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Abstract13

A convolutional neural network was used to detect occurrences of pockets of open cells14

(POCs). Trained on a small hand-logged dataset and applied to 13 years of satellite im-15

agery the neural network is able to classify 8,491 POCs. This extensive database allows16

the first robust analysis of the spatial and temporal prevalence of these phenomena, as17

well as a detailed analysis of their micro-physical properties. We find a large (30%) in-18

crease in cloud effective radius inside POCs as compared to their surroundings and sim-19

ilarly large (20%) decrease in cloud fraction. This also allows their global radiative ef-20

fect to be determined. Using simple radiative approximations we find that the instan-21

taneous global mean top-of-atmosphere perturbation by all POCs is only 0.02 W/m2.22

Plain Language Summary23

The amount of sunlight that reaches, and warms, the surface of the earth is heav-24

ily influenced by clouds, in particular marine stratocumulus clouds, a type of low-lying25

cloud that forms above cold-upwelling regions of the ocean. Marine stratocumulus clouds26

form in two distinct regimes; open-cells and closed-cells. Closed-cell clouds have a higher27

cloud cover and reflectivity than open-cell clouds. Small pockets of open cell clouds some-28

times form within larger regions of closed-cell clouds, these are referred to as ’pockets29

of open cells’. Here we use machine learning to detect occurrences of this phenomenon30

and characterise them in a long-term satellite dataset. This allows their effect on the cli-31

mate to be determined for the first time. Despite substantial local-scale changes in cloud32

properties we find that their effect on the climate is small.33

1 Introduction34

Stratocumulus clouds play a vital role in the global energy balance (Randall et al.,35

1984) and can exist in two distinct regimes: open cells and closed cells (Agee et al., 1973),36

which can be considered two states of a coupled oscillator (Koren & Feingold, 2011). First37

coined in 2004 (Bretherton et al., 2004), POCs are small regions of open cell clouds em-38

bedded in a uniform surrounding deck of closed cell clouds. Despite the importance of39

the marine stratocumulus decks on the global climate (Randall et al., 1984; Stevens et40

al., 2005; Hansen et al., 2013), studying POCs poses several difficulties due to their com-41

plex and ill defined nature. POCs also cannot be resolved by the general circulation mod-42

els (GCMs) used to model the global climate due to their relatively small spatial scale (Berner,43

Bretherton, Wood, & Mulbauer, 2013). The global radiative impact of POCs and hence44

that of their absence in GCMs is currently unknown.45

Closed cells have a markedly higher albedo than open cells due to their increased46

cloud fraction (Rosenfeld et al., 2006). Factors affecting the open/closed transition could47

have a dramatic effect on the total contribution of these clouds to the planetary albedo.48

For example, it has been proposed that anthropogenic aerosol could have a large effect49

on the number of POCs, and in turn lead to a large top-of-atmosphere radiative pertur-50

bation (Rosenfeld et al., 2006).51

Since their discovery, many studies have investigated the properties of selected POCs.52

It has been observed that POCs are coherent and long-lived, lasting tens of hours (Stevens53

et al., 2005; Berner, Bretherton, Wood, & Mulbauer, 2013; Wang & Feingold, 2009), and54

typically consisting of fewer, larger cloud droplets than the surrounding cloud (Stevens55

et al., 2005; Wood et al., 2011; Terai et al., 2014). They locally have a reduction in cloud56

optical depth, and a stronger tendency to precipitate compared to the surrounding cloud (Stevens57

et al., 2005; Berner, Bretherton, Wood, & Mulbauer, 2013). The surrounding cloud out-58

side of a POC is moister than in uniform closed cells (Stevens et al., 2005), there is a re-59

duced rate of entrainment drying, and more efficient coalescence scavenging in POCs than60

in the surrounding cloud (Stevens et al., 2005; Berner, Bretherton, Wood, & Mulbauer,61
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2013; Wood et al., 2011; Terai et al., 2014). Modelling studies have shown the forma-62

tion of POCs is likely driven by a sharp increase in collision-coalescence as Liquid Wa-63

ter Path (LWP) increases and cloud droplet number decreases (Berner, Bretherton, Wood,64

