Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.
You need to sign in or sign up before continuing. dismiss

Robert Ehlert

and 4 more

Across diverse biomes and climate types, plants use water stored in bedrock to sustain transpiration. Bedrock water storage ($S_{bedrock}$, mm), in addition to soil moisture, thus plays an important role in water cycling and should be accounted for in the context of surface energy balances and streamflow generation. Yet, the extent to which bedrock water storage impacts hydrologic partitioning and influences latent heat fluxes has yet to be quantified at large scales. This is particularly important in Mediterranean climates, where the majority of precipitation is offset from energy delivery and plants must rely on water retained from the wet season to support summer growth. Here we present a simple water balance approach and random forest model to quantify the role of $S_{bedrock}$ on controlling hydrologic partitioning and land surface energy budgets. Specifically, we track evapotranspiration in excess of precipitation and mapped soil water storage capacity ($S_{soil}$, mm) across the western US in the context of Budyko’s water partitioning framework. Our findings indicate that $S_{bedrock}$ is necessary to sustain plant growth in forests in the Sierra Nevada — some of the most productive forests on Earth — as early as April every year, which is counter to the current conventional thought that bedrock is exclusively used late in the dry season under extremely dry conditions. We show that the average latent heat flux used in evapotranspiration of $S_{bedrock}$ can exceed 100 $W/m^{2}$ during the dry season and the proportion of water that returns to the atmosphere would decrease dramatically without access to $S_{bedrock}$.

Alexandre H. Nott

and 2 more

Extreme weather events are reshaping hydrological cycles across the globe, yet our understanding of the groundwater response to these extremes remains limited. Here we analyze groundwater levels across the South Coast of British Columbia (BC) in the Pacific Northwest with the objective of determining groundwater responses to atmospheric rivers (ARs) and drought. An AR catalogue was derived and associated to local rainfall defining extreme precipitation. Droughts were quantified using dry day metrics, in conjunction with the standardized precipitation index (SPI). From September to January, approximately 40% of total precipitation is contributed by ARs. From April to September, more than 50% of days receive no precipitation, with typically 26 consecutive dry days. We used the autocorrelation structure of groundwater levels to quantify aquifer memory characteristics and identified two distinct clusters. Cluster 1 wells respond to recharge from local precipitation, primarily rainfall, and respond rapidly to both ARs during winter recharge and significant rainfall deficits during summer. Cluster 2 wells are also driven by local precipitation, and are additionally influenced by the Fraser River’s large summer freshet, briefly providing a secondary recharge mechanism to South Coast aquifers. Accordingly, groundwater recessions are offset to later in the summer, contingent on the Fraser River, mediating drought. The results suggest that groundwater memory encapsulates multiple hydrogeological factors, including boundary conditions, influencing the response outcome to extreme events.