &97

Lobkis, 2004; Wapenaar, 2004; Wapenaar et al., 2010a, 2010b; Larose et al., 2015). Some98

approaches monitor the relative temporal variation of seismic velocities (dv/v) for specific99

wavefronts between pairs of sensors, and have put on evidence a clear correlation with GWT100

level variations (Grêt et al., 2006; Voisin et al., 2016; Lecocq et al., 2017; Voisin et al., 2017;101

Clements & Denolle, 2018; Garambois et al., 2019; Kim & Lekic, 2019; Barajas et al., 2021;102

Mao et al., 2022; Qin et al., 2022; Zhang et al., 2023). Although these methods are able103

to generate 2D GWT variation maps, as recently shown by Gaubert-Bastide et al. (2022),104

they provide limited information about the aquifer geometry and the proper GWT levels.105

Another employed approach is the passive-MASW, an extension of the standard active-106

MASW. This technique relies on the propagation of ambient Rayleigh-waves, induced by107

cars or trains, through linear geophone arrays to characterize the near-surface and has found108

application in various civil engineering contexts, both sporadically in time with 1D setups109

(Park & Miller, 2008; Quiros et al., 2016; Cheng et al., 2015, 2016; Mi et al., 2022; Czarny110
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et al., 2023; Rezaeifar et al., 2023; You et al., 2023; Mi et al., 2023; Cunha Teixeira et111

al., submitted), and for continuous sinkhole monitoring with 2D configurations (Bardaine112

& Rondeleux, 2018; Bardainne et al., 2022; Tarnus et al., 2022a, 2022b; Bardainne et al.,113

2023). The characterization process is based on the analysis of dispersion curves (DCs),114

which depict the fluctuation of Rayleigh-wave phase velocity (VR) across frequencies, along115

the linear arrays. VR variation over frequency, seen in DCs, is closely linked to the medium’s116

VS variation over depth, which, is influenced by the water content (Solazzi et al., 2021). Nev-117

ertheless, the shift from dispersion curves (DCs) to ground models incorporating water satu-118

ration profiles and GWT level information involves intricate inversion operations, combining119

geophysical and hydrogeological data, that are still under development (Sanchez Gonzalez120

et al., in prep).121

Piezometers offer valuable but localized and sparse hydrogeological data, while geo-122

physical methods help in interpolating and extrapolating this information. However, geo-123

physical methods often lack direct connections to hydrogeological principles. More recently,124

machine learning (ML) and deep learning (DL) methodologies have gained significant promi-125

nence in hydrology and water resource applications (see Tripathy and Mishra (2024) for an126

overview on DL usage in hydrology). More specifically, physics-guided models, incorpo-127

rating geophysical knowledge into ML or DL models, can effectively handle and uncover128

hidden patterns in complex and high-dimensional datasets, and serve as a bridge between129

hydrogeology and geophysics. Abi Nader et al. (2023) combined ML and seismic monitoring130

to appraise punctual GWT levels with great precision, using raw seismic noise records. Cai131

et al. (2022) was able to estimate GWT levels with more accuracy with a physics-guided DL132

model than with a pure DL model, using water balance equations as a physical constraint.133

This study takes advantage of a geologically well constrained sinkhole-affected site134

equipped with a dense geophone array and two piezometers. It offers almost a year of135

observed passive seismic data, revealing temporal tends that could be correlated with the136

GWT level seasonal variations. The objective of this study is to demonstrate the utility137

of DCs, obtained through passive seismic methods, in monitoring GWT levels. We intro-138

duce an innovative physics-guided DL method, coupling 2D passive-MASW and a MLP,139

to estimate daily 2D GWT maps from a single piezometer. After introducing the test site140

and providing a comprehensive overview of the passive-MASW survey geometry and data,141

we give a description of the method employed for building, training and testing the MLP.142

Subsequently, we showcase the generated 2D GWT maps resulting from the application of143
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this method, discuss the hydrogeological implications, and explore the limitations associated144

with such approach.145

2 Study site and data146

2.1 A sensitive but well constraint site147

The study site is located along a railway line in the Grand-Est region of France (see148

Figure 1a,b) at the eastern edge of the Paris Basin. The site area has a stratigraphic com-149

position characterized by an 80-meter-thick cover formation, primarily composed of middle150

and lower Muschelkalk alluvium, clays, and marls originating from the middle Triassic pe-151

riod, underlayed by a substratum layer of lower Triassic sandstones (LTS). The hydrological152

context of this cover layer has not been studied at the local scale of the site. Only a large153

