The development of cost-effective, highly efficient, and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction (HER). Herein, a simplified synthesis protocol was designed to achieve a self-standing electrode, composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters (ACP/RuSAC+C) via acid activation, immersion, and high-temperature pyrolysis. Ab initio molecular dynamics (AIMD) calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper. Furthermore, the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). Experimental measurements and theoretical calculations reveal that introducing a Ru single atom site adjacent to the Ru nanoclusters induces a synergistic effect, tuning the electronic structure and thereby significantly enhancing their catalytic performance. Notably, the ACP/RuSAC+C exhibits a remarkable turnover frequency (TOF) of 18 s-1 and an exceptional mass activity (MA) of 2.2 A mg-1, surpassing the performance of conventional Pt electrodes. The self-standing electrode, featuring harmoniously coexisting Ru states, stands out as a prospective choice for advancing HER catalysts, enhancing energy efficiency, productivity, and selectivity.