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Abstract14

At the mesoscale, trade wind clouds organize with a wide variety of spatial arrangements,15

which influences their effect on Earth’s energy budget. Past studies used high-resolution16

satellite measurements and clustering/labeling techniques to classify trade wind clouds17

into distinct classes. However, these methods only capture a part of the observed organ-18

ization variability. This work proposes an integrated framework using a continuous fol-19

lowed by discrete self-supervised deep learning approach based on cloud optical depth20

from geostationary satellite measurements. The neural network learns the semantics of21

cloud system structure and distribution, verified through visualizations of different lay-22

ers. Our analysis compares classes defined by human labels with machine-identified classes,23

aiming to address the uncertainties and limitations of both approaches. Additionally, we24

illustrate a case study of sugar-to-flower transitions, a novel aspect not covered by ex-25

isting methods.26

Plain Language Summary27

Clouds are a fundamental player affecting our planet’s energy balance, making their28

accurate representation crucial in climate models. One open question is how they orga-29

nize on a scale of a few 100 km (mesoscale) within the trade wind region. Satellite ob-30

servations can help to categorize these clouds, but previous methods had limitations in31

capturing the full range of cloud arrangements and transitions between different cloud32

forms. We have introduced a novel approach that utilizes machine learning and geosta-33

tionary satellite data to address this issue. Our machine learning model autonomously34

learns to recognize various cloud patterns and distributions. We conducted a compar-35

ative analysis between the categories generated by the machine and those identified by36

human experts to understand the strengths and weaknesses of both methods. Addition-37

ally, we explore a case study where clouds undergo a transformation, changing from a38

structure resembling sugar to one resembling flowers. This particular transformation was39

found difficult to capture with numerical simulation before. Our approach successfully40

captures the transition in the machine-learned feature space. Overall, the new approach41

can help to better understand cloud evolution, which is crucial for improving climate mod-42

els and predicting how cloud behavior may change in a changing climate.43

1 Introduction44

Shallow convective clouds are small in individual extent but cover large areas of45

the tropical oceans, appearing as distinct cloud fields. Due to their radiative and pre-46

cipitating properties, their representation in climate models is crucial for understand-47

ing the current large inter-model spread in predicted cloud feedback and climate sensi-48

tivity (Bony & Dufresne, 2005; Nuijens & Siebesma, 2019; Vogel et al., 2022). The EUREC4A49

field campaign (Bony et al., 2017; Stevens et al., 2021), which took place in the North50

Atlantic Trade (NAT) region around Barbados, aimed at investigating the interplay be-51

tween clouds, convection, and circulation by deploying a large variety of observations be-52

tween January and February 2020.53

While shallow convection was long seen to produce randomly scattered individual54

clouds, further understanding has been gathered on the importance of cloud field organ-55

ization for precipitation (Rauber et al., 2007; Radtke et al., 2022) through cold pool for-56

mation and rain evaporation (Seifert et al., 2015; Vogel et al., 2021). Among others, open57

research questions concern a detailed quantification of the role played by shallow mesoscale58

cloud organizations in controlling cloud amounts and their radiative response in the trades59

(Bony et al., 2015; Tomassini et al., 2015; Vogel et al., 2020; Vial et al., 2017).60

Introducing four shallow convective organizations (Sugar, Gravel, Flower, Fish),61

with common occurrences on meso-beta (20 to 200 km) and meso-alpha (200 to 2,00062
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km) scales, Stevens et al. (2020) rely on human-labeled visible satellite images in the NAT63

region. Sugar clouds consist of small, scattered clouds with a limited vertical extent, while64

gravel clouds exhibit organized lines or arcs resembling cell-like patterns. Fish clouds dis-65

play a network resembling fishbones with distinct cloud-free spaces, and flowers repre-66

sent larger, stratiform cloud structures forming dispersed closed cells. These patterns67

vary in net cloud radiative feedback (Bony et al., 2020); and, when classified by a deep68

neural network trained on human-labeled scenes (Rasp et al., 2020), display fundamen-69

tal differences in cloud fraction and environmental conditions (Schulz et al., 2021). The70

four patterns exhibit a daily cycle (Vial et al., 2021) and transitions, e.g., from sugar to71

flower, have been studied in Large-Eddy-Simulation (LES) to identify the governing pro-72

cesses (Narenpitak et al., 2021, 2023; Dauhut et al., 2023).73

Yet, imposing four distinct classes on the diversity of the observed organization does74

not cover the intermediate cloud patterns or transient states, as highlighted by the LES75

studies. Hence, some dynamic processes important for climate feedback may be ignored76

or neglected. Also, to our knowledge, there is no description of one of such transitions77

among different cloud regimes purely using observations. Furthermore, most of the re-78

cent studies trying to quantify the labeled well-organized systems find that these four79

cloud systems occur only around 50% over NAT (Janssens et al., 2021; Schulz et al., 2021;80

Vial et al., 2021) and have some ambiguities in agreement from the labelers’ side (Schulz,81

