loading page

Sensitivity of Australian rainfall to driving SST datasets in a variable-resolution global atmospheric model
  • +1
  • Ying Lung Liu,
  • Lisa Victoria Alexander,
  • Jason Peter Evans,
  • Marcus James Thatcher
Ying Lung Liu
UNSW Australia

Corresponding Author:[email protected]

Author Profile
Lisa Victoria Alexander
University of New South Wales
Author Profile
Jason Peter Evans
University of New South Wales
Author Profile
Marcus James Thatcher
Commonwealth Scientific and Industrial Research Organisation (CSIRO)
Author Profile

Abstract

In this study, we employ the Conformal Cubic Atmospheric Model (CCAM), a variable-resolution global atmospheric model, driven by two distinct sea surface temperature (SST) datasets: the 0.25° Optimum Interpolation Sea Surface Temperature (CCAM_OISST) version 2.1 and the 2° Extended Reconstruction SSTs Version 5 (CCAM_ERSST5). Model performance is assessed using a benchmarking framework, revealing good agreement between both simulations and the climatological rainfall spatial pattern, seasonality, and annual trends obtained from the Australian Gridded Climate Data (AGCD). Notably, wet biases are identified in both simulations, with CCAM_OISST displaying a more pronounced bias. Furthermore, we have examined CCAM’s ability to capture El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) correlations with rainfall during Austral spring (SON) utilizing a novel hit rate metric. Results indicate that only CCAM_OISST successfully replicates observed SON ENSO- and IOD-rainfall correlations, achieving hit rates of 86.6% and 87.5%, respectively, compared to 52.7% and 41.8% for CCAM_ERSST5. Large SST differences are found surrounding the Australian coastline between OISST and ERSST5 (termed the “Coastal Effect”). Differences can be induced by the spatial interpolation error due to the discrepancy between model and driving SST. An additional CCAM experiment, employing OISST with SST masked by ERSST5 in 5° proximity to the Australian continent, underscores the “Coastal Effect” has a significant impact on IOD-Australian rainfall simulations. In contrast, its influence on ENSO-Australian rainfall is limited. Therefore, simulations of IOD-Australian rainfall teleconnection are sensitive to local SST representation along coastlines, probably dependent on the spatial resolution of driving SST.
20 Feb 2024Submitted to ESS Open Archive
28 Feb 2024Published in ESS Open Archive