Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Zhixiao Zhang

and 9 more

To address the effect of stratiform latent heating on meso- to large scale circulations, an enhanced implementation of the Multiscale Coherent Structure Parameterization (MCSP) is developed for the Met Office Unified Model. MCSP represents the top-heavy stratiform latent heating from under-resolved organized convection in general circulation models. We couple the MCSP with a mass-flux convection scheme (CoMorph-A) to improve storm lifecycle continuity. The improved MCSP trigger is specifically designed for mixed-phase deep convective cloud, combined with a background vertical wind shear, both known to be crucial for stratiform development. We also test a cloud top temperature dependent convective-stratiform heating partitioning, in contrast to the earlier fixed partitioning. Assessments from ensemble weather forecasts and decadal simulations demonstrate that MCSP directly reduces cloud deepening and precipitation areas by moderating mesoscale circulations. Indirectly, it amends tropical precipitation biases, notably correcting dry and wet biases over India and the Indian Ocean, respectively. Remarkably, the scheme outperforms a climate model ensemble by improving seasonal precipitation cycle predictions in these regions. This enhancement is partly due to the scheme’s refinement of Madden-Julian Oscillation (MJO) spectra, achieving better alignment with reanalysis data by intensifying MJO events and maintaining their eastward propagation after passing the Maritime Continent. However, the scheme also increases precipitation overestimation over the Western Pacific. Shifting from fixed to temperature-dependent convective-stratiform partitioning reduces the Pacific precipitation overestimation but also lessens the improvements of seasonal cycle in India. Spatially correlated biases highlight the necessity for advancements beyond deterministic approaches to align MCSP with environmental conditions.