& Muhlbauer, 2013), and is maintained through the enhanced nucleation caused by the65

very efficient wet removal of aerosol just below the inversion (Kazil et al., 2011).66

While painting a consistent picture, each of the observational studies described above67

include very few POC cases (at most five), and often used data that was not collected68

specifically for the analysis of POCs. Although one recent analysis presented a large hand-69

annotated collection of open-cellular cloud cover over the south east Atlantic (Abel et70

al., 2019), no global analysis of POCs has been performed. Here we use a machine learn-71

ing technique to automatically detect POCs from satellite images and build up a database72

of almost 8500 POCs, shedding light for the first time on their spatial and temporal dis-73

tributions. Using this database we are also able to make robust estimates of the aver-74

age micro- and macro-physical properties of these phenomena in each of the three main75

stratocumulus regions of the globe.76

We will outline the data used and the machine learning methods applied to the prob-77

lem in Sec. 2; describe the spatial and temporal distributions of the POCs and their av-78

erage physical properties in Sec. 3; before concluding in Sec. 4 with a discussion of the79

implications for these results and an indication of some of the many other possible uses80

for the database.81

2 Method82

For the POC detection process we use true-color RGB composites generated us-83

ing SatPy (Raspaud et al., 2018) from the Moderate Resolution Imaging Spectrometer84

(MODIS) on board the NASA Terra (MODIS Science Team, 2015) satellite. The Level85

1B data sets were used which provide calibrated and geolocated radiances for all 36 MODIS86

spectral bands at 1km resolution. Due to the relatively large size of POCs and to speed87

up training and detection the images were linearly resampled from 1350x2030 pixels and88

split in two, producing 224x224 pixel images.89

In order to train the machine-learning model it is necessary to create a dataset of90

satellite images and hand-logged POC masks. However, determining whether a partic-91

ular pattern in a cloud deck is truly a POC or not can be ambiguous as no clear defi-92

nition currently exists. In order to ensure that the labelling of the POCs was consistent,93

a set of rules were devised. These rules were designed to balance the number of falsely94

identified POCs and the number of missed POCs. The finalised rules are as follows:95

1. The structure of the POC and surrounding cloud must be correct: POCs must be96

open cell cloud, which looks ‘stringy’, and the surrounding cloud must be closed97

cell cloud, which looks ‘bubbly’. It is often hard to distinguish between a thin layer98

of closed cell clouds, where the ‘bubbles’ become separated and open cell clouds,99

but identifying it as one of these two descriptive words helps to decide which it100

is.101

2. At least 80% of the perimeter of the POC must be continuous closed cell cloud.102

This is still likely a POC, since it has formed mostly embedded, and not requir-103

ing a POC to be completely embedded significantly increases the amount of data104

with which to train the model.105

3. POCs can be at the edge of an image. While there is no way of knowing what the106

cloud deck looks like beyond the bounds of the image, it is beneficial for the neu-107

ral net to count these as POCs, since they share the same structure and proper-108

ties as POCs elsewhere, allowing it to learn better.109
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4. The boundary must be ‘reasonably sharp’ on all edges. A sharp transition from110

open to closed cell clouds is characteristic of a POC, and so if this transition was111

too gradual the POC was ignored.112

Applying these labelling rules to a selection of 1029 images resulted in a dataset113

of 216 images containing 715 POCs, and 813 images that are known to contain no POCs1.114

