
A practical approach for tectonic discrimination of basalts 1 

using geochemical data through machine learning 2 

 3 

Mengqi Gao1, Zhaochong Zhang2,3, Xiaohui Ji1, Hengxu Li3, Zhiguo 4 

Cheng3, M. Santosh3,4 5 

 6 

1. School of Information Engineering, China University of Geosciences, 7 

Beijing, 100083, China. 8 

2. Frontiers Science Center for Deep-time Digital Earth, China University of 9 

Geosciences (Beijing), Beijing 100083, China. 10 

3. State Key Laboratory of Geological Processes and Mineral Resources, 11 

China University of Geosciences, Beijing 100083, China. 12 

4. Department of Earth Sciences, University of Adelaide, Adelaide, SA, 13 

Australia. 14 

 15 

Corresponding author: Zhaochong Zhang(zczhang@cugb.edu.cn); 16 

Xiaohui Ji(xhji@cugb.edu.cn); 17 

18 

mailto:zczhang@cugb.edu.cn
mailto:xhji@cugb.edu.cn


Key Points: 19 

 XGBoost demonstrates the best performance in discriminating basalts into 20 

seven tectonic settings. 21 

 Two schemes for classification of basalt hold significant practical 22 

applications. 23 

 Sr, Ba, Ta, FeOt and Nb are the top five elements with the highest average 24 

SHAP values in tectonic discrimination. 25 

26 



ABSTRACT 27 

Identifying the tectonic setting of formation of rocks is an essential 28 

component in the field of geosciences. The conventional approach is to 29 

employ standard tectonic discrimination diagrams based on elemental 30 

correlations and ratios, which sometimes are plagued with uncertainties and 31 

limitations. The application of machine learning algorithms based on big data 32 

can effectively overcome these problems. In this study, three machine learning 33 

algorithms, namely Support Vector Machine, Random Forest, and XGBoost, 34 

were employed to classify the various types of basalts from diverse settings 35 

such as intraplate basalts, island arc basalts, ocean island basalts, mid-ocean 36 

ridge basalts, back-arc basin basalts, oceanic flood basalts, and continental 37 

flood basalts into seven tectonic environments. For the altered basalts and 38 

fresh basalt, we use 22 relatively immobile elements (TiO2, P2O5, Nb, Ta, Zr, Hf, 39 

Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Ho, Er, Yb, Lu, Dy, Tb, Cr, Ni) and 35 major plus 40 

trace elements to build discrimination models for seven types of tectonic 41 

settings of basalt, respectively. The results indicate that XGBoost 42 

demonstrates the best performance in discriminating basalts into seven 43 

tectonic settings, achieving an accuracy of 85% and 89% respectively. 44 

Compared to previous models, our new method presented in this study is 45 

expected to have better practical applications. 46 

 47 



PLAIN LANGUAGE SUMMARY 48 

Many works have tried to use compositions of young basalts to correlate 49 

the geochemical signatures with their specific tectonic settings. These have led 50 

to the development of ‘tectonomagmatic discrimination diagrams’. However, 51 

the compositions of basalts are dependent upon their source and mineralogy, 52 

the depth, degree and mechanism of partial melting and the various 53 

fractionation and contamination processes that they went through en route to 54 

the surface. Thus, these discrimination diagrams have many uncertainties and 55 

limitations. Machine learning algorithms excel at uncovering latent information 56 

within extensive datasets and have demonstrated significant advantages and 57 

performance in geochemical research. In this study, three machine learning 58 

algorithms were employed to discriminate seven tectonic environments based 59 

on global big geochemical data of basalt. Considering practicality and accuracy, 60 

we use two schemes to build discrimination models. For fresh basalt samples, 61 

a combination of major and trace elements is utilized to enhance the model 62 

accuracy (89%). In contrast, for altered basalts, we use another model that is 63 

based on 22 relatively immobile elements, although the accuracy is slightly 64 

lower (85%). The discriminative analysis of basaltic geological tectonic 65 

environments based on machine learning holds significant practical application 66 

value. 67 

 68 



1 Introduction 69 

Basalt, as a derivative of the mantle, is an important proxy for studying 70 

mantle composition and evolution, crustal recycling, and interactions among 71 

multiple layers of the Earth. Since the introduction of trace element 72 

discrimination diagrams in the 1970s (Pearce & Cann, 1973; Pearce & Norry, 73 

1979; Wood, 1980), these diagrams have been widely used to discern the 74 

tectonic settings of basalt formation. However, with the accumulation of data, 75 

the substantial overlapping regions from different tectonic settings have been 76 

revealed (Li et al., 2015). Consequently, these diagrams often yield ambiguous 77 

or conflicting results. This ambiguity might be attributed to various factors 78 

influencing basalt composition, including mineral composition and components 79 

in the source region, depth, degree, and form of partial melting, as well as 80 

processes involving fractional crystallization during magmatic evolution as well 81 

as crustal assimilation and mixing, leading to uncertainties and challenges in 82 

discerning tectonic environments based on geochemical data of basalts (Li et 83 

al., 2015). In recent years, the rapid advancement and breakthrough 84 

innovations in Earth Science Big Data and artificial intelligence technologies 85 

have brought forth new opportunities and challenges for resolving this 86 

challenge. Compared to traditional research approaches, machine learning 87 

methods have the advantage of performing more comprehensive and in-depth 88 

data analysis, enabling to investigate the intrinsic connections and patterns 89 

among scattered data points in multidimensional spaces. Currently, extensive 90 



geochemical data, including elemental and isotopic composition of basalt, are 91 

extracted from relevant databases such as GEOROC and PetDB for 92 

addressing the problem of discriminating tectonic environments of basalt using 93 

machine learning methods. For example, Petrelli and Perugini (Petrelli & 94 

Perugini, 2016) gathered data from GEOROC and PetDB databases, 95 

comprising a total of 3095 basalt samples from eight different tectonic 96 

backgrounds: continental arc, island arc, intraoceanic arc, back-arc basin, 97 

continental flood, midocean ridge, oceanic plateau, and ocean island. This 98 

dataset included 24 elements (8 major and 16 trace elements), along with Sr, 99 

Nd, and Pb isotope data. They established a classification model for discerning 100 

basaltic tectonic backgrounds based on the Support Vector Machine (SVM) 101 

method. The model achieved an average accuracy of 0.93, with even the most 102 

challenging to differentiate back-arc basin basalt reaching an accuracy of 0.65. 103 

Notably, ocean island basalt exhibited an exceptional accuracy of 0.99. 104 

Subsequently, Ueki et al. (Ueki et al., 2018), based on the same elements and 105 

isotope data from 2074 samples, employed SVM, Random Forest (RF), and 106 

Sparse Multinomial Regression algorithms to build machine learning 107 

classification models. The outcomes of these models were similar to those 108 

reported by Petrelli and Perugini (Petrelli & Perugini, 2016). However, despite 109 

the high accuracy of their classification methods, they encountered two 110 

significant challenges in practical applications as follows. 1) Basalt samples 111 

used to discriminate ancient tectonic environments are generally relatively 112 



'older' and have often undergone post-magmatic weathering or alteration 113 

processes, resulting in the migration of mobile elements (such as K, Na, Rb, Sr, 114 