GWT map of the LTS aquifer from 2010 is available at the Lorraine region scale (Nguyen-154

Thé et al., 2010). At the acknowledgment of the authors, the connectivity of the cover layer155

alluvium aquifer with the LTS aquifer is not determined, and will not be discussed.156

Between 1989 and 2017, this railway site has encountered several instances of sinkhole157

dropouts, particularly impacting the integrity of the railway on the southwest side towards158

the bridge (see Figure 1b). These sinkholes are attributed to gypsum dissolution in the159

marl layers. Consequently, a cement-based grout was injected at a depth of 20 m in the160

soil to reinforce the structure in 2018. Five Auger drilling tests with depths up to 20 m161

were conducted in December 2022 with the aim of detecting potential eventual cavities, as162

depicted in Figure 1b. These tests revealed no cavities and facilitated a visual characteri-163

zation of the various layers constituting the near-surface (see Figure 1c). An approximately164

10 m-thick layer of alluvium, consisting of a mixture of sand and clay, appears to overlay165

a denser layer of marly clays and highly compact marls. This observation aligns coherently166

with the expected geological composition of the middle and lower Muschelkalk layer.167

2.2 Monitoring setup and data168

To effectively address and mitigate the risks posed by sinkholes, a continuous ground169

monitoring through 2D passive-MASW using seismic noise induced by trains (Bardaine &170

Rondeleux, 2018; Bardainne et al., 2022; Tarnus et al., 2022a, 2022b; Bardainne et al.,171

2023), combined with two piezometers has been established as the best approach in late172
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Figure 1. (a) Location map of the site with hydraulic networks and GWT levels of the lower

Triassic sandstone aquifer. (b) Experimental design of the study site showing the five lines (L1 to

L2) of 42 geophones (yellow dots), planted parallel to the railway tracks, and the track numbers

(T1 and T2) with train directions. x and y correspond to the distance parallel and perpendicular to

the railway tracks, respectively, and point (x = 0; y = 0) is at geophone 1 of array line 1 (L1 −P1).

Data points used for training and testing the MLP are colored in red around piezometer PZ3, and

green close to piezometer PZ5, respectively. DR1, DR2, and DR4 correspond to Auger drilling

locations without piezometers. (c) Lithographic log at the 5 drillings. The lithology consists of an

alluvial layer of sand and clay that is roughly 10 meters thick, overlying a denser section of marly

clays and highly compact marls.
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2020. Following the installation of the piezometers in late 2022, the studied period extends173

from December 30, 2022, to September 3, 2023.174

Passive seismic noise induced by train passages has been recorded using five uniform175

linear arrays (L1 to L5 on Figure 1b), since September 2020. Each linear array has a176

length of 123 m and is equipped with 42 3-meter spaced geophones. The geophones were177

strategically positioned along the rail track, either on the cess (i.e., the track side) for linear178

arrays L1 and L5, or on the ballast for L2, L3, and L4. Daily DCs have been estimated179

at each point of the array , covering a frequency range from 5 to 50 Hz., and resampled in180

wavelengths (λ = VR/f) within the range of 4 to 15 m, with a step of 0.5 m.181

VR variation over frequencies or wavelengths, seen in DCs, is linked to the medium’s182

shear velocity (VS) variation over depth. However, it’s crucial to note that this transfor-183

mation is nonlinear. Yet, wavelength resampling offers a more accurate link to depth in184

comparison to frequencies, enabling precise targeting of the first meters of the near-surface.185

Typically, the depth is around half or one-third of the wavelength (Shtivelman, 1999; Foti186

et al., 2018). Therefore, this resampling should primarily target depths ranging from -1.5187

to -5 m.188

Figure 2 shows every estimated daily DC, from December 30, 2022, to September 3,189

2023, sampled over frequencies and wavelengths, close to PZ3 at point 23 of geophone190

line 1 (L1-P23), and close to PZ5 at point 33 of geophone line 5 (L5-P33) (see Figure 1b).191

In Figure 3, examples of VR pseudo-sections showcase the DCs sampled over wavelengths192

along the 5 linear arrays, on April 1, 2023, and July 1, 2023, at high and low water periods,193

respectively (see Figures 4a,b). VR pseudo-sections over frequencies version is shown in194

Figure A1 of Appendix A. Figures 2 and 3 reveal a spatial and temporal evolution of VR195

that could be correlated with GWT geometry and dynamics. This indicates the potential196

utility of employing this method for the ongoing monitoring purposes.197

Both piezometers were equipped on December 30, 2022, at two of the five drilling loca-198

tions, and have been recording daily GWT levels over time (see PZ3 and PZ5 in Figure 1b).199