The model itself uses a modified ResNet-152 (He et al., 2015) with the dense lay-115

ers replaced by three up-sampling blocks based on the second half of the ResUnet model (Zhang116

et al., 2017). The ResNet-152 portion of the model is pre-trained on ImageNet (Deng117

et al., 2009). The upsampling blocks are trained using a DICE loss function and Adam118

optimizer, with a learning rate that decayed by factors of 0.2 when the validation loss119

plateaued for 3 epochs. The final masks are refined using a second, reduced ResUnet,120

model that was trained in the same way as the ResNet-152 model. These models were121

both implemented in Keras (Chollet et al., 2015), using the TensorFlow engine (Abadi122

et al., 2015) and are freely available as described in the Acknowledgements.123

To gauge the performance of the model in terms of true positives (TP) and neg-124

atives (TN), and false positives (FP) and negatives (FN), a balanced accuracy score is125

used (L. Olson & Delen, 2008):126

bACC =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
. (1)127

These scores were initially calculated on a pixel-by-pixel basis, however the training set128

of POCs was constructed using masks that had straight edges, while the model can track129

the edge of a POC with much greater accuracy. This meant that the model was unfairly130

penalised since the exact shape of the POC did not match up, resulting in greater num-131

bers of false negatives and positives. To combat this, the metrics were calculated using132

whether or not the image contained a POC, since if it did it is likely that the POC was133

placed correctly due to its distinctive nature. The balanced accuracy score of the model134

on the test set of 100 images was 0.863. Therefor any POC identified by the model has135

an 86% chance of being a correct identification, meaning the vast majority of POCs in136

the dataset created by the model are true positives. In other iterations of the model, it137

was possible to get a much higher recall (TP/(TP+FN)), however only to the detriment138

of the precision (TP/(TP+FP)). We choose to prefer ensuring more of the POCs found139

are true positives rather than detecting as many as possible and introducing false pos-140

itives.141

It should also be noted that, even with the rules enumerated above, labelling POCs142

could often be quite an ambiguous task, and visual inspection confirmed that the net-143

work performed very well. While the masks deviated from the human labels in some places,144

those differences were entirely reasonable and in some cases more accurate than the hu-145

man labelling, as can be seen in Fig. 1.146

By applying the inferred POC masks to the retrieved MODIS (MOD06 L2) cloud147

properties (Platnick et al., 2015) we are able to build statistics about the POCs and their148

surrounding environment. Due to their very irregular shapes and sizes it is not possi-149

ble to create an average, or composite POC. Instead, using OpenCV (Bradski, 2000) to150

extract regions of fixed distance from the edge of each POC we can plot the average prop-151

erties as a function of distance from the edges of all of the detected POCs.152

1 This resource is being made publicly available - see the Acknowledgments for details.
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(a) (b) (c)

Figure 1. From left to right: (a) An example rescaled input image of a POC, (b) the hand

logged test mask, and (c) the inferred mask from the machine learning model (which did not see

this POC during training).

3 Results and discussion153

The model was run on all MODIS images which intersected the three main marine154

stratocumulus regions in the north-east Pacific (off the coast of California), south-east155

Pacific (off the coast of Peru) and south-east Atlantic (off the coast of Namibia), as de-156

fined by Klein and Hartmann (1993), between 2005 to 2018. From the 51,164 images in-157

spected 8,491 POCs were detected, in 4,729 of the images.158

Figure 2. Temporal distribution of POC occurrences detected in MODIS true-color imagery

by our algorithm for the three regions studied, normalised by the number of images used and the

average stratocumulus cloud amount in that region.

Figure 2 shows the temporal distributions of POC occurrence. These have been nor-159

malised using the number of images used and the average stratocumulus cloud amount160

taken from ISCCP data (Young et al., 2018) in order to remove the strong seasonal cy-161

cle in the quantity of stratocumulus cloud. One of the most striking features is the mag-162

nitude of Peruvian distribution which shows more than three times the number of POCs163

compared to the other regions. All regions show a well defined peak around local win-164

tertime, coinciding with the maximum stratocumulus amount. The Californian stratocu-165

mulus deck, however, also shows a second peak during June to August, the local sum-166

mertime.167
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Figure 3. The percentage density of detected POCs in the three regions of interest with

the ISCCP climatological stratocumulus amount overlaid. Both datasets represent an average

between 2005 to 2018.