Ba, Mg, Ca) and changes in isotopic compositions (e.g., Rb-Sr isotope and Pb 115 

isotope) that play crucial roles in their classification. 2) In many analyses, there 116 

is often a lack of isotope data, particularly Pb isotopes. Even when such 117 

isotope data are available, the limited quantity of samples analyzed 118 

undermines their statistical significance. 119 

In order to address the issues faced in practical applications mentioned 120 

above, this study omitted isotope data to ensure a sufficient number of 121 

samples. Geological data of basalt from various tectonic environments were 122 

extracted from GEOROC and PetDB databases, and after data cleansing, 123 

14150 valid samples were retained. Three different methods—SVM, RF, and 124 

XGBoost—were employed to establish classification models for seven types of 125 

basaltic tectonic environments (Intraplate, continental and oceanic arc, 126 

back-arc basin, continental flood, midocean ridge, oceanic plateau, and ocean 127 

island). Considering potential alterations in samples, 22 relatively immobile 128 

elements (TiO2, P2O5, Nb, Ta, Zr, Hf, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Ho, Er, Yb, 129 

Lu, Dy, Tb, Cr, Ni) were selected to build seven classification models for basalt. 130 

These models achieved an overall accuracy of approximately 85%. For fresh 131 

samples, 35 major and trace elements were chosen to build basalt 132 

classification models, resulting in an impressive overall accuracy of 89%. 133 

Hence, compared to previous models, the basalt discrimination model 134 



presented in this study is expected to have better practical applications. 135 

2 Data Descriptions and Pre-Processing 136 

The data used in this study are drawn from two public geochemical 137 

databases, GEOROC and PETDB. The dataset comprises 68,327 records of 138 

basalt samples from seven geological tectonic environments: Intraplate 139 

Basalts (IPB), Island Arc Basalts (IAB), Ocean Island Basalts (OIB), 140 

Mid-Ocean Ridge Basalts (MORB), Back Arc Basin Basalts (BABB), Ocean 141 

Floor Basalts (OFB), and Continental Flood Basalts (CFB). 142 

To improve the quality of the data, preprocessing operations were 143 

conducted on the raw data with the following main steps: (1) Data Integration: 144 

the consolidation and merging of two databases with different formats were 145 

performed, encompassing 37 fields, including major elements, trace elements, 146 

latitude, and longitude. (2) Transforming Fe2O3 and FeO into FeOt content 147 

(Chen et al., 2022). (3) Removing samples with fewer than 20 non-null values. 148 

(4) Removing duplicate samples. (5) Impute missing values using the 149 

K-nearest neighbors (K=5) interpolation method. Specifically, for each sample 150 

with missing values, calculate its distance to other known values in the dataset, 151 

select the K nearest known values, and then use the weighted average of 152 

these nearest neighbor values as the estimate for the missing values 153 

(Troyanskaya et al., 2001). (6) Selecting samples where the total content of 154 

major elements (SiO2, TiO2, Al2O3, FeOt, CaO, MgO, MnO, K2O, Na2O, and 155 



P2O5) falls within the range of 97.5% to 102.5% (Nakamura, 2023). (7) 156 

Rescaling the total content of major elements (SiO2, TiO2, Al2O3, FeOt, CaO, 157 

MgO, MnO, K2O, Na2O, and P2O5) to 100% anhydrous basis (Ueki et al., 2018). 158 

(8) Samples with SiO2 content between 45% and 52% were selected to ensure 159 

they are basaltic compositions. (9) Removing outliers: conducting outlier 160 

analysis and processing using boxplots (Liu & Shi, 2022). For detailed 161 

methods, please refer to Appendix B. (10) Normalize the data to the range [0,1] 162 

(Zhang et al., 2023),The formula is as below (2-1): 163 

min

max min

i
normalized

x x
x

x x





                       （2-1） 164 

After data cleaning and preprocessing, we obtained 14,150 basalt 165 

samples (4,582 intraplate basalts, 3,957 island arc basalts, 1,767 ocean island 166 

basalts, 687 mid-ocean ridge basalts, 621 back-arc basin basalts, 304 ocean 167 

floor basalts, and 2,232 continental flood basalts). The dataset is divided into a 168 

training set (75% of the data) and a testing set (25% of the data). The 169 

distribution of the basalt samples after preprocessing the global data is 170 

illustrated in Figure 1. 171 

 172 

Figure 1. Global Distribution Map of Basalt 173 



3 Basalt Classification Based on Machine Learning 174 

Utilizing machine learning to study basalt data, the latent information and 175 

patterns are uncovered, and the learned knowledge is applied to predict 176 

outcomes for new and unknown basalt data. Model performance is evaluated 177 

using metrics such as accuracy, F1 score, and confusion matrix. Additionally, 178 

interpretability analysis is conducted on the model to understand the process 179 

of predictions or decisions, enhancing trust and acceptance of the model's 180 

predictive process. 181 

3.1 Classification Model 182 

In most of the literature on tectonic environment discrimination, the SVM 183 

method is commonly used (Liu & Shi, 2022; Ueki et al., 2018). However, 184 

considering the development of machine learning algorithms, ensemble 185 

algorithms based on tree models demonstrate better performance in certain 186 

scenarios (Chen et al., 2022; Zhang et al., 2023). Combining the results of a 187 

preliminary trial comparing various popular machine learning algorithms, this 188 

study adopts SVM, RF based on Bagging ensemble, and XGBoost based on 189 

Boosting ensemble for classification. 190 



 191 

Figure 2. (a) SVM Model, (b) RF Model, (c) XGBoost Model. 192 

Support Vector Machine (SVM), as shown in Figure 2a, belongs to 193 

supervised learning. It separates different categories of basalt samples by 194 

finding a decision boundary (or hyperplane) and maximizing the distance from 195 

the boundary to the nearest basalt samples (support vectors) (Cortes & Vapnik, 196 

1995). To facilitate the linear separation of basalt samples, the data are 197 

mapped to a higher-dimensional space. This allows SVM to construct a 198 

hyperplane in the high-dimensional space, even when the data are not linearly 199 

separable in the original space, effectively separating different categories of 200 

basalts. 201 

RF, as shown in Figure 2b, enhances overall performance by ensemble 202 

learning with multiple decision trees (Breiman, 2001). Decision trees, 203 

resembling binary tree structures, iteratively select the best features as nodes 204 



based on entropy calculations, partitioning the dataset into different branches 205 

until reaching leaf nodes, which represent the final predicted results. After 206 

hyperparameter tuning, the final configuration for constructing the RF includes 207 

300 decision trees with a maximum depth of 30. In each iteration, RF randomly 208 

selects all samples with replacement and five random features from the entire 209 

basalt training set to train each decision tree. The results from the 300 decision 210 

trees are aggregated through a majority voting mechanism, with the most 211 

voted result determining the final predicted category for basalts. 212 

The XGBoost, as shown in Figure 2c, achieves the final results by 213 

ensemble learning with 500 decision trees (after hyperparameter tuning). 214 

During training, it employs a forward distribution algorithm for greedy learning. 215 