GWT level data at PZ3 and PZ5 is presented in Figures 4a and b. Both GWT levels are200

situated within the alluvium layer (see Figure 1c). However, the two piezometers display201

distinct behaviors. PZ3 is more responsive, and displays greater amplitude variations, in202

comparison with PZ5. Figures 4c and d show VR variation over time for all wavelengths at203

both piezometer locations. It’s worth noting that the steep change in VR at λ = 8 m ob-204
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served in Figures 2c and 4c could correspond to the GWT level at PZ4. However, conclusive205

determination requires inversion of the DCs into VS over depth models. Overall, despite the206

differences in shape between DCs at the two piezometers (see Figures 2c and d), there seems207

to be a correspondence with the observed trends in GWT level variations at array points208

close to each piezometer. When GWT level decreases, there is a corresponding increase209

in VR, and conversely, when GWT level rises, VR tends to decrease. The anti-correlated210

variation is evident across all wavelengths at different scales, as depicted in Figures 4c and211

d, and becomes even more pronounced when focusing on specific wavelengths in Figures 4e212

and f. This inverse relationship between GWT levels and VR is indicative of the influence of213

groundwater dynamics on the spatial distribution and temporal evolution of VR. Indeed, if214

DCs demonstrate such anti-correlation with GWTs levels at these locations, then it is rea-215

sonable to expect that this anti-correlation extends to every point along the seismic array.216

We propose training a DL model using seismic and GWT level data from PZ3, as it exhibits217

the most pronounced responsiveness among the two piezometers. The goal is to be able to218

translate DCs into GWT levels, and subsequently estimate GWT levels at the remaining219

points along the entire array.220

3 Method221

3.1 Multilayer Perceptron architecture222

In this study, a MLP is used as a regression tool for estimating a GWT level from223

a single DC, at several seismic array points and times. The MLP is the most basic feed-224

forward artificial neural network and consists of multiple layers of fully connected neurons,225

comprising an input layer, one or more hidden layers, and an output layer (Rosenblatt, 1958;226

Murtagh, 1991). The use of a MLP allows for complex non-linear mappings between inputs227

and outputs, making it particularly well-suited for capturing intricate relationships within228

datasets.229

A MLP with two hidden layers and k = 32 neurons per layer was used in this applica-230

tion (see Figure 5). The input and output layer sizes correspond to the number of features231

of the input and output data. For each estimation, an unique DC of VR resampled over232

wavelengths ranging from 4 to 15 m and with a wavelength step of 0.5 m, is used as input,233

which can be seen a vector x of size n = 23. The output corresponds to an unique scalar234
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Figure 2. Time-series of raw dispersion curves over frequencies obtained (a) at seismic array

point L1-P23, close to piezometer PZ3, and (b) at seismic array point L5-P33, close to piezometer

PZ5. Resampled dispersion curves over wavelengths, ranging from λ = 4 to λ = 15 m, (c) at

seismic array point L1-P23, close to piezometer PZ3, and (d) at seismic array point L5-P33, close

to piezometer PZ5 (see Figure 1b).
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Figure 3. VR pseudo-sections over wavelengths for the 5 linear geophone arrays (L1 to L5) (left)

at a high water period on April 1, 2023, and (right) at a low water period on July 1, 2023. Positions

of piezometers PZ3 and PZ5 are represented by the blue triangles on pseudo-sections L1 and L5,

respectively.
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Figure 4. (a) and (b) Recorded GWT levels between December 30, 2022, and September 3,

2023, at PZ3 and PZ5. (c) and (d) VR over wavelengths evolution over the same time period at

seismic array points L1-P23, close to PZ3, and L5-P33, close to PZ5. (e) and (f) VR at wavelengths

5, 7, 9, and 11 m evolution over the same time period at seismic array points L1-P23, close to PZ3,

and L5-P33, close to PZ5.

–12–



manuscript submitted to Water Ressources Research

y of an estimated GWT level. For each layer l, let w(l) be a vector of weights, initially235

containing arbitrary values, and b(l) a vector of constants called ”bias”.236

At the first layer l = 1, the perceptron calculates237

z
(1)
j = b

(1)
j +

n∑
i=1

w
(1)
ij xi , (1)

for each neuron j over the k neurons of the first hidden layer, and with each feature i over238

the n features of the input vector x. Then, the vector z(1) goes through a Rectified Linear239

Unit function ReLu introducing non-linearity to the model:240

h
(1)
j = ReLu(z

(1)
j ) =

 z
(1)
j if z

(1)
j > 0,

0 otherwise.
(2)

