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Introduction  

This supporting information provides supplemental Texts S1 and S2 describing 

the visco-elasto-plastic rheology of rocks and the partial melting model included in our 

thermomechanical model, respectively. Text S3 presents the details regarding the 

selection of parameters 𝛼𝑃 and 𝛽𝑃 in the orographic precipitation model (Equation (9) in 

the main text). Supplemental Figure S1 shows the testing results of the sensitivity of 

predicted precipitation to the parameters 𝛼𝑃 and 𝛽𝑃 based on the orographic 

precipitation model. Supplemental Table S1 presents the material properties used in the 

numerical experiments. Tables S2 to S4 are numerical experiment summaries in this 

study. 
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Text S1. Visco-elasto-plastic rheology 

The deformation behavior of rocks in this study is considered visco-elasto-plastic, and 

the bulk deviatoric strain rate 𝜀𝑖̇𝑗
′  can be decomposed into three respective components:  

𝜀𝑖̇𝑗
′ = 𝜀𝑖̇𝑗(𝑣𝑖𝑠𝑐𝑜𝑢𝑠)

′ + 𝜀𝑖̇𝑗(𝑒𝑙𝑎𝑠𝑡𝑖𝑐)
′ + 𝜀𝑖̇𝑗(𝑝𝑙𝑎𝑠𝑡𝑖𝑐)

′     (1) 

while 

𝜀𝑖̇𝑗(𝑣𝑖𝑠𝑐𝑜𝑢𝑠)
′ =

1

2𝜂𝑐𝑟
𝜎𝑖𝑗

′     (2) 

𝜀𝑖̇𝑗(𝑒𝑙𝑎𝑠𝑡𝑖𝑐)
′ =

1

2𝜇

𝐷̂𝜎𝑖𝑗
′

𝐷𝑡
    (3) 

𝜀𝑖̇𝑗(𝑝𝑙𝑎𝑠𝑡𝑖𝑐)
′ = 0 𝑓𝑜𝑟 𝜎Ⅱ < 𝜎𝑦𝑖𝑒𝑙𝑑     (4)     

𝜀𝑖̇𝑗(𝑝𝑙𝑎𝑠𝑡𝑖𝑐)
′ = 𝜒

𝜕𝐺𝑝𝑙𝑎𝑠𝑡𝑖𝑐

𝜕𝜎𝑖𝑗
′ = 𝜒

𝜎𝑖𝑗
′

2𝜎Ⅱ
 𝑓𝑜𝑟 𝜎Ⅱ = 𝜎𝑦𝑖𝑒𝑙𝑑     (5) 

where 𝜇 is the shear modulus, 
𝐷̂𝜎𝑖𝑗

′

𝐷𝑡
 is the objective co-rotational time derivative of the 

deviatoric stress component 𝜎𝑖𝑗
′ , 𝐺𝑝𝑙𝑎𝑠𝑡𝑖𝑐 is the plastic flow potential, 𝜎𝑦𝑖𝑒𝑙𝑑 is the plastic 

yield strength for a given rock, 𝜎Ⅱ = √
1

2
𝜎𝑖𝑗

′ 2
 is the second invariant of the deviatoric 

stress tensor, 𝜒 is the plastic multiplier, 𝜂𝑐𝑟 is the viscosity for viscous creep of rocks 

(ductile flow), and it depends on temperature, pressure and strain rate(Ranalli, 1995): 

𝜂𝑐𝑟 =
𝜀Ⅱ̇

(1−𝑛) 𝑛⁄

𝐴𝐷
1 𝑛⁄

𝑒
𝐸𝑎+𝑃𝑉𝑎

𝑛𝑅𝑇     (6) 

where 𝜀Ⅱ̇ = √
1

2
𝜀𝑖̇𝑗

2 is the second invariant of the strain rate tensor, 𝐴𝐷, 𝑛, 𝐸𝑎 and  𝑉𝑎 are 

experimentally determined flow law parameters, which represent material constant, 

stress exponent, activation energy and activation volume, respectively. 𝑅 is the gas 

constant. 