In each iteration, a decision tree is learned to fit the residual between the 216 

predicted values of the previous tree and the actual values. This process 217 

continues until the model converges. The final prediction of the entire model is 218 

the sum of predictions from all sub-models, with the most significant one 219 

determining the corresponding category (Chen & Guestrin, 2016). 220 

3.2 Model Tuning 221 

This study employs grid search algorithm and five-fold cross-validation for 222 

hyperparameter optimization of the models, aiming to determine the optimal 223 

parameter combinations for SVM, RF, and XGBoost. The grid search algorithm 224 

specifies possible values for each hyperparameter and systematically tries all 225 



possible combinations. Five-fold cross-validation randomly divides the original 226 

dataset into five equally sized subsets, using four subsets sequentially as 227 

training sets and the remaining one as a validation set. This process generates 228 

five different training and validation sets, and the average of the performance 229 

metrics from these five evaluations serves as the model's performance 230 

indicator. The combination that performs the best in both grid search and 231 

five-fold cross-validation represents the optimal parameters for the model 232 

(Pedregosa et al., 2011; Zhao et al., 2019). 233 

3.3 Model Evaluation 234 

The classification models are evaluated using accuracy, F1 score, and 235 

confusion matrix. Accuracy represents the proportion of correctly predicted 236 

basalt samples out of the total predicted ones, as shown in Formula (3-1). 237 

However, in the case of imbalanced samples, accuracy may be influenced by 238 

the majority class and may not accurately reflect the model's performance. For 239 

instance, with only 304 OFB samples and 621 BABB samples compared to 240 

4582 IPB samples, the number of different basalt samples is highly uneven. 241 

Therefore, F1 score is introduced for evaluation, as depicted in Formula (3-2). 242 

Precision, denoted as Precision, represents the proportion of correctly 243 

classified samples among those predicted as positive class, as shown in 244 

Formula (3-3). Recall, denoted as Recall, indicates the probability of correctly 245 

predicting positive samples out of the actual positive samples, as shown in 246 



Formula (3-4). In Formulae (3-3) and (3-4), TP is the true positive, representing 247 

the number of samples correctly predicted as belonging to a certain category, 248 

for example, the number of IPB basalt correctly predicted as IPB. TN is the true 249 

negative, representing the number of samples correctly predicted as not 250 

belonging to a certain category, for example, the number of non-IPB basalt 251 

correctly predicted as not IPB. FP is the false positive, representing the 252 

number of samples incorrectly predicted as belonging to a certain category, for 253 

example, non-IPB basalt incorrectly predicted as IPB. FN is the false negative, 254 

representing the number of samples incorrectly predicted as not belonging to a 255 

certain category, for example, IPB basalt incorrectly predicted as not IPB. 256 

Ideally, high precision and recall are desired, but in reality, there is a trade-off 257 

between the two. The F1 score, as the harmonic mean of precision and recall, 258 

provides a comprehensive assessment, considering both metrics effectively for 259 

model evaluation. 260 

Number of Correct Predictions
Accuracy=

Total Number of Predictions
                   （3-1） 261 

2 Precision Recall
F1 score=

Precision+Recall

                          （3-2） 262 

TP
Precision=

TP+FP
                             （3-3） 263 

TP
Recall=

TP+FN
                              （3-4） 264 

The Confusion Matrix, also known as an error matrix, provides a detailed 265 

classification of the model's prediction results. It allows for a visual 266 

representation of the prediction performance for each class. In the Confusion 267 

Matrix, the vertical axis represents the true classes, while the horizontal axis 268 



represents the predicted classes. The values in each grid indicate the 269 

proportion of samples predicted as the corresponding class in the test set. 270 

3.4 Element Importance Analysis 271 

To gain a better understanding of the model's decision-making process, 272 

SHAP (SHapley Additive exPlanations) is employed to provide precise and 273 

consistent estimates of the contribution of each feature to the model's 274 

classification (Lundberg & Lee, 2017). For each predicted basalt sample, the 275 

model generates a prediction value, and the SHAP value represents the 276 

numerical allocation of each element in that sample. SHAP not only reflects the 277 

impact of element importance in each basalt sample but also indicates the 278 

positive or negative influence of these impacts. 279 

4 Results 280 

Rocks may have undergone changes in their structure, texture, and 281 

composition due to post-formation geological processes. Generally, the longer 282 

a rock has been in existence, the more significant the impact of weathering 283 

and alteration, leading to the migration of some mobile elements. Thus, in 284 

many cases, the bulk-rock composition may not accurately represent the 285 

original composition of the rock. Because of this, our present study explores 286 

two scenarios: if basalts have undergone a certain degree of alteration, 287 

discriminant analysis is conducted using relatively immobile elements. 288 

Conversely, for fresh samples, more elements (including mobile elements) can 289 



be included in the analysis. With an increased variety of chemical elements 290 

involved in the analysis, the differences between different categories of basalts 291 

become more pronounced, resulting in better classification performance by 292 

machine learning models. For these two different classification scenarios, SVM, 293 

RF, and XGBoost are all employed for analysis. 294 

4.1 Tectonic environment classification based on immobile elements 295 

The 22 relatively immobile elements (TiO2, P2O5, Nb, Ta, Zr, Hf, Y, La, Ce, 296 

Pr, Nd, Sm, Eu, Gd, Ho, Er, Yb, Lu, Dy, Tb, Cr, Ni) are employed to classify 297 

seven types of basalts. 298 

4.1.1 Classification Results 299 

Table 1. Results of the classification based on immobile elements 300 

 SVM RF XGBoost 

 Accuracy F1_score Accuracy F1_score Accuracy F1_score 

IPB 83.25% 84.80% 85.60% 86.66% 87.00% 88.15% 

IAB 87.68% 82.16% 88.59% 84.12% 90.51% 86.74% 

OIB 76.24% 77.56% 75.34% 80.05% 80.32% 82.56% 

MORB 83.72% 78.26% 84.30% 82.15% 83.72% 83.24% 

BABB 41.03% 52.46% 51.28% 57.55% 60.26% 64.16% 

OFB 76.32% 76.82% 85.53% 89.04% 81.58% 85.52% 

CFB 77.60% 79.82% 84.23% 83.78% 84.23% 84.84% 



Overall 80.73% 75.98% 83.36% 80.48% 85.25% 82.17% 

 301 

Figure 3. (a) Accuracy and (b) F1 score for classification based on immobile 302 

elements 303 

Table 1 and Figure 3 present the accuracy and F1 score of SVM, RF, and 304 

XGBoost models for classification based on 22 immobile elements. XGBoost 305 

achieves the highest accuracy and F1 score in identifying IPB, IAB, OIB, 306 

MORB, BABB, and CFB basalt. MORB has the same accuracy in SVM as 307 

XGBoost but lower F1 score. CFB has the same accuracy in RF as XGBoost 308 

but lower F1 score. OFB attains the highest accuracy and F1 score in RF. 309 

Overall, when using 22 immobile elements for the identification of basalts from 310 