At the second layer l = 2, the perceptron calculates241

z
(2)
j = b

(2)
j +

k∑
i=1

w
(2)
ij h

(1)
i , (3)

for each neuron j over the k neurons of the second layer, and with each neuron i over the242

k neurons of the previous first hidden layer. Again, the vector z(2) goes through a Rectified243

Linear Unit function ReLu :244

h
(2)
j = ReLu(z

(2)
j ) =

 z
(2)
j if z

(2)
j > 0,

0 otherwise.
(4)

Finally, at the output layer, the perceptron calculates245

z
(out)
1 = b

(out)
1 +

k∑
i=1

w
(out)
i1 h

(2)
i , (5)

for the unique neuron of the output layer, and with each neuron i over the k neurons of the246

previous second hidden layer. Finally, z(out) goes through an Identity activation function247

linear, which is the equivalent of no activation, to obtain the estimated scalar value y:248

y = linear(z(out)) = z(out) . (6)

3.2 Data preprocessing and training249

The MLP goes through a training phase to optimize its performance and enhance its250

ability to make accurate estimations. The training data involved daily DCs measurements251

at specific seismic array points surrounding PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22,252

and L2-P23) as inputs, and daily GWT level measurements at PZ3 as expected outputs.253
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Figure 5. Multilayer perceptron with an input layer, two hidden layers, and an output layer.

A DC (VR over wavelength λ) is used as input to predict a GWT level. The input vector x has

n = 23 features, each hidden layer l has k = 32 neurons, and the output y is a scalar. w(l) is a

weight or leaning coefficient vector and b(l) a vector of constants called ”bias”. ReLu and linear

are the Rectified Linear Unit and Identity activation functions.

Thus, for an unique day and a unique GTW level output, six different inputs are used,254

corresponding to the closest six points around the piezometer. Due to the similarity of the255

DCs at these points, this allows for a better spatial versatility of the model, and can be seen256

as data augmentation (Shorten & Khoshgoftaar, 2019). To facilitate the training phase, DCs257

were normalized by 2000 (i.e., around twice the maximum observed VR) and GWT levels258

were used in absolute numbers. This data collection spanned from December 30, 2022, to259

September 3, 2023, encompassing a total of 248 days. Days without data due to technical260

issues were excluded from the dataset.261

During the training process, weights and biases are refined to minimize the difference262

between estimated outputs and actual target values. The training begins with the pre-263

sentation of training data, with known input and outputs, to the MLP. Subsequently, the264

calculated errors in terms of root-mean-square error (RMSE) of the resulting estimations are265

backpropagated through the network (Rosenblatt, 1958; Linnainmaa, 1976; Werbos, 1982).266

This involves adjusting the weights and biases in the opposite direction of the error gradient.267

In this study, the magnitude of these adjustments was determined by a stochastic gradient268

descent Adam optimization algorithm with a learning rate of 10−4, which fine-tunes the269
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model iteratively (Kingma & Ba, 2014). This iterative adjustment process was done until270

the MLP converges to a state where further refinement did not significantly improve its271

estimation capabilities. The desired outcome was a trained MLP with optimized internal272

parameters enabling it to generalize well to new, unseen data, making accurate estimations273

in various scenarios.274

A maximum of 1000 training epochs (i.e., iterations) with 2 samples per gradient275

update were done. Daily DCs measurements at seismic array points surrounding PZ5 (L4-276

P31, L4-P32, L4-P33, L5-P32, L5-P33, and L5-P34), and GWT levels at PZ5 were used as277

a validation dataset for ”early-stopping”, to limit the number of epochs and avoid model278

overfitting (Ying, 2019; Tripathy & Mishra, 2024).279

4 Results280

Figure 6 compares the GWT levels observed at PZ3 and PZ5 with the estimations281

at seismic array points L1-P23 close to PZ3, and L5-P33 close to PZ5, between December282

30, 2022, and September 3, 2023. As anticipated, the estimated and observed values for283

PZ3, which was used in the training process, show a close proximity (see Figures 6a and284

b), with an RMSE of 0.03 m and a coefficient of determination R² of 80 % (see Appendix285

D for definitions). Please note that this score could possibly be higher but is limited to286

able a great generalization of the model. While the model successfully captures the general287

patterns, it exhibits minor fluctuations that deviate from the observed values. Despite these288

slight deviations, the overall agreement between estimated and observed values underscores289

the model’s capability to replicate the general trends associated with PZ3. The model290

also demonstrates its ability to accurately extrapolate and estimate GWT levels at PZ5,291

a location not included in the training set (see Figures 6c and d). Estimations for PZ5292

yield a RMSE of 0.03 m and a R² of 68%, suggesting a low level of estimation error and a293

high degree of accuracy. However, GWT levels are slightly overestimated by 25 cm between294