Figure 3 shows the spatial distribution of POCs for the three regions with the av-168

erage ISCCP stratocumulus amount for the same period overlaid. It is interesting to note169

that in the Californian and Namibian cases there appears to be higher densities of POCs170

further from the coast, slightly offset from the peak Sc densities. This could be a con-171

sequence of the deepening of the boundary layer with increasing sea surface tempera-172

ture away from coast, which favours precipitation and stratocumulus breakup. Off the173

coast of Namibia, the pattern of POC formation is quite distinct, with a clear hotspot174

that lies away from the centre of the climatological stratocumulus distribution. This matches175

the distribution recently demonstrated by Abel et al. (2019), which they attribute to the176

influence of biomass burning aerosol on the open- to closed-cell transition. In the Peru-177

vian case the POC density broadly coincides with the main stratocumulus deck.178

Figure 4 shows the MODIS retrieved mean cloud properties as a function of dis-179

tance from the POC boundary. There are some key features present in these results. Firstly,180

the cloud fraction is lower and varies more within the POC, which is to be expected, since181

cloud fraction is the defining characteristic of a POC. The values obtained here are in182

excellent agreement with detailed in-situ studies Terai et al. (2014) report values of 56-183

83% inside the POC compared to ∼70-80% here. Secondly, the increase in cloud droplet184

effective radius and reduction in cloud optical thickness inside the POCs is also in good185

agreement with previous findings (Stevens et al., 2005). Interestingly, the effective ra-186

dius transitions more slowly than the cloud optical thickness. Since the MODIS retrieved187

LWP is directly proportional to the effective radius multiplied by the optical thickness188

this leads to a dip in the LWP at the edge of the POCs. This could be a tantalising clue189

as to the mechanism for POC formation. However, given the difficulties in retrieving these190

cloud properties in broken cloud scenes and the questionably applicability of adiabicity191

assumed in the retrievals however, we urge caution in their interpretation. The clear de-192

crease in cloud top height within the POCs has not been noted in any previous in-situ193

observations or modelling studies, but may be an artifact due to clear-sky contamina-194

tion in retrieving this property in broken cloud scenes.195

One property we can be more confident in, and for the first time robustly quan-196

tify, is the spatial area of the POCs. The probability distributions shown in Fig. 4f show197

a clear multi-modal, log-normal distribution. The peak in the smaller mode occurs at198

∼ 350km2, while the larger distribution (containing most of the POCs) peaks at ∼ 6750km2.199

It is not clear why POCs should form in these two distinct size regimes.200
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Finally, and perhaps most interestingly, these properties all seem to have no de-201

pendence on region at all, implying that a POC is a universal phenomenon that does not202

depend on its location.203

Combining these derived properties with the density distributions, the effect of POC
formation on the radiative properties of the stratocumulus decks can be estimated. The
albedo of the cloud was calculated using the Eddington approximation (Christensen &
Stephens, 2011; Stephens, 1994), and then combined with the cloud fraction to give the
overall scene albedo of both the regions inside and outside the POCs:

αc =
(1− g) τc

2 + (1− g) τc
, (2)

α = fcαc + (1− fc)αo, (3)

where αc is the albedo of the cloud, τc is the cloud optical depth, g is the asymmetry204

parameter, which for cloud droplets is taken to be ∼0.85, α is the average albedo for the205

region, fc is the cloud fraction, and αo is the albedo of the ocean, which was taken to206

be 0.15 in this case. This leads to an albedo of the interior region of POCs (αPOC) of207

0.37, whereas the exterior region was calculated to be 0.50 (αclosed cell), giving a differ-208

ence of 0.13.209

This difference in albedo can be combined with the average incident solar radia-
tion (R ≈ 350Wm-2), and the appropriate cloud amounts to estimate the difference in
top-of-atmosphere radiation caused by the presence of POCs using:

Rdiff = Rinc × (αno POCs − αwith POCs) , (4)

αno POCs = |fstratαclosed cell| , (5)