seven tectonic settings, XGBoost exhibits the best accuracy and F1 score. 311 

4.1.2 Confusion Matrix 312 

 313 

Figure 4. Confusion matrices for the three classification models (a-SVM; b-RF; 314 

c-XGBoost) based on immobile elements 315 



In Figure 4c, when using XGBoost for classification based on immobile 316 

elements, the model achieves an accuracy of 87% in identifying IPB, with 6% 317 

misclassified as IAB. The accuracy for IAB recognition is 91%, the highest 318 

among the seven basalt types, with 4% misclassified as IPB. OIB recognition 319 

accuracy is 80%, with 9% and 5% misclassified as IPB and CFB, respectively. 320 

MORB recognition accuracy is 84%, with 7% misclassified as IAB. BABB 321 

recognition accuracy is 60%, with 33% misclassified as IAB. OFB recognition 322 

accuracy is 82%, with 8% misclassified as IAB and 4% as CFB. CFB 323 

recognition accuracy is 84%, with 7% misclassified as IPB, 4% as IPB, and 4% 324 

as OIB. 325 

4.1.3 Element Importance Analysis 326 

In Figure 5a-5g, each row represents an element, and the x-axis 327 

represents the SHAP value. Each point represents a basalt sample, where the 328 

color of the point indicates the content of that element in the sample. A deeper 329 

red color signifies a higher content, while a deeper blue color indicates a lower 330 

content. The larger the colored area, the more samples there are. The higher 331 

the position of an element in the figure, the higher the corresponding SHAP 332 

value, indicating its greater importance in determining the classification of this 333 

type of basalt (Lundberg et al., 2018). 334 

For the IPB tectonic environment (Figure 5a), the top five elements with 335 

the highest SHAP values are Pr, Ta, Sm, Gd, and Er, indicating their significant 336 



impact when predicting the IPB tectonic environment. Yb has the smallest 337 

corresponding SHAP value, indicating its minimal influence on predicting the 338 

IPB tectonic environment. Specifically, moderate Pr content, higher Ta and Gd 339 

content, and lower Sm and Er content make the basalt category more likely to 340 

be predicted as IPB. 341 

342 



 343 

Figure 5. Impact of features for the 22 immobile elements in seven tectonic 344 

settings of basalt (a-IPB; b-IAB; c-OIB; d-MORB; e-BABB; f-OFB; g-CFB; 345 

h-mean). 346 

For the IAB tectonic environment (Figure 5b), the top five elements with 347 

the highest SHAP values are TiO2, Dy, Pr, P2O5, and Nb, showing their major 348 

influence when predicting the IAB tectonic environment. Tb has the smallest 349 

corresponding SHAP value, indicating its minimal impact on predicting the IAB 350 



tectonic environment. In detail, lower TiO2, Dy, Pr, Nb content, and higher P2O5 351 

content make the basalt category more likely to be predicted as IAB. 352 

For the OIB tectonic environment (Figure 5c), the top five elements with 353 

the highest SHAP values are TiO2, Nb, Ta, La, and Cr, indicating their 354 

significant impact when predicting the OIB tectonic environment. Sm has the 355 

smallest corresponding SHAP value, indicating its minimal influence on 356 

predicting the OIB tectonic environment. Specifically, higher TiO2, Nb, Ta, Cr 357 

content, and lower La content make the basalt category more likely to be 358 

predicted as OIB. 359 

For the MORB tectonic environment (Figure 5d), the top five elements 360 

with the highest SHAP values are Nb, Pr, Cr, La, and Er, showing their major 361 

influence when predicting the MORB tectonic environment. Sm has the 362 

smallest corresponding SHAP value, indicating its minimal impact on 363 

predicting the MORB tectonic environment. Lower Nb, Pr, La content, and 364 

higher Cr, Er content make the basalt category more likely to be predicted as 365 

MORB. 366 

For the BABB tectonic environment (Figure 5e), the top five elements with 367 

the highest SHAP values are Ho, Ce, Gd, Pr, and Zr, indicating their significant 368 

impact when predicting the BABB tectonic environment. Eu has the smallest 369 

corresponding SHAP value, indicating its minimal influence on predicting the 370 

BABB tectonic environment. Specifically, lower Ce, Gd, Pr content, and higher 371 

Ho, Zr content make the basalt category more likely to be predicted as BABB. 372 



For the OFB tectonic environment (Figure 5f), the top five elements with 373 

the highest SHAP values are La, P2O5, TiO2, Hf, and Nb, indicating their 374 

significant impact when predicting the OFB tectonic environment. Ho has the 375 

smallest corresponding SHAP value, indicating its minimal influence on 376 

predicting the OFB tectonic environment. Specifically, lower La, P2O5, Nb 377 

content, and higher TiO2, Hf content make the basalt category more likely to be 378 

predicted as OFB. 379 

For the CFB tectonic environment (Figure 5g), the top five elements with 380 

the highest SHAP values are Ta, P2O5, TiO2, Gd, and Ce, indicating their 381 

significant impact when predicting the CFB tectonic environment. Tb has the 382 

smallest corresponding SHAP value, indicating its minimal influence on 383 

predicting the CFB tectonic environment. Specifically, lower Ta, P2O5, Gd 384 

content, and higher TiO2, Ce content make the basalt category more likely to 385 

be predicted as CFB. 386 

Figure 5h is an overall stacked bar chart of element importance, sorted 387 

according to element importance, indicating the overall importance of different 388 

elements when classifying the seven types of basalts. It can be seen that when 389 

considering all tectonic environments (Figure 5h), the top five elements with 390 

the highest average SHAP values are Nb, TiO2, Pr, Ta, and P2O5, while Tb, Yb, 391 

and Eu have the lowest average SHAP values, indicating that Nb, TiO2, Pr, Ta, 392 

and P2O5 are the most important elements for classifying the seven types of 393 

tectonic environments for basalts. 394 



4.2 Tectonic environment classification based on 35 elements 395 

In this section, we add 13 more elements to improve the overall 396 

classification performance of the model by increasing the classification 397 

features. All the 35 elements are included such as SiO2, TiO2, Al2O3, FeOt, 398 

CaO, MgO, MnO, K2O, Na2O, P2O5, Rb, Sr, Ba, Th, U, Nb, Ta, Zr, Hf, Y, La, Ce, 399 