May and June 2023 and between August and September 2023. These errors could certainly295

be corrected by extending the time span of groundwater table (GWT) level data used for296

training, a limitation imposed by the time-frame of this research.297

Figures 7b-i show 2D GWT maps with estimations made at each seismic array point,298

at the beginning of January, February, April, May, June, July, August, and September,299

2023. Estimated GWT levels at the five drilling locations, are highlighted in Figure 7a.300
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Figure 6. MLP’s GWT level estimations, obtained using DCs at seismic array points around

PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and observed GWT levels at PZ3 as

training data. (a) GWT level over time observed at PZ3 and estimated at seismic array point

L1-P23. (b) GWT levels observed at PZ3 versus estimated at L1-P23. (c) GWT level over time

observed at PZ5 and estimated at seismic array point L5-P33. (d) GWT levels observed at PZ5

versus estimated at point L5-P33.

–16–



manuscript submitted to Water Ressources Research

The GWT maps exhibit a noticeable global variation, approximately 1 m, between the high301

water period (April 2023) and the low water period (July 2023) (see Figure 8). Nevertheless,302

a spatial heterogeneity over x and y is evident, revealing zones with relatively both high303

and low GWT levels. More specifically, the area between x = 0 and x = 20 m, comprising304

DR1 and DR2, consistently exhibits elevated levels at around -2 m, with minimal variation305

over time. This region corresponds to the 20-meter deep grout-injected zone. The area306

between x = 30 and x = 60 m, encompassing PZ3, and between x = 80 and x = 90 m,307

encompassing PZ5, demonstrate elevated levels from January to May 2023. However, a308

noticeable decline is observed during the summer months. In the central area of the map, a309

small low-level zone with minimal variation over time, enclosed by a high-level zone, can be310

noticed. Regions between x = 20 and x = 30 m, and between x = 60 and x = 80 m, exhibit311

relatively low GWT levels. Additionally, the zone between x = 90 and x = 126 m, which312

includes DR4, displays the lowest GWT levels. For reference, this zone also registered the313

highest values of VR (see Figure 2). Artifacts exhibiting very high GWT level estimations314

(between 0 and -1 m) and very low GWT level estimations (around -6 m) can be observed315

at the border of the maps, along geophone line L5, between February and May 2023 (see316

Figures 7c,d,e). These artifacts are also observed in the raw VR input data and were likely317

initially induced during the computation and picking of the DCs.318

5 Discussion319

5.1 Geologic interpretation320

Spatial and temporal variations in GWT levels observed in Figures 7 and 8 could be321

explained by differences in lithology over the studied site, effectively captured by seismic322

data. Areas with elevated GWT levels may be attributed to the presence of highly im-323

permeable materials below alluvium, such as grout or clay. In such case, GW is impeded324

from infiltrating into the subsurface, contributing to the observed elevated GWT levels. Ar-325

eas exhibiting consistently high GWT levels with minimal variation could be attributed to326

the presence of shallow, highly impermeable materials, such as clay, beneath the alluvium327

layer. Areas with high GWT levels during high-water periods, and low GWT levels during328

low-water periods, could be attributed to the presence of a deeper highly impermeable ma-329

terial beneath alluvium. Conversely, areas with constant low GWT levels may be associated330

with more permeable materials beneath alluvium. Figure 9 shows the GWT cross-section331

traversing through all five drilling points, for different months along the year, accompanied332
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Figure 7. MLP’s GWT level estimations, obtained using DCs at seismic array points around

PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and observed GWT levels at PZ3 as

training data. (a) Estimated GWT levels over time at the five drilling and piezometers locations.

(b) to (i) Estimated GWT level 2D maps at different dates, with geophone linear array (L#),

piezometer (PZ#) and drilling (DR#) positions at the surface.
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Figure 8. Estimated GWT level 2D map variation between high water period (April 1, 2023)

and low water period (July 1, 2023), obtained using DCs at seismic array points around PZ3 (L1-

P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and observed GWT levels at PZ3 as training

data. Geophone, piezometer and drilling positions are displayed at surface.

by geological logs illustrating the nature of the materials encountered. As expected, the333