The plasticity is implemented using the following yield criterion (Gerya, 2019): 

𝜎𝑦𝑖𝑒𝑙𝑑 = 𝜎𝑐 + 𝛾𝑖𝑛𝑡𝑃    (7) 

It is assumed that the local plastic strength of rocks depends on the dynamic 

pressure (𝑃). 𝜎𝑐 is the compressive strength, and its relationship with the material 

cohesion( 𝑐) is given by 𝜎𝑐 = 𝑐 cos(𝜑). Here 𝜑 is the angle of internal friction. 𝛾𝑖𝑛𝑡 =

sin(𝜑) is the internal friction coefficient.  

 

 Text S2. Partial melting 

The thermomechanical model accounts for partial melting of the various 

lithologies by using experimentally obtained P-T dependent wet solidus and dry liquidus 

curves. In this simple partial melting model, the volumetric fraction of melt  𝑀 at a 

certain pressure is assumed to increase linearly with temperature according to the 

relations (Burg & Gerya, 2005; Gerya & Yuen, 2003): 

𝑀 = 0 𝑎𝑡 𝑇 ≤ 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 

𝑀 =
(𝑇 − 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠)

(𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 − 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠)
 𝑎𝑡 𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 < 𝑇 < 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠    (8) 

𝑀 = 1 𝑎𝑡 𝑇 ≥ 𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 



 

 

3 

 

where 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 and 𝑇𝑙𝑖𝑞𝑢𝑖𝑑𝑢𝑠 are the wet solidus and dry liquidus temperatures of the 

considered rock, respectively. For the rocks with partial melt fraction 𝑀 greater than 0.1, 

their effective viscosity 𝜂𝑒 is calculated according to the following formula (Bittner & 

Schmeling, 1995; Pinkerton & Stevenson, 1992): 

𝜂𝑒 = 𝜂0𝑒𝑥𝑝 [2.5 + (1 − 𝑀) (
1 − 𝑀

𝑀
)

0.48

]    (9) 

here  𝜂0 is an empirical parameter depending on rock types. For partially molten mafic 

rocks, it can be set to 1013 𝑃𝑎 𝑠 (i.e.,1 × 1014 ≤ 𝜂𝑒 ≤ 2 × 1015 𝑃𝑎 𝑠 𝑓𝑜𝑟 0.1 ≤ 𝑀 ≤ 1), and 

for felsic rocks, 𝜂0 = 5 × 1014 𝑃𝑎 𝑠(i.e.,6 × 1015 ≤ 𝜂𝑒 ≤ 8 × 1016 𝑃𝑎 𝑠 𝑓𝑜𝑟 0.1 ≤ 𝑀 ≤ 1) can 

be adopted (Bittner & Schmeling, 1995). 

For the partially molten rocks, their effective density (𝜌𝑒) is then calculated from: 

𝜌𝑒 = 𝜌𝑠𝑜𝑙𝑖𝑑 (1 − 𝑀 + 𝑀
𝜌0(𝑚𝑜𝑙𝑡𝑒𝑛)

𝜌0(𝑠𝑜𝑙𝑖𝑑)
)    (10) 

where 𝜌0(𝑠𝑜𝑙𝑖𝑑) and 𝜌0(𝑚𝑜𝑙𝑡𝑒𝑛) are the standard densities of solid and molten rock, 

respectively.  𝜌𝑠𝑜𝑙𝑖𝑑 is the density of solid rocks at given pressure (𝑃) and temperature (𝑇), 

and it’s computed as: 

𝜌𝑠𝑜𝑙𝑖𝑑 = 𝜌𝑟[1 + 𝛽(𝑃 − 𝑃𝑟)] × [1 − 𝛼(𝑇 − 𝑇𝑟)]    (11) 

where  𝛼 is thermal expansion, 𝛽 is compressibility, 𝜌𝑟 is the density of a specific material 

at reference pressure 𝑃𝑟 (typically 105 𝑃𝑎) and temperature 𝑇𝑟 (273 K). 