Pr, Nd, Sm, Eu, Gd, Ho, Er, Yb, Lu, Dy, Tb, Cr, Ni. 400 

4.2.1 Classification Results 401 

Table 2. Results of the classification based on 35 elements 402 

 SVM RF XGBoost 

 Accuracy F1_score Accuracy F1_score Accuracy F1_score 

IPB 87.61% 89.44% 87.52% 88.53% 89.70% 91.09% 

IAB 90.51% 87.80% 90.20% 86.57% 91.82% 89.03% 

OIB 87.78% 88.69% 83.26% 87.51% 87.78% 88.69% 

MORB 94.19% 88.04% 91.28% 90.49% 91.28% 89.97% 

BABB 58.97% 65.95% 64.10% 67.80% 66.67% 71.72% 

OFB 80.26% 83.56% 90.79% 95.17% 85.53% 91.55% 

CFB 88.71% 87.92% 88.89% 88.33% 89.25% 88.53% 

Overall 87.51% 84.49% 87.18% 86.34% 88.95% 87.23% 



 403 

Figure 6. (a) Accuracy and (b) F1 score for classification based on 35 404 

elements 405 

Table 2 and Figure 6 present the accuracy and F1 score of SVM, RF, and 406 

XGBoost models in classifying the 35 elements. IPB, IAB, OIB, BABB, and 407 

CFB achieved the highest accuracy and F1 score in XGBoost. OIB had the 408 

same accuracy and F1 score in SVM and XGBoost. MORB had the highest 409 

accuracy in SVM, and RF had the highest F1 score. OFB achieved the highest 410 

accuracy and F1 score in RF. Overall, using 35 elements for the identification 411 

of seven tectonic settings of basalt, XGBoost exhibited the best accuracy and 412 

F1 score. 413 

4.2.2 Confusion Matrix 414 

 415 

Figure 7. Confusion matrices for the three classification models (a-SVM; b-RF; 416 

c-XGBoost) based on 35 elements 417 



In Figure 7c, when the number of classification elements increased to 35 418 

and XGBoost was used for classification, the model achieved an accuracy of 419 

90% in identifying IPB, with 5% misclassification as IAB. The accuracy of 420 

identifying IAB reached 92%, the highest among the seven types of basalt, 421 

with 3% misclassification as IPB. The accuracy of identifying OIB was 88%, 422 

with 5% misclassification as IPB. The accuracy of identifying MORB was 91%, 423 

with 5% misclassification as IAB. The accuracy of identifying BABB was 67%, 424 

with 29% misclassification as IAB. The accuracy of identifying OFB was 86%, 425 

with 5% misclassification as IAB, 4% as IPB, and 4% as CFB. The accuracy of 426 

identifying CFB was 89%, with 5% misclassification as IPB. Compared to the 427 

classification using immobile elements, the accuracy of IPB increased by 3%, 428 

IAB increased by 1%, OIB increased by 8%, MORB increased by 7%, BABB 429 

increased by 7%, OFB increased by 4%, and CFB increased by 5%. 430 

4.2.3 Element Importance Analysis 431 

For the IPB tectonic environment (Figure 8a), the top five elements with 432 

the highest SHAP values are Ta, Sm, FeOt, Pr, and Ho. This indicates that 433 

these elements have the greatest influence when predicting the IPB tectonic 434 

environment. MgO has the smallest corresponding SHAP value, indicating the 435 

least impact on predicting the IPB tectonic environment. Specifically, higher 436 

concentrations of Ta, FeOt, and Pr and lower concentrations of Sm and Ho 437 

make it easier to predict basalt types as IPB. 438 



 439 



 440 

Figure 8. Impact of features for the 35 elements (a-IPB; b-IAB; c-OIB; 441 

d-MORB; e-BABB; f-OFB; g-CFB; h-mean). 442 



For the IAB tectonic environment (Figure 8b), the top five elements with 443 

the highest SHAP values are Pr, Dy, Nb, Al2O3, and Ta. These elements have 444 

the greatest impact when predicting the IAB tectonic environment. Th has the 445 

smallest corresponding SHAP value, indicating the least impact on predicting 446 

the IAB tectonic environment. Specifically, lower concentrations of Pr, Dy, Nb, 447 

and Ta and higher concentrations of Al2O3 make it easier to predict basalt 448 

types as IAB. 449 

For the OIB tectonic environment (Figure 8c), the top five elements with 450 

the highest SHAP values are Ba, Sr, TiO2, Nb, and Ta. These elements have 451 

the greatest impact when predicting the OIB tectonic environment. Sm has the 452 

smallest corresponding SHAP value, indicating the least impact on predicting 453 

the OIB tectonic environment. Specifically, lower concentrations of Ba and Sr 454 

and higher concentrations of TiO2, Nb, and Ta make it easier to predict basalt 455 

types as OIB. 456 

For the MORB tectonic environment (Figure 8d), the top five elements 457 

with the highest SHAP values are Sr, Nb, Ba, FeOt, and Cr. These elements 458 

have the greatest impact when predicting the MORB tectonic environment. 459 

Specifically, lower concentrations of Sr, Nb, Ba, and FeOt and higher 460 

concentrations of Cr make it easier to predict basalt types as MORB. 461 

For the BABB tectonic environment (Figure 8e), the top five elements with 462 

the highest SHAP values are Ba, Ho, FeOt, Sr, and U. These elements have 463 

the greatest impact when predicting the BABB tectonic environment. Sm has 464 



the smallest corresponding SHAP value, indicating the least impact on 465 

predicting the BABB tectonic environment. Specifically, lower concentrations of 466 

Ba, FeOt, Sr, and U and higher concentrations of Ho make it easier to predict 467 

basalt types as BABB. 468 

For the OFB tectonic environment (Figure 8f), the top five elements with 469 

the highest SHAP values are Ba, Sr, Hf, Nb, and Al2O3. These elements have 470 

the greatest impact when predicting the OFB tectonic environment. Er has the 471 

smallest corresponding SHAP value, indicating the least impact on predicting 472 

the OFB tectonic environment. Specifically, lower concentrations of Ba, Sr, Nb, 473 

Al2O3, and higher concentrations of Hf make it easier to predict basalt types as 474 

OFB. 475 

For the CFB tectonic environment (Figure 8g), the top five elements with 476 

the highest SHAP values are Ta, FeOt, Sr, Ba, and Gd. These elements have 477 

the greatest impact when predicting the CFB tectonic environment. Tb has the 478 

smallest corresponding SHAP value, indicating the least impact on predicting 479 

the CFB tectonic environment. Specifically, lower concentrations of Ta, Sr, and 480 

Gd and higher concentrations of FeOt and Ba make it easier to predict basalt 481 

types as CFB. 482 

Considering all tectonic settings (Figure 8h), the top five elements with the 483 

highest average SHAP values are Sr, Ba, Ta, FeOt, and Nb. The lowest 484 

average SHAP values are for Eu, La, and Tb. This indicates that Sr, Ba, Ta, 485 

FeOt, and Nb are the most important elements for classifying basalt types in 486 



the seven tectonic environments. 487 

5 Discussion 488 

5.1 The impact of imbalanced data sets 489 

The training set has a significant imbalance in the number of samples for 490 

each class, and an imbalanced dataset can lead classification models to focus 491 

more on the majority class, resulting in biased classification results and 492 

reduced model performance. Therefore, Synthetic Minority Over-sampling 493 

Technique (SMOTE) (Chawla et al., 2002) is employed to increase the quantity 494 

of IAB, OIB, MORB, BABB, OFB, and CFB samples, aiming to balance the 495 

number of samples for each class. In specific terms, SMOTE assumes that 496 

points in the feature space with proximity in features are also similar. It involves 497 