αwith POCs = |fstrat (fPOCαPOC +

(1− fPOC)αclosed cell)| ,
(6)

where fstrat is the ISCCP stratocumulus amount, fPOC is the density of POCs and the210

vertical bars represent averages taken over the entire spatial region of available data. This211

leads to an estimate of Rdiff ≈ 0.02Wm−2. This small value reflects the relatively low212

spatial density of POCs and suggests that any change of POC amount via anthropogenic213

activity (c.f. Rosenfeld et al. (2006)) would not have a large effect on the Earth’s radi-214

ation balance. It is possible that the observed POC occurrence is already affected by an-215

thropogenic aerosol, however the similarity in micro-physical properties and rates of oc-216

currence across the different regions would seem to suggest this is unlikely.217

4 Conclusion218

We have created a global database of all POCs present in three of the main stra-219

tocumulus decks over the last 13 years (nearly 8,500) and have analysed their spatial and220

temporal distributions. The properties of the POCs themselves were also studied pro-221

viding significant evidence in support of previous observations of their properties, includ-222

ing a 33% increase in effective radius and a 20% reduction cloud fraction compared to223

the surrounding cloud. The LWP shows a marked reduction at the boundary of the POCs,224

perhaps revealing the effects of precipitation on POC formation, however this retrieval225

is subject to considerable uncertainty in broken scenes. Finally, the properties and cli-226

matology of POCs were combined to obtain an estimated radiative effect of 0.02 W/m2,227

indicating that closing all the POCs in the atmosphere may not have as big an impact228

as previously postulated. These are nevertheless interesting phenomena due to their rel-229

evance for stratocumulus to cumulus transition (with potentially much larger effects) and230

future work tracking POC development and dissipation in geostationary satellite imagery231

should shed light on these mechanisms. The hand-logged training database and auto-232

matically detected POCs are made freely available to the community for further anal-233

ysis.234

–7–



manuscript submitted to Geophysical Research Letters

Acknowledgments235

We gratefully acknowledge the support of Amazon Web Services through an AWS Ma-236

chine Learning Research Award. We also acknowledge the support of NVIDIA Corpo-237

ration with the donation of a Titan Xp GPU used for this research. DWP and PS ac-238

knowledge funding from the Natural Environment Research Council project NE/L01355X/1239

(CLARIFY). PS and MC acknowledge funding from the European Research Council project240

RECAP under the European Union’s Horizon 2020 research and innovation programme241

with grant agreement 724602.242

The model, including the hand-labeled masks and imagery used for training is avail-243

able here: https://github.com/climate-processes/poc-detection. Our pre-generated POC244

database is freely available through the JASMIN data portal.245

References246

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X.247

(2015). TensorFlow: Large-scale machine learning on heterogeneous systems.248

https://www.tensorflow.org/. (Software available from tensorflow.org)249

Abel, S. J., Barrett, P. A., Zuidema, P., Zhang, J., Christensen, M., Peers, F., . . .250

Flynn, M. (2019). Open cells can decrease the mixing of free-tropospheric251

biomass burning aerosol into the south-east atlantic boundary layer. At-252

mospheric Chemistry and Physics Discussions, 2019 , 1–44. Retrieved253

from https://www.atmos-chem-phys-discuss.net/acp-2019-738/ doi:254

10.5194/acp-2019-738255

Agee, E. M., Chen, T. S., & Dowell, K. E. (1973). a review of mesoscale cellular256

convection. Bulletin of the American Meteorological Society , 54 (10), 1004-257

1012. Retrieved from https://doi.org/10.1175/1520-0477(1973)054<1004:258

AROMCC>2.0.CO;2 doi: 10.1175/1520-0477(1973)054〈1004:AROMCC〉2.0.CO;259

2260

Berner, A. H., Bretherton, C. S., Wood, R., & Muhlbauer, A. (2013). Marine261

boundary layer cloud regimes and poc formation in a crm coupled to a bulk262

aerosol scheme. Atmospheric Chemistry and Physics, 13 (24), 12549–12572.263

Retrieved from https://www.atmos-chem-phys.net/13/12549/2013/ doi:264

10.5194/acp-13-12549-2013265

Berner, A. H., Bretherton, C. S., Wood, R., & Mulbauer, A. (2013). Marine266

boundary layer cloud regimes and poc formation in a crm coupled to a bulk267

aerosol scheme. Atmospheric Chemistry and Physics, 13 , 12549-12572.268

Retrieved from https://doi.org/10.5194/acp-13-12549-2013 doi:269

10.5194/acp-13-12549-2013270

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.271

Bretherton, C. S., Uttal, T., Fairall, C. W., Yuter, S. E., Weller, R. A., Baumgard-272