The effect of latent heating due to equilibrium melting/crystallization are accounted 

for by increasing the effective heat capacity(𝐶𝑃(𝑒𝑓𝑓)) and the thermal expansion(𝛼𝑒𝑓𝑓) of 

partially melting/crystallization rocks(0 < 𝑀 < 1), calculated as (Burg & Gerya, 2005): 

𝐶𝑃(𝑒𝑓𝑓) = 𝐶𝑝 + 𝑄𝐿 (
𝜕𝑀

𝜕𝑇
)

𝑃=𝑐𝑜𝑛𝑠𝑡
    (12) 

𝛼𝑒𝑓𝑓 = 𝛼 + 𝜌
𝑄𝐿

𝑇
(

𝜕𝑀

𝜕𝑃
)

𝑇=𝑐𝑜𝑛𝑠𝑡
    (13) 

where 𝐶𝑝 is the heat capacity of the solid rock and 𝑄𝐿 is the latent heat of melting of the 

rock. 

 

Text S3. The selection of parameters  𝜶𝑷 and 𝜷𝑷 

To gain better insight into and select reasonable values for the parameters 𝛼𝑃 and 

𝛽𝑃, we firstly tested the sensitivity of predicted precipitation to the parameters 𝛼𝑃 and 𝛽𝑃 

based on Equation (9) in the main text (Figure S1). From the testing results, it can be 

observed that this model (Equation (9) in the main text) is capable to capture the primary 

characteristics of the pattern of orographic precipitation, especially the local precipitation 

enhancement on the windward side and the rain shadow on the leeward side. However, 

it tends to overestimate the precipitation in the inland areas on the right side (leeward 

side) of the mountain ranges. This is largely due to the fact that in this model, the 

distinction between the windward and leeward sides is determined solely by the sign of 

the topographic slope. However, for most cases of simulating convergent plate boundary 

settings, the areas on both sides of the convergence center are usually vast plains where 

the erosional potential approaches zero. Therefore, the impact on erosion patterns due 

to this deficiency could not be significant. For a specific terrain topography, when 
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keeping 𝛽𝑃 fixed and gradually increasing 𝛼𝑃, the overall predicted precipitation 

increases, but the spatial pattern of precipitation remains relatively stable (Figure S1a). 

When keeping 𝛼𝑃 fixed and gradually increasing 𝛽𝑃, the model predicts an enhanced 

localization of precipitation on the windward side, but the average precipitation intensity 

over a large area remains relatively stable (Figure S1b). However, regardless of the values 

of 𝛼𝑃 and 𝛽𝑃, the location with the maximum precipitation on the windward side remains 

unchanged. Therefore, the parameter 𝛽𝑃 reflects the sensitivity of precipitation to 

changes in elevation and slope, while 𝛼𝑃 is related to the average precipitation on a large 

scale. If we assume that the average precipitation over the low-lying plains in front of the 

mountain ranges (with near-zero elevation and slope) is 𝑃0 , which can also represent the 

average precipitation on a large scale (or over the entire model domain), then 

𝛼𝑃 =
𝑃0

𝑒𝑠𝑎𝑡(𝑇0)
    (14) 

where 𝑒𝑠𝑎𝑡(𝑇0) is the saturation vapor pressure at sea level. Thus, Equation (9) in the 

main text can be rewritten as 

𝑃 = (
𝑃0

𝑒𝑠𝑎𝑡(𝑇0)
+ 𝛽𝑃𝑆) 𝑒𝑠𝑎𝑡(𝑇)   (15) 

In the eastern Himalayan syntaxis, Anders et al. (2006) obtained the values of 𝛼𝑃 and 

𝛽𝑃 through regression analysis, which are approximately 0.014 and 0.216, respectively. 

These set of   values produced prediction that successfully captures the main 

characteristics of the current precipitation in the eastern Himalayan syntaxis, but failed to 

predict the maximum precipitation totals (the predicted value 𝑃max _𝑝𝑟𝑒𝑑 = 3.5 𝑚/𝑦𝑟, and 

the actual value 𝑃max _𝑎𝑐𝑡𝑢 = 6 𝑚/𝑦𝑟). To address this limitation, let's assume that the 

pattern of precipitation in the eastern Himalayan syntaxis strictly follows the model 

described in Equation (9) in the main text. We also assume the existence of true 𝛼𝑃 and 

𝛽𝑃 in the syntaxis. The parameter values estimated by Anders et al. (2006) are denoted as 

