Suppression of nitrogen deposition on global forest soil CH4 uptake
depends on nitrogen status
Abstract
Methane (CH4) is the second most important atmospheric greenhouse gas
(GHG) and forest soils are a significant sink for atmospheric CH4.
Uptake of CH4 by global forest soils is affected by nitrogen (N)
deposition; clarifying the effect of N deposition helps to reduce
uncertainties of the global CH4 budget. However, it remains an unsolved
puzzle why N input stimulates soil CH4 flux (RCH4) in some forests while
suppressing it in others. Combining previous findings and data from N
addition experiments conducted in global forests, we proposed and tested
a “stimulating-suppressing-weakening effect” (“three stages”)
hypothesis on the changing responses of RCH4 to N input. Specifically,
we calculated the response factors (f) of RCH4 to N input for N-limited
and N-saturated forests across biomes; the significant changes in f
values supported our hypothesis. We also estimated the global forest
soil CH4 uptake budget to be approximately 11.2 Tg yr–1. CH4 uptake
hotspots were located predominantly in temperate forests. Furthermore,
we quantified that current level of N deposition reduced global forest
soil CH4 uptake by ~3%. This suppression effect was
more pronounced in temperate forests than in tropical or boreal forests,
likely due to differences in N status. The proposed “three stages”
hypothesis in this study generalizes the diverse effects of N input on
RCH4, which could help improve experimental design. Additionally, our
findings imply that by regulating N pollution and reducing N deposition,
soil CH4 uptake can be significantly increased in the N-saturated
forests in tropical and temperate biomes.