randomly selecting a sample point from the minority class, identifying its 498 

K-nearest neighbors, and then randomly choosing one neighbor. The 499 

difference between this chosen neighbor and the current sample point is 500 

calculated. To ensure diversity, this difference is multiplied by a random 501 

threshold within the [0,1] range. The obtained result represents the newly 502 

added sample point. This process is repeated until the sample size of each 503 

category reaches the target sample size. SMOTE processing is applied only to 504 

the training set in this study, with K set to 5. 505 

The oversampled quantities for each basalt category after SMOTE 506 

processing are presented in Table 3. The classification results for basalt are 507 



presented in Tables 4 and 5, while the confusion matrices are illustrated in 508 

Figures A1 and A2. 509 

Table 3. The quantity of basalt in the training set before and after SMOTE 510 

processing 511 

 IPB IAB OIB MORB BABB OFB CFB 

No SMOTE 3436 2967 1325 515 465 228 1674 

SMOTE 3436 3436 3436 3436 3436 3436 3436 

Table 4. Accuracy before and after SMOTE - immobile elements 512 

 SVM RF XGBoost 

 No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE 

IPB 83.25% 78.10% 85.60% 82.11% 87.00% 84.55% 

IAB 87.68% 79.39% 88.59% 85.25% 90.51% 87.17% 

OIB 76.24% 82.81% 75.34% 80.54% 80.32% 83.94% 

MORB 83.72% 91.28% 84.30% 88.95% 83.72% 86.63% 

BABB 41.03% 80.77% 51.28% 76.92% 60.26% 73.08% 

OFB 76.32% 85.53% 85.53% 88.16% 81.58% 85.53% 

CFB 77.60% 81.90% 84.23% 83.69% 84.23% 85.48% 

Overall 80.73% 80.56% 83.36% 83.28% 85.25% 84.97% 

Table 5. F1 score before and after SMOTE - immobile elements 513 

 SVM RF XGBoost 

 No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE 



IPB 84.80% 83.80% 86.66% 85.82% 88.15% 87.61% 

IAB 82.16% 82.17% 84.12% 85.17% 86.74% 86.73% 

OIB 77.56% 79.14% 80.05% 81.09% 82.56% 82.81% 

MORB 78.26% 80.10% 82.15% 85.24% 83.24% 83.01% 

BABB 52.46% 61.92% 57.55% 65.22% 64.16% 67.06% 

OFB 76.82% 75.58% 89.04% 83.23% 85.52% 85.53% 

CFB 79.82% 80.53% 83.78% 82.00% 84.84% 84.35% 

Overall 75.98% 77.61% 80.48% 81.11% 82.17% 82.44% 

Table 6. Accuracy before and after SMOTE – 35 elements 514 

 SVM RF XGBoost 

 No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE 

IPB 87.61% 85.60% 87.52% 84.90% 89.70% 89.01% 

IAB 90.51% 85.56% 90.20% 87.98% 91.82% 91.31% 

OIB 87.78% 89.14% 83.26% 87.78% 87.78% 89.82% 

MORB 94.19% 93.60% 91.28% 93.60% 91.28% 93.60% 

BABB 58.97% 90.38% 64.10% 84.62% 66.67% 73.72% 

OFB 80.26% 89.47% 90.79% 93.42% 85.53% 89.47% 

CFB 88.71% 89.43% 88.89% 90.50% 89.25% 90.14% 

Overall 87.51% 87.32% 87.18% 87.60% 88.95% 89.49% 

Table 7. F1 score before and after SMOTE - 35 elements 515 

 SVM RF XGBoost 



 No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE 

IPB 89.44% 88.94% 88.53% 88.62% 91.09% 91.32% 

IAB 87.80% 87.18% 86.57% 87.45% 89.03% 89.77% 

OIB 88.69% 89.04% 87.51% 88.48% 88.69% 88.72% 

MORB 88.04% 89.69% 90.49% 91.48% 89.97% 91.48% 

BABB 65.95% 73.06% 67.80% 74.58% 71.72% 73.72% 

OFB 83.56% 85.00% 95.17% 91.61% 91.55% 91.89% 

CFB 87.92% 87.47% 88.33% 87.52% 88.53% 89.42% 

Overall 84.49% 85.77% 86.34% 87.11% 87.23% 88.04% 

As shown in Tables 4-7 and Figures A1-A6(Appendix A), after balancing 516 

the number of samples for each class of basalt in the training set using 517 

SMOTE, the overall accuracy of the models for classifying the seven types of 518 

basalts is quite similar, and the overall F1 scores have improved. Specifically, 519 

for each class of basalts, whether based on immobile elements or 35 elements, 520 

SVM, RF, and XGBoost all exhibit a decrease in accuracy for IPB and IAB, 521 

while an increase is observed for OIB, MORB, BABB, OFB, and CFB. For SVM 522 

and RF, the accuracy for IPB and IAB decreases by approximately 2% to 5%, 523 

and for XGBoost, the decrease is around 1% to 2%. On the other hand, OIB, 524 

MORB, OFB, and CFB show an improvement of 2% to 10%, with BABB 525 

showing the most significant increase, ranging from 7% to 40%. Overall, 526 

although the accuracy for certain classes of basalts decreases, the affected 527 

classes are few, and the decrease is small. Considering the improved 528 



accuracy for other classes and the overall enhancement in F1 scores, the loss 529 

is justified. Therefore, utilizing SMOTE to balance the training samples proves 530 

to be an effective method for enhancing model performance. 531 

5.2 Comparison of Machine Learning Methods 532 

In terms of the various algorithms, SVM is suitable for small to 533 

medium-sized datasets with low-dimensional features, RF is suitable for 534 

medium-sized datasets with high-dimensional features, and XGBoost typically 535 

performs well in large datasets and complex problem scenarios. Combining 536 

two sets of different classification features, XGBoost performs relatively well in 537 

identifying IPB, IAB, OIB, BABB, and CFB (with respective data sizes of 3436, 538 

2967, 1325, 465, 1674). RF performs relatively well in identifying MORB and 539 

OFB (with respective data sizes of 515, 228). The experimental results align 540 

well with the characteristics of the algorithms. 541 

When the number of classification features increases from 22 to 35, all 542 

models show an increase in accuracy, suggesting that at this point, the models 543 

have not yet experienced overfitting due to an excessive number of 544 

classification features. Therefore, it is inferred that the main factors limiting 545 

model accuracy are concentrated in the data itself. For the original real dataset, 546 

the sample quantity relationship is IPB > IAB > CFB > OIB > MORB > BABB > 547 

OFB. When using two sets of elements and three classification models 548 

separately, IAB and MORB perform the best, while BABB performs the worst. 549 



There is no clear pattern among the accuracy rates of other types of basalts, 550 

indicating that there is no apparent positive or negative correlation between 551 

accuracy and sample quantity. 552 

Table 8. Comparison of Accuracy for Different Test Set Sizes 553 

Elements Test Set 

SVM RF XGBoost 

Accuracy F1_score Accuracy F1_score Accuracy F1_score 

22 

unbalance 81% 78% 83% 81% 85% 82% 

balance 83% 83% 84% 84% 84% 84% 

35 

unbalance 87% 86% 88% 87% 89% 88% 

balance 87% 87% 89% 89% 88% 88% 

In addition, Section 5.1 compared the impact of the quantities of various 554 

types of basalt in the training set, considering both unequal and equal 555 

quantities. The overall accuracy of the model was found to be similar in both 556 

scenarios. To explore the relationship between the test set size and accuracy, 557 

while maintaining a balanced quantity of each type of basalt in the training set, 558 