𝛼𝑃
′ and 𝛽𝑃

′. Furthermore, let's consider that at the location where the maximum 

precipitation happens, the elevation, the topographic slope and the corresponding 

saturation vapor pressure are ℎ1, 𝑆1, and 𝑒𝑠𝑎𝑡(ℎ1), respectively, then 

𝑃max _𝑎𝑐𝑡𝑢 = 𝛼𝑃𝑒𝑠𝑎𝑡(ℎ1) + 𝛽𝑃𝑆1𝑒𝑠𝑎𝑡(ℎ1)    (16) 

Based on the above discussion, for a specific topography, the location with 

maximum precipitation remains relatively stable. Therefore, we have 

𝑃max _𝑝𝑟𝑒𝑑 = 𝛼𝑃
′𝑒𝑠𝑎𝑡(ℎ1) + 𝛽𝑃

′𝑆1𝑒𝑠𝑎𝑡(ℎ1)    (17) 

Assuming 𝑘0 = 𝑃max _𝑎𝑐𝑡𝑢/𝑃max _𝑝𝑟𝑒𝑑, by combining equations (16) and (17), we 

obtain 𝛼𝑃 = 𝑘0𝛼𝑃
′ = 0.024 and 𝛽𝑃 = 𝑘0𝛽𝑃

′ = 0.370. Here, 𝛼𝑃 = 0.024 corresponds to 

precipitation of 1.019 m/yr in the low-lying plain in front of the mountain range (𝑃0). This 

predicted value is closer to the actual value in the eastern Himalayan syntaxis region 

compared to the estimated value of 0.594 m/yr using 𝛼𝑃 = 0.014 (Anders et al., 2006; 

Bookhagen & Burbank, 2006), indicating that such a correction is reasonable. 

 In this study, 𝛼𝑃 is calculated based on various given average precipitation 𝑃0 and 

Equation (14), while 𝛽𝑃 is set to 0.370. The variation in the average precipitation intensity 

across the entire mountain range is achieved by adjusting the value of 𝑃0. 
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Figure S1. Sensitivity of predicted precipitation to the parameters 𝛼𝑃 and 𝛽𝑃 based on 

Equation (9) in the main text. (a) shows the predicted precipitation with fixed 𝛽𝑃 and 

varying 𝛼𝑃, while (b) shows the predicted precipitation with fixed 𝛼𝑃 and varying 𝛽𝑃. The 

solid black line represents the topography of an assumed mountain range, while the 

dashed green, blue, and red lines represent the predicted precipitation based on the 

topography and the orographic precipitation model as described in Equation (9) in the 

main text. It’s assumed that the moisture-laden winds arrive from the left in both (a) and 

(b).  

 

Table S1. Material properties used in the numerical experiments.  

Properties Sediments Normal rock 

sequence 

Decollement layer Backstop 

Flow law Wet quartzite Wet quartzite Wet quartzite quartzite 

AD(MPa-n s-1) 3.2×10-4 3.2×10-4 3.2×10-4 6.7×10-6 

n 2.3 2.3 2.3 2.4 

Ea(kJ mol-1) 154 154 154 156 

Va(cm3) 0 0 0 0 

ρ0（solid）(kg m-3) 2700 2700 2700 2700 

ρ0（molten）(kg m-3) 2400 2400 2400 2400 

σc(Pa) 1×107-6 1×107-6 1×105-4 1×107-6 

γint 0.20-0.10 0.30-0.15 0.10-0.05 0.40-0.20 

μ(GPa) 10 10 10 10 

k(W m-1K-1, at 

TK) 

0.64+807/(T+77) 0.64+807/(T+77) 0.64+807/(T+77) 0.64+807/(T+77) 
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Tsolidus(K, at PMPa) 889+17900/(P+54