GWT is higher with greater variation above the shallow clay layer (drilling at PZ3). Be-334

tween DR2 and PZ3, close to DR2, as well as between PZ3 and PZ5, there is a decrease in335

the GWT, with a distinctive pinching point. This could be explained by a transition from336

highly impermeable to more permeable materials. All this suggests that zones x = 30 and337

x = 60 m, and between x = 80 and x = 90 m in a lesser degree, present a shallow clay layer.338

5.2 Model robustness339

Pseudo-sections of VR over wavelengths for the five geophone array lines, computed340

during the high water period (April 1, 2023) and the low water period (June 1, 2023),341

and displayed in Figure 2, were inverted into sections of VS over depth (see Figure 10 and342

Figure C1 in Appendix C). Remarkably, on the five sections, the estimated GWT levels343

align perfectly with a low-velocity layer (blue on Figure 10) characterized by a VS between344

200 and 250 m/s during these two periods. This alignment supports the credibility of the345

method, as the MLP successfully estimated the depth of this layer despite the absence of346

direct depth information in DCs. It is noteworthy that the GWT is closer to the surface347

where this low-velocity layer is shallower and exhibits lower VS values. Around x = 60348
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on L1, this low-velocity layer is placed just above the observed clay layer at drilling point349

PZ3. This observation strongly supports the hypothesis that the low-velocity layer might350

be associated with saturated alluvium, and that its depth is influenced by the presence of351

an underlying clay layer. Conversely, zones with higher VS also show lower GWT levels352

that seem to follow deep low-velocity layer, implying deeper saturated alluvium. This aligns353

with the absence of clay observed in the drillings and indicating a deeper interface between354

alluvium and the impermeable underlying marl layer.355

To assess the influence of the number of piezometers on the estimated GWT level356

maps, a model was trained using data points around PZ3 (L1-P22, L1-P23, L1-P24, L2-357

P21, L2-P22 and L2-P23) and PZ5 (L4-P31, L4-P32, L4-P33, L5-P32, L5-P33 and L5-P34).358

The results, presented in Appendix B (see Figures B1, B2, B3, B4, and B5), reveal an359

enhanced estimation performance at both PZ3 (R² of 88% and an RMSE of 0.01 m) and360

PZ5 (R² of 72% and an RMSE of 0.01 m). Upon comparing the estimated GWT maps in361

Figures 7 (MLP trained with only PZ3) and B2 (MLP trained with both PZ3 and PZ5),362

it is evident that extreme high and low GWT level values appear to have been smoothed363

or flattened. Nevertheless, the general GWT levels and behavior remain highly consistent364

with the previous estimations. This supports the robustness of using an unique piezometer365

for training. However, employing multiple piezometers for different lithologies enhances the366

precision and stability of the method.367

6 Conclusions368

This study introduces a physics-guided DL model, combining 2D passive-MASW with369

a MLP, that estimates daily 2D GWT maps from a single piezometer. This hybrid approach370

offers an effective mean of monitoring GWTs with both spatial and temporal precision. The371

method exhibits notable generalization capabilities, with the ability to spatially extrapolate372

GWT level maps beyond the training dataset. Analysis of GWT maps reveals spatial and373

temporal variations, offering a nuanced understanding of GWT geometry and dynamics,374

and revealing valuable hydrogeological insights. The model successfully captures variations375

associated with lithological changes, demonstrating its efficacy in characterizing subsurface376

materials. In addition, the estimated GWT levels align closely with low-velocity layers,377

in terms of VS , indicative of saturated alluvium and shallow clay layers. However, while378

the study demonstrates promising results, it is crucial to acknowledge its limitations. The379

model’s performance may be influenced by site-specific conditions, and further validation380
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Figure 9. (a) Geophone array map and cross-section line (in red) between drilling and piezome-

ters. (b) Cross-section of estimated GWT levels at different dates, obtained using DCs at seismic

array points around PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and observed GWT

levels at PZ3 as training data, with geologic logs illustrating the nature of the underground mate-

rials.
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Figure 10. Inverted VS sections over depth for the 5 linear geophone arrays (L1 to L5) at

a high water period (April 1, 2023) and at a low water period (July 1, 2023). The white mask

indicates depths where the standard deviation, between the mean VS model and all other accepted

models during inversion, is greater than 400 m/s. Estimated GWT levels, obtained using DCs

at seismic array points around PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and

observed GWT levels at PZ3 as training data, and geologic logs, illustrating the nature of the

underground materials at five drilling coordinates, are superposed for interpretation.
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across diverse geological settings is needed. By leveraging geophysical data and DL, the381

study contributes to advancing our understanding of subsurface dynamics and offers prac-382

tical insights for effective GW management and risk mitigation strategies. This integrated383

approach can be applied to monitor aquifer resilience at different scales, contribute to in-384

formed decision-making in the context of water resource management, and assess potential385

hazards such as sinkholes.386
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convention. It is essential to acknowledge the contribution of the team involved in acquiring395

and processing the geophysical passive-MASW data. The successful execution of this study396

owes much to the efforts of the SERCEL Company, and particularly to the dedicated indi-397

viduals Thomas Bardainne, Renaud Tarnus, Nicolas Deladerriere, Ceifang Cai, Loic Michel,398