ner, D., . . . Raga, G. B. (2004). The epic 2001 stratocumulus study. Bul-273

letin of the American Meteorological Society , 85 (7), 967-978. Retrieved from274

https://doi.org/10.1175/BAMS-85-7-967 doi: 10.1175/BAMS-85-7-967275

Chollet, F., et al. (2015). Keras. https://keras.io.276

Christensen, M. W., & Stephens, G. L. (2011). Microphysical and macrophysical277

responses of marine stratocumulus polluted by underlying ships: Evidence of278

cloud deepening. Journal of Geophysical Research: Atmospheres, 116 (D3).279

Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/280

10.1029/2010JD014638 doi: 10.1029/2010JD014638281

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A282

Large-Scale Hierarchical Image Database. In Cvpr09.283

Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., . . . Lerner, J.284

(2013). Climate sensitivity: Analysis of feedback mechanisms. In Climate285

processes and climate sensitivity (p. 130-163). American Geophysical Union286

–8–



manuscript submitted to Geophysical Research Letters

(AGU). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/287

abs/10.1029/GM029p0130 doi: 10.1029/GM029p0130288

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image289

recognition. CoRR, abs/1512.03385 . Retrieved from http://arxiv.org/abs/290

1512.03385291

Kazil, J., Wang, H., Feingold, G., Clarke, A. D., Snider, J. R., & Bandy, A. R.292

(2011). Modeling chemical and aerosol processes in the transition from closed293

to open cells during vocals-rex. Atmospheric Chemistry and Physics, 11 (15),294

7491–7514. Retrieved from https://www.atmos-chem-phys.net/11/7491/295

2011/ doi: 10.5194/acp-11-7491-2011296

Klein, S. A., & Hartmann, D. L. (1993). The seasonal cycle of low strat-297

iform clouds. Journal of Climate, 6 (8), 1587-1606. Retrieved from298

https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2299

doi: 10.1175/1520-0442(1993)006〈1587:TSCOLS〉2.0.CO;2300

Koren, I., & Feingold, G. (2011, 7). Aerosolcloudprecipitation system as a predator-301

prey problem. Proceedings of the National Academy of Sciences, 108 (30),302

12227–12232. doi: 10.1073/pnas.1101777108303

L. Olson, D., & Delen, D. (2008). Advanced data mining techniques (1st ed.).304

Springer-Verlag Berlin Heidelberg. (pp. 138) doi: 10.1007/978-3-540-76917-0305

MODIS Science Team. (2015). Mod021km modis/terra calibrated radiances 5-min306

l1b swath 1km. Level 1 and Atmosphere Archive and Distribution System307

(LAADS). (http://modaps.nascom.nasa.gov/services/about/products/308

c6/MOD021KM.html) doi: 10.5067/modis/mod021km.006309

Platnick, S., Ackerman, S. A., King, M. D., Meyer, K., Menzel, W. P., Holz, R. E.,310

. . . Yang, P. (2015). Modis atmosphere l2 cloud product (06 l2). NASA311

MODIS Adaptive Processing System, Goddard Space Flight Center. Retrieved312

from http://modaps.nascom.nasa.gov/services/about/products/c6/313

MOD06 L2.html doi: 10.5067/modis/mod06 l2.006314

Randall, D. A., Coakley, J. A., Fairall, C. W., Kropfli, R. A., & Lenschow, D. H.315