76 samples were randomly selected from each basalt type (the original test set 559 

had a minimum of 76 samples for OFB) to create a balanced test set. A 560 

comparison of accuracy and F1 score between the imbalanced and balanced 561 

test sets is presented in Table 8. Although there are slight variations in 562 

individual accuracy and F1 score values, these fluctuations are within a normal 563 

range. Thus, it can be concluded that the proportional quantities of different 564 

basalt types in the test set do not significantly affect the model's performance. 565 



This study also compared the distribution of testing samples of basalt that 566 

were misclassified by SVM, RF, and XGBoost with the distribution of training 567 

samples, as shown in Appendix C. The comparative results indicate that the 568 

elemental content of misclassified samples exceeds the numerical range 569 

learned by the model through training samples, deviating from the potential 570 

patterns and rules learned by the model. 571 

5.3 Reason of mis-discrimination of tectonic environments 572 

As evident from the confusion matrices shown in Figures 4 and 7, IPB is 573 

frequently misclassified as IAB, possibly due to the influence of crustal 574 

contamination on IPB (Hawkesworth & Gallagher, 1993). Additionally, some 575 

IPB instances are misclassified as OIB, which may be attributed to their shared 576 

intra-plate environment, exhibiting similar mantle sources or partial melting 577 

processes (Kovalenko et al., 2007). Misclassification of IAB as BABB may be 578 

explained by the fact that both are related to subduction processes, with BABB 579 

typically forming after IAB; thus, early-stage BABB often exhibits geochemical 580 

characteristics similar to IAB (Ishizuka et al., 2009).The misclassification of 581 

OIB as OFB occurs because both are formed in intra-oceanic plate 582 

environments, sharing similar mantle source components (Niu et al., 2011). 583 

Misclassification of MORB as BABB may be due to their evolutionary 584 

relationship, as late-stage BABB tends to evolve toward environments 585 

associated with mid-ocean ridges, resulting in similar characteristics of light 586 



rare earth element depletion. The misclassification of OFB as IAB may be 587 

attributed to the fact that some IAB is an early product of subduction, and this 588 

subset of IAB has a lower influence from subduction components, thus sharing 589 

similar source components with OFB. The misclassification of CFB as OIB and 590 

IPB is also related to their common intra-plate environment, sharing similar 591 

source components and partial melting processes (Farmer, 2014). 592 

5.4 The role of elements in tectonic discrimination 593 

Ta, Sm, and FeOt have the most significant impact on distinguishing IPB, 594 

with higher Ta and FeOt content resulting in better differentiation of IPB. 595 

Although the source regions of IPB are typically heterogeneous and often 596 

influenced by crustal contamination, most IPB source regions are enriched in 597 

incompatible elements (Kovalenko et al., 2007), such as high field strength 598 

elements (HFSE). Therefore, IPB tends to enrich these elements, and the 599 

enrichment of FeOt in IPB may be related to the inclusion of eclogite or 600 

pyroxenite in the source region (Sobolev et al., 2005) or partial melting of 601 

mantle at deep level. 602 

Pr, Dy, and Nb are the three most important elements for distinguishing 603 

IAB, with lower concentrations of Pr, Dy, and Nb favoring better differentiation 604 

of IAB. The source region of IAB is generally considered to be a depleted 605 

mantle source with varying proportions of subducted slab contributions. 606 

Therefore, most IAB exhibits depleted rare earth element (REE) signatures 607 



(Labanieh et al., 2012; Stern, 2002). Lower concentrations of Pr and Dy are 608 

favorable for distinguishing IAB. Additionally, during the partial melting process 609 

that forms IAB in the source region, residual minerals enriched in Nb and Ta 610 

may lead to Nb depletion in IAB (Schmidt & Jagoutz, 2017). 611 

Ba, Sr, and TiO2 display the greatest impact in distinguishing OIB, with 612 

lower Ba and Sr concentrations favoring better differentiation, while higher 613 

TiO2 content is advantageous for distinguishing OIB. OIB generally forms in 614 

enriched mantle source regions (Hofmann, 1997) and tends to enrich in HFSE, 615 

such as Ta, Nb, and Ti. Ba and Sr are elements that are relatively mobile in 616 

fluids; hence, volcanic rocks associated with subduction are typically enriched 617 

in Ba, Th, and other elements. OIB formation, however, involves minimal fluid 618 

involvement, resulting in relatively lower Ba concentrations. 619 

Sr and Nb are most critical in distinguishing MORB, and the lower the 620 

content of Sr and Nb, the better the discrimination of MORB. The depletion of 621 

Sr in MORB may be related to the early crystallization of certain calcium-rich 622 

minerals, such as calcium plagioclase due to low water in melt. Additionally, 623 

some MORB samples exhibit characteristics of depleted trace elements, 624 

leading to lower Nb and Ta contents compared to other tectonic environments 625 

of basalts (Hofmann, 1997). 626 

Ba, Ho, and FeOt are most effective for distinguishing BABB, with lower 627 

Ba and FeOt concentrations favoring better differentiation, and higher Ho 628 

concentrations being advantageous for differentiation. BABB is characterized 629 



by the relative depletion of light rare earth elements (LREE) compared to 630 

heavy rare earth elements (HREE); therefore, BABB typically exhibits higher 631 

Ho content compared to other tectonic environments (Ishizuka et al., 2009). Ba 632 

is a relatively mobile element in fluids, and as a product of island arc evolution, 633 

BABB has essentially no fluid involvement in its formation, resulting in relative 634 

Ba depletion (Conder et al., 2002). As BABB evolves towards a more 635 

calc-alkaline composition during magmatic evolution, it tends to deplete in 636 

FeOt. 637 

Ba, Sr, and Hf hold the highest importance for distinguishing OFB, with 638 

lower Ba and Sr concentrations favoring better differentiation, and higher Hf 639 

concentrations being advantageous for differentiation. The lower Ba and Sr 640 

concentrations in OFB may be due to the early crystallization of certain 641 

calcium-rich minerals, such as clinopyroxene and calcium plagioclase. 642 

Additionally, Ba and Sr are relatively mobile elements in fluids, and since OFB 643 

formation involves minimal fluid involvement, the Ba and Sr concentrations are 644 

relatively lower. 645 

The content of Ta and FeOt are most important for distinguishing CFB, 646 

with lower Ta concentrations leading to better differentiation, and higher FeOt 647 

concentrations being advantageous for differentiation. The source region of 648 

CFB generally undergoes modification, resulting in heterogeneous source 649 

composition. However, most CFB source regions exhibit enrichment in 650 

large-ion lithophile elements (LILE) and depletion in HFSE (Farmer, 2014), 651 



leading to lower Ta concentrations in CFB compared to other tectonic 652 

environments. The higher FeOt concentrations in CFB may be attributed to the 653 

participation of pyroxenite or garnet pyroxenite in the partial melting process, 654 

resulting in higher FeOt content in the melt (Sobolev et al., 2005). 655 

6 Concluding remarks and future work 656 

When discriminating the tectonic environments of basalt using 22 657 

immobile elements (TiO2, P2O5, Nb, Ta, Zr, Hf, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, 658 