)+ 

20200/(P+54)2 at 

P<1200 MPa, 

831+0.06P at 

P>1200 MPa 

889+17900/(P+54

)+ 

20200/(P+54)2 at 

P<1200 MPa, 

831+0.06P at 

P>1200 MPa 

889+17900/(P+54

)+ 

20200/(P+54)2 at 

P<1200 MPa, 

831+0.06P at 

P>1200 MPa 

889+17900/(P+54

)+ 

20200/(P+54)2 at 

P<1200 MPa, 

831+0.06P at 

P>1200 MPa 

Tliquidus(K, at PMPa) 1262+0.09P 1262+0.09P 1262+0.09P 1262+0.09P 

QL(kJ kg-1) 300 300 300 300 

Hr(μWm-3) 2.0 2.0 2.0 2.0 

Cp(J kg-1K-1) 1000 1000 1000 1000 

α(K-1) 3×10-5 3×10-5 3×10-5 3×10-5 

β(Pa-1) 1×10-11 1×10-11 1×10-11 1×10-11 

Note. 𝐴𝐷, 𝑛, 𝐸𝑎 and  𝑉𝑎 are the flow law parameters, corresponding to material constant, 

stress exponent, activation energy, and activation volume, respectively (Ranalli, 1995). ρ0

（solid）and ρ0（molten） are the standard densities of solid and molten rock, respectively. 

Strain weakening is applied within a plastic strain interval of 0–1, at which the 

compressive strength(σc) and internal friction coefficient(γint) decrease gradually. QL and 

Hr are the latent and radioactive heat production, respectively, μ is the shear modulus 

(Bittner & Schmeling, 1995; Turcotte & Schubert, 2014), k is thermal conductivity (Clauser 

& Huenges, 1995), Tsolidus and Tliquidus are the wet solidus and dry liquidus temperatures of 

the considered rock, respectively (Schmidt & Poli, 1998), Cp is isobaric heat capacity, α is 

thermal expansion, β is compressibility. 

 

Table S2. Numerical experiment summary with an initial geothermal gradient of 30 ℃

/km.  

Convergence rate 

 (cm/yr) 

Average precipitation 

(m/yr) 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

0 S001 S002 S003 S004 S005 S006 S007 S008 S009 S010 

2 S011 S012 S013 S014 S015 S016 S017 S018 S019 S020 

4 S021 S022 S023 S024 S025 S026 S027 S028 S029 S030 

6 S031 S032 S033 S034 S035 S036 S037 S038 S039 S040 

8 S041 S042 S043 S044 S045 S046 S047 S048 S049 S050 

10 S051 S052 S053 S054 S055 S056 S057 S058 S059 S060 

12 S061 S062 S063 S064 S065 S066 S067 S068 S069 S070 

14 S071 S072 S073 S074 S075 S076 S077 S078 S079 S080 

16 S081 S082 S083 S084 S085 S086 S087 S088 S089 S090 

18 S091 S092 S093 S094 S095 S096 S097 S098 S099 S100 

20 S101 S102 S103 S104 S105 S106 S107 S108 S109 S110 
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Table S3. Numerical experiment summary with an initial geothermal gradient of 25 ℃

/km.  

Convergence rate  

(cm/yr) 

Average precipitation 

(m/yr) 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

0 S111 S112 S113 S114 S115 S116 S117 S118 S119 S120 

2 S121 S122 S123 S124 S125 S126 S127 S128 S129 S130 

4 S131 S132 S133 S134 S135 S136 S137 S138 S139 S140 

6 S141 S142 S143 S144 S145 S146 S147 S148 S149 S150 

8 S151 S152 S153 S154 S155 S156 S157 S158 S159 S160 

10 S161 S162 S163 S164 S165 S166 S167 S168 S169 S170 

12 S171 S172 S173 S174 S175 S176 S177 S178 S179 S180 

14 S181 S182 S183 S184 S185 S186 S187 S188 S189 S190 

16 S191 S192 S193 S194 S195 S196 S197 S198 S199 S200 

18 S201 S202 S203 S204 S205 S206 S207 S208 S209 S210 

20 S211 S212 S213 S214 S215 S216 S217 S218 S219 S220 

 

Table S4. Additional numerical experiments with a convergence rate of 2 cm/yr. 

Initial geothermal 

gradient(℃/km) 

Average precipitation 

(m/yr) 

10 15 20 35 40 45 

2 ST01 ST02 ST03 ST04 ST05 ST06 

6 ST07 ST08 ST09 ST10 ST11 ST12 
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