(1984). Outlook for research on subtropical marine stratiform clouds. Bulletin316

of the American Meteorological Society , 65 (12), 1290-1301. Retrieved from317

https://doi.org/10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2318

doi: 10.1175/1520-0477(1984)065〈1290:OFROSM〉2.0.CO;2319

Raspaud, M., Hoese, D., Dybbroe, A., Lahtinen, P., Devasthale, A., Itkin, M., . . .320

Thorsteinsson, H. (2018, July). PyTroll: An open-source, community-driven321

python framework to process earth observation satellite data. Bulletin of the322

American Meteorological Society , 99 (7), 1329–1336. Retrieved from https://323

doi.org/10.1175/bams-d-17-0277.1 doi: 10.1175/bams-d-17-0277.1324

Rosenfeld, D., Kaufman, Y. J., & Koren, I. (2006). Switching cloud cover and325

dynamical regimes from open to closed benard cells in response to the sup-326

pression of precipitation by aerosols. Atmospheric Chemistry and Physics, 6 ,327

2503-2511. Retrieved from https://doi.org/10.5194/acp-6-2503-2006 doi:328

10.5194/acp-6-2503-2006329

Stephens, G. (1994). Remote sensing of the lower atmosphere: An introduction.330

Oxford University Press. Retrieved from https://books.google.co.uk/books331

?id=2FcRAQAAIAAJ332

Stevens, B., Vali, G., Comstock, K., Wood, R., van Zanten, M. C., Austin, P. H.,333

. . . Lenschow, D. H. (2005). Pockets of open cells and drizzle in marine334

stratocumulus. Bulletin of the American Meteorological Society , 86 (1),335

51-58. Retrieved from https://doi.org/10.1175/BAMS-86-1-51 doi:336

10.1175/BAMS-86-1-51337

Terai, C. R., Bretherton, C. S., Wood, R., & Painter, G. (2014). Aircraft observa-338

tions of aerosol, cloud, precipitation, and boundary layer properties in pockets339

of open cells over the southeast pacific. Atmospheric Chemistry and Physics,340

14 , 8071-8088. Retrieved from https://doi.org/10.5194/acp-14-8071-2014341

–9–



manuscript submitted to Geophysical Research Letters

doi: 10.5194/acp-14-8071-2014,2014342

Wang, H., & Feingold, G. (2009). Modeling mesoscale cellular structures and343

drizzle in marine stratocumulus. part i: Impact of drizzle on the formation344

and evolution of open cells. Journal of the Atmospheric Sciences, 66 (11),345

3237-3256. Retrieved from https://doi.org/10.1175/2009JAS3022.1 doi:346

10.1175/2009JAS3022.1347

Wood, R., Bretherton, C. S., Leon, D., Clarke, A. D., Zuidema, P., Allen, G., &348

Coe, H. (2011). An aircraft case study of the spatial transition from closed349

to open mesoscale cellular convection over the southeast pacific. Atmospheric350

Chemistry and Physics, 11 , 2341-2370. Retrieved from https://doi.org/351

10.5194/acp-11-2341-2011 doi: 10.5194/acp-11-2341-2011352

Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W., & Rossow, W. B. (2018).353

The international satellite cloud climatology project h-series climate data354

record product. Earth System Science Data, 10 (1), 583–593. Retrieved355

from https://www.earth-syst-sci-data.net/10/583/2018/ doi:356

10.5194/essd-10-583-2018357

Zhang, Z., Liu, Q., & Wang, Y. (2017). Road extraction by deep residual u-net.358

CoRR, abs/1711.10684 . Retrieved from http://arxiv.org/abs/1711.10684359

–10–



manuscript submitted to Geophysical Research Letters

Figure 4. MODIS retrieved cloud properties as a function of distance from the boundary

of POCs. The vertical line at 0 is the boundary between the POC and the surrounding cloud,

with negative values on the x axis being inside the POC and positive values being outside. The

different colours represent different geographical regions, and the shaded regions represent the

standard error of the data. The final panel shows the probability distribution of the areas of the

POCs in each region.
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