Lilas Vivin, and Helene Toubiana Lille. The authors also express gratitude to the local teams399
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Appendix A Raw data404

Figure A1 shows the same VR pseudo-sections presented in Figure 2, at a high water405

period on April 1, 2023, and at a low water period on July 1, 2023, but with DCs sampled406

over frequencies ranging from 5 to 50 Hz.407

Figure A1. VR pseudo-sections over frequencies for the 5 linear geophone arrays (L1 to L5)

(left) at a high water period on April 1, 2023, and (right) at a low water period on July 1, 2023.

Positions of piezometers PZ3 and PZ5 are represented by the blue triangles on profiles L1 and L5,

respectively.
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Appendix B Model trained with both piezometers408

In this section, we present the same study, but incorporating results from a MLP409

model trained using seismic and GWT level data from both piezometers. The expanded410

dataset enhances the model’s training with a more comprehensive understanding of the411

subsurface dynamics at multiple locations. By integrating seismic and GWT data from412

both piezometers, we aim to provide a more robust and nuanced analysis of the GWT413

variations and their correlation with the subsurface characteristics. Results are similar to414

those obtained using a single piezometer for training, and are discussed in Section 5.415
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Figure B1. MLP’s GWT level estimations, obtained using DCs at seismic array points around

PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and PZ5 (L4-P31, L4-P32, L4-P33,

L5-P32, L5-P33, and L5-P34), and observed GWT levels at PZ3 and PZ5 as training data. (a)

GWT level over time observed at PZ3 and estimated at seismic array point L1-P23. (b) GWT

levels observed at PZ3 versus estimated at L1-P23. (c) GWT level over time observed at PZ5 and

estimated at seismic array point L5-P33. (d) GWT levels observed at PZ5 versus estimated at point

L5-P33.
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Figure B2. MLP’s GWT level estimations, obtained using DCs at seismic array points around

PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and PZ5 (L4-P31, L4-P32, L4-P33,

L5-P32, L5-P33, and L5-P34), and observed GWT levels at PZ3 and PZ5 as training data. (a)

Estimated GWT levels over time at the five drilling and piezometers locations. (b) to (i) Estimated

GWT level 2D maps at different dates, with geophone linear array (L#), piezometer (PZ#) and

drilling (DR#) positions at the surface. –27–
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Figure B3. Estimated GWT level 2D map variation between high water period (April 1, 2023)

and low water period (July 1, 2023), obtained using DCs at seismic array points around PZ3

(L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and PZ5 (L4-P31, L4-P32, L4-P33, L5-P32,

L5-P33, and L5-P34), and observed GWT levels at PZ3 and PZ5 as training data. Geophone,

piezometer and drilling positions are displayed at surface.
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Figure B4. (a) Geophone array map and cross-section line (in red) between drilling and piezome-

ters. (b) Cross-section of estimated GWT levels at different dates, obtained using DCs at seismic

array points around PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and PZ5 (L4-P31,

L4-P32, L4-P33, L5-P32, L5-P33, and L5-P34), and observed GWT levels at PZ3 and PZ5 as training

data, with geologic logs illustrating the nature of the underground materials.
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Figure B5. Inverted VS sections over depth for the 5 linear geophone arrays (L1 to L5) at

a high water period (April 1, 2023) and at a low water period (July 1, 2023). The white mask

indicates depths where the standard deviation, between the mean VS model and all other accepted

models during inversion, is greater than 400 m/s. Estimated GWT levels, obtained using DCs at

seismic array points around PZ3 (L1-P22, L1-P23, L1-P24, L2-P21, L2-P22, and L2-P23) and PZ5

(L4-P31, L4-P32, L4-P33, L5-P32, L5-P33, and L5-P34), and observed GWT levels at PZ3 and PZ5

as training data., and geologic logs, illustrating the nature of the underground materials at five

drilling coordinates, are superposed for interpretation.
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Appendix C Inversion416

For each seismic linear array, VR over frequencies pseudo-section, corresponding to417

