Vanessa Monteiro

and 5 more

Improved urban greenhouse gas (GHG) flux estimates are crucial for informing policy and mitigation efforts. Atmospheric inversion modelling (AIM) is a widely used technique combining atmospheric measurements of trace gas, meteorological modelling, and a prior emission map to infer fluxes. Traditionally, AIM relies on mid-afternoon observations due to the well-represented atmospheric boundary layer in meteorological models. However, confining flux assessement to daytime observations is problematic for the urban scale, where air masses typically move over a city in a few hours and AIM therefore cannot provide improved constraints on emissions over the full diurnal cycle. We hypothesized that there are atmospheric conditions beyond the mid-afternoon under which meteorological models also perform well. We tested this hypothesis using tower-based measurements of CO2 and CH4, wind speed observations, weather model outputs from INFLUX (Indianapolis Flux Experiment), and a prior emissions map. By categorizing trace gas vertical gradients according to wind speed classes and identifying when the meteorological model satisfactorily simulates boundary layer depth (BLD), we found that non-afternoon observations can be assimilated when wind speed is >5 m/s. This condition resulted in small modeled BLD biases (<40%) when compared to calmer conditions (>100%). For Indianapolis, 37% of the GHG measurements meet this wind speed criterion, almost tripling the observations retained for AIM. Similar results are expected for windy cities like Auckland, Melbourne, and Boston, potentially allowing AIM to assimilate up to 60% the total (24-h) observations. Incorporating these observations in AIMs should yield a more diurnally comprehensive evaluation of urban GHG emissions.
We evaluated the ability of a simple ecosystem carbon dioxide (CO2) flux model, the Vegetation Photosynthesis and Respiration Model (VPRM), to capture complex CO2 background conditions observed in Indianapolis, IN. Using simulated biogenic CO2 fluxes and mole fraction tower influence functions, we estimated biogenic CO2 mole fractions at three background towers in the Indianapolis Flux Experiment (INFLUX) network from April 2017 to March 2020. The model captures afternoon average CO2 enhancements, the difference between the background towers and a common reference tower, at a monthly time scale with no significant bias, with monthly mean residuals rarely differing significantly from zero. Although not central to our application, the model could not capture day-to-day variations of observed afternoon average CO2 enhancements. Random errors, when averaged over monthly to yearly time scales, were an order of magnitude smaller than typical urban enhancements. VPRM captured site-to-site differences in the average observed daily cycle of CO2 fluxes at agricultural eddy covariance flux sites well. For 13 of 14 site-months, the modeled peak afternoon NEE was within 30% of that observed despite the observed peaks ranging from about -7 to -70 µmol m-2s-1. VPRM can be effectively used in CO2 inversions to represent complex seasonal variations in background conditions observed in Indianapolis. Indianapolis, a modest-size city surrounded by strong ecosystem fluxes, represents a rigorous test for the VPRM system. Further, this study presents an evaluation system that can be applied to assess the performance of other ecosystem CO2 flux models in cities with similar monitoring networks.