Ho, Er, Yb, Lu, Dy, Tb, Cr, Ni), the model with the best classification 659 

performance is XGBoost, followed by RF and SVM. XGBoost achieves an 660 

overall accuracy of 85%, with the highest accuracy in classifying IAB (91%) 661 

and the lowest in classifying BABB (60%). 662 

When discriminating the tectonic environments of basalts using 35 663 

elements (SiO2, TiO2, Al2O3, FeOt, CaO, MgO, MnO, K2O, Na2O, P2O5, Rb, Sr, 664 

Ba, Th, U, Nb, Ta, Zr, Hf, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Ho, Er, Yb, Lu, Dy, Tb, 665 

Cr, Ni), the model with the best classification performance is XGBoost, with an 666 

overall accuracy of 89%, with the highest accuracy in classifying IAB (92%) 667 

and the lowest in classifying BABB (67%). 668 

Hence, in practical applications, if the samples have undergone alteration, 669 

it is recommended to use immobile elements for discrimination. If the samples 670 

have not undergone alteration and are relatively fresh, it is advisable to use 671 

major elements along with trace elements for higher classification accuracy. 672 



In the data processing section, due to the limited number of samples, for 673 

samples with a relatively small proportion of missing values, this study adopted 674 

the K-nearest neighbors (KNN) interpolation method, followed by outlier 675 

handling using box plots. Both KNN and box plots are classical algorithms 676 

widely applied in numerous studies, known for their versatility and 677 

effectiveness. However, with the rapid development of deep learning, more 678 

complex algorithms for handling missing values and outliers have been 679 

proposed and successfully applied in various cases. In future studies, more 680 

advanced methods for handling missing values and outliers to maximize data 681 

accuracy and utility are recommended. 682 

Based on the experimental results, the deviation of various element 683 

concentrations in the test samples from those in the training samples appears 684 

to be a major cause of classification errors. If a large number of misclassified 685 

samples are obtained, conducting a detailed analysis of the element 686 

concentrations in these error samples would provide more specific insights into 687 

the erroneous elements. Correcting such errors could lead to an improvement 688 

in experimental accuracy. 689 

As a whole, although machine learning approaches are particularly useful, 690 

caution should be made when this is applied to geochemical problems, 691 

particularly on the selection of the appropriate machine learning methods. 692 

Information scientists and geochemists need to work together for an objective 693 

evaluation of data and a multi-disciplinary approach for successful results. 694 



Data Availability Statement 695 

The data used in this study were drawn from two public geochemical 696 

databases, GEOROC and PETDB. Figures were made with Matplotlib version 697 

3.5.1 (Caswell et al., 2021; Hunter, 2007), available under the Matplotlib 698 

license at https://matplotlib.org/. Part of the software associated with this 699 

manuscript for the calculation and storage is licensed under MIT and published 700 

on GitHub https://github.com/MinkiGao/TectonicDiscrimination-. 701 
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Appendix 822 

A The impact of imbalanced data sets 823 



 824 

Figure A1. Accuracy before and after SMOTE - immobile elements 825 

 826 

Figure A2. F1 score before and after SMOTE - immobile elements 827 

 828 

Figure A3. Accuracy before and after SMOTE - 35 elements 829 

 830 

Figure A4. F1 score before and after SMOTE - 35 elements 831 



 832 

Figure A5. SMOTE-Confusion matrices for the three models based on 833 

immobile elements 834 

 835 

Figure A6. SMOTE-Confusion matrices for the three models based on 35 836 

elements 837 

B Analysis and Processing of Elemental Outliers in Basalt Using Box 838 

Plots 839 

operation involves analyzing and addressing outliers using box plots. 840 

Specifically, this process begins by calculating the upper and lower quartiles 841 

( 3Q
 and 1Q

, respectively) of the elemental content in basalt samples. 842 

Subsequently, the upper and lower boundaries are determined using the 843 

formula provided in Appendix-B1. Any data points beyond these boundaries 844 

are considered outliers and are removed directly. 845 

1 3 1

3 3 1

1.5( )

1.5( )

down_margin Q Q Q

up_margin Q Q Q

  

  
               （Appendix-B1） 846 

The blue part in Figures B1 and B2 represents the main body of the box 847 

plot. The yellow line in the middle of the box represents the median of the data. 848 

The lower boundary of the box represents the lower quartile 1Q
, and the upper 849 



boundary of the box represents the upper quartile 3Q
. The bottom horizontal 850 

line represents the lower bound, and the top horizontal line represents the 851 

upper bound. Data points outside the upper bound are considered outliers. 852 

As seen in Figure B1, the SiO2 element has a relatively large proportion of 853 

normal values compared to the other eight elements. This is because, in the 854 

data processing process, to ensure that the selected samples are basalt 855 

samples, only samples with SiO2 content in the range of 45% to 52% were 856 

chosen, which is equivalent to having already performed outlier processing. 857 

Therefore, the SiO2 content of various types of basalt is relatively concentrated 858 

in the box plot. For the remaining eight elements, due to the presence of 859 

extreme outliers, the span of element content (vertical axis range) is large, and 860 

the region occupied by normal values is small. For example, the Ba content of 861 

IAB, some samples are close to 20,000, and some samples even exceed 862 

350,000, while the content of most other samples is within 5,000. Due to the 863 

presence of outlier samples, the normal blue part is not displayed completely 864 

compared to SiO2. 865 



 866 

Figure B1. The distribution of element content before removing outliers. 867 

 868 

Figure B2. The distribution of element content after removing outliers. 869 

In Figure B2, after removing extreme outliers, the box plot shows a more 870 

concentrated range of element content (vertical axis range). Normal data from 871 



various types of basalt occupy the main part of the plot, and the data is more 872 

centralized. Taking Ba content as an example, after removing outlier samples, 873 

the Ba content of the seven types of basalt does not exceed 1000. 874 

C Error Sample Analysis 875 

The distribution comparison between misclassified test samples and 876 

training samples for SVM, RF, and XGBoost is shown in Figure C1. Visualizing 877 

three elements randomly selected for each tectonic environment. As shown in 878 

the figure, misclassified samples in IPB, IAB, OIB, MORB, and OFB exhibit 879 

deviations in the values of two or more elements from the distribution of 880 

training samples. In BABB, misclassified samples show a similar trend in the 881 

distribution of Ce and Gd elements compared to training samples, but Ho 882 

element deviates noticeably. The distribution of the three elements in CFB is 883 

roughly consistent. Therefore, the reason for misclassification is that the 884 

elemental content of the volcanic rocks exceeds the numerical range learned 885 

by the model, deviating from the latent patterns and rules the model has 886 

learned. 887 



 888 

 889 



Figure C1. Comparison between misclassified test samples and training 890 

samples 891 