DCs along x (fundamental mode M0), obtained by passive-MASW, were inverted to gener-418

ate a VS over depth sections. We use the open-source software package SWIP2 implemented419

by Pasquet and Bodet (2017), that is built upon the software Dinver3 that uses a neigh-420

bourhood algorithm developed by (Sambridge, 1999) and implemented by (Wathelet, 2008),421

to solve the inverse problem in a juxtaposed 1D setup. The inversion was parameterized422

with five layers, including an half-space, in accordance with the drilling data (see PZ3 in423

Figure 1). This method involves a stochastic exploration of a parameter space in order to424

search for a minimum misfit between measured and simulated DCs. The chosen parameter425

space, as outlined in Table C1, encompasses various key parameters including layer thick-426

nesses, pressure-wave velocity (VP ), shear-wave velocity (VS), density (ρ), and Poisson’s427

ratio (ν). The deliberate selection of a large parameter space stems from the limited a428

priori information about the mechanical properties of the geological layers. This approach429

ensures that the inversion process remains explorative, unbiased, and is capable of capturing430

a wide range of geological scenarios that may influence the seismic response in the study431

area. For each DC along the seismic linear arrays, out of a total 200,400 simulated models,432

only the models with DCs within the error-bars are accepted and averaged to generate final433

average smooth velocity models. The running parameters using in SWIP are outlined in434

Table C2.435

As examples, we present the inversion results at PZ3 and PZ5 positions on April436

1, 2023, and July 1, 2023. Figure C1 shows the velocity models and corresponding DCs437

simulated during the inversion on April 1, 2023, and July 1, 2023, respectively. Each DC438

and velocity model is represented with a color depending on the misfit value (MF) between439

the experimental data (black crosses and error-bars) and the simulated dispersion defined440

as:441

MF =

√√√√Nf∑
i=1

(Vsimi
− Vexpi

)2

Nfσ2
i

, (C1)

2 https://github.com/spasquet/SWIP

3 https://www.geopsy.org/wiki/index.php/Dinver: dinverdc
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with Vsimi and Vexpi
being the simulated and experimental phase velocities at each442

frequency fi, Nf the number of frequency samples, and σi the phase-velocity measurement443

uncertainty (error-bars) at each frequency fi.444

Table C1. Inversion parameter space.

Layer Thickness VP VS ρ ν

(#) (m) (m/s) (m/s) (kg/m3)

1 1-10 100-1000 50-500 2000-2500 0.1-0.5

2 1-10 100-1000 50-500 2000-2500 0.1-0.5

3 1-10 100-1000 50-500 2000-2500 0.1-0.5

4 1-20 200-2000 100-1000 2000-2500 0.1-0.5

½-space ∞ 400-4000 200-2000 2000-2500 0.1-0.5

Table C2. Inversion running parameters in SWIP.

Parameter Value Description

nrun 4 Number of runs

itmax 250 Number of iterations per run

ns0 100 Number of starting models

ns 200 Number of modes created at each iteration

nr 100 Number of previous models to build new sub-parameter space
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Figure C1. Inversion results at seismic array points (top) L1-P23, close to PZ3, and (bottom)

L5-P33, close to PZ5, on (left) on April 1, 2023, and July 1, 2023. (a), (c), (e), and (g) show

the modeled DCs, with error-bars, for the fundamental mode. (b), (d), (f), and (h) represent the

modeled velocity models. Each DC and velocity model is represented with a color depending on

the misfit value between the modeled and experimental DCs (black crosses and error-bars). The

models inside the error-bars, in terms of DCs, are plotted in color, and the rest are plotted in a

gray scale. Plotted from the inversion software SWIP.
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Appendix D Error computation445

The root mean squared error (RMSE) corresponds to the expected value of the squared446

error or loss. If ŷi is the predicted value of the i-th samples, and yi is the corresponding447

true value, then the RMSE estimated over nsamples is defined as :448

RMSE(y, ŷ) =
1

nsamples

nsamples∑
i=1

(yi − ŷi)
2 . (D1)

The coefficient of determination, usually denoted R2, represents the proportion of449

variance that has been explained by the independent variables in the model. It provides450

an indication of goodness of fit and therefore a measure of how well unseen samples are451

likely to be predicted by the model, through the proportion of explained variance. If ŷi is452

the predicted value of the i-th samples, and yi is the corresponding true value, then the R2
453

score over nsamples is defined as :454

R2(y, ŷ) = 1−
∑nsamples

i=1 (yi − ŷi)
2∑nsamples

i=1 (yi − ỹi)2
, (D2)

where ỹ = 1
nsamples

∑nsamples

i=1 yi is the arithmetic mean value of y.455
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