2022). Therefore, to handle such complexity, our first objective is to develop simplified,82

streamlined representations to effectively understand and capture the entire cloud spec-83

trum’s organizational relationships.84

There are several different possibilities for ordering the variability of mesoscale cloud85

systems, such as Janssens et al. (2021) who introduced a set of selected metric spaces86

for arranging the cloud systems using object-based, scale-based, and retrieved physical-87

based statistical properties. Utilizing the metric scores and a k-means algorithm, they88

observe that human-defined classes have better separation starting at seven clusters. Denby89

(2020) demonstrates that unsupervised neural network models, which involved some hu-90

man decisions in the learning stage, can be used to distinguish mainly ten different types91

of cloud organization and their associated radiative properties. In this work, we do not92

aim to favor any of the presented metrics but rather search for new information purely93

based on their organizational aspects, minimizing human intervention. Therefore, we aim94

to identify optimal distinct classes of cloud organizations representing the full spectrum95

and further compare them with human-identified labels.96

Based on GOES-16 E cloud optical depth (COD) images (Sec. 2), Section 3 pro-97

poses a two-step self-supervised deep learning approach to study shallow convection in98

a continuous feature space, characterizing the entire diversity of occurring organizations.99

Further, an optimized discretization of the continuous space is developed to derive a fi-100

nite set of classes representative of the continuous spectrum. The representations and101

their characteristics are investigated in Section 4.1, and we conduct a proof-of-concept102

study in Section 4.2 to explore the extent of agreement between human-annotated cloud103

organizations and machine-identified classes. Additionally, we investigate in Section 5104

how this approach can be used as a tool to study transitions between different organ-105

ization patterns.106

2 Satellite dataset107

We use COD retrieved from GOES-16 E Advanced Baseline Imager (Schmit et al.,108

2005) by the daytime cloud optical and microphysical properties algorithm (DCOMP)109

(Walther & Heidinger, 2012) at 2 km horizontal resolution and 10 – 15 minutes tempo-110

ral resolution. Our domain in NAT (5 - 20◦ N and 40 – 60◦ W) is similar to domains used111

in past studies (Bony et al., 2020; Schulz et al., 2021). The regional climate defines De-112

cember to May as dry and June to November as wet seasons (Stevens et al., 2016). While113
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most of the studies focus on dry season shallow convections only, we include some con-114

tributions from the wet season by selecting the time period from November to April 2017115

– 2021. The purpose of choosing convective occurrences from the wet season is to see how116

they influence our approach.117

COD represents the radiative properties of the cloud in the visible range, and its118

retrieval from DCOMP tackles the aleatoric uncertainties from the atmosphere and sur-119

face robustly. For example, the uncertainty associated with COD retrieval remains be-120

low 10% for all ranges in water clouds (see Figure 4 in Walther and Heidinger (2012) ).121

Therefore, we exploit the COD parameter to characterize the cloud system spatio-temporal122

variability. Note that some fine-scale cloud systems, such as sugar and gravel, also con-123

tributing to the variability of mesoscale beta clouds in regional climate systems, may not124

be fully resolved with the spatial resolution of this product.125

Representation learning, also known as feature learning, is a specialized field within126

machine learning that focuses on extracting meaningful features of a given dataset. To127

better represent the mesoscale cloud distributions, we use six images per timestamp, in-128

cluding an additional fixed image over the Barbados domain (see S1). Note that the Bar-129

bados domain enables comparison with ground-based measurements in future studies.130

To have an adequate spatial scale of typical occurring cloud fields over NAT (as discussed131

in Section 1), we use 256 x 256 pixels (roughly 512 square km) as also found in Muller132

and Held (2012). We exclude crops affected by glint or poor retrieval quality using the133

respective data flags. Time stamps are limited to 9 am - 3 pm Barbados local time to134

avoid sun glinting. We utilize land class information to avoid land convection and ver-135

ify whether 0.98th fraction of random crops belong to the ocean, accepting satellite crops136

with islands over NAT and excluding those over the northeast South American conti-137

nent. Finally, to mitigate uncertainties at high COD from DCOMP retrieval, COD val-138

ues above a threshold of 50, already indicating deep clouds, are clipped to 50. This re-139

sults in a sample size of 51,000 satellite images.140

For further analysis, we make use of hourly ERA-5 (Hersbach et al., 2020) large-141

scale environmental parameters (horizontal and vertical wind speed, relative humidity)142

and cloud fraction at a spatial resolution of 0.25◦. Hourly cloud amount for four verti-143

cal ranges (surface-700 hPa, 700 hPa-500 hPa, 500 hPa-300 hPa, 300 hPa-tropopause)144

is used from the Clouds and Earth’s Radiant Energy System fourth edition (CERES, Edi-145

tion - 4A) (Wielicki et al., 1996), characterized by a spatial resolution of 1◦.146

3 Methods147

First, we develop a neural network (N1) that learns to sort the cloud organizations148

based on the similarity of their visual features, which we call a continuous approach in149

this work. The purpose is to let the network identify the structural similarities in the150

cloud systems and map the learned visual features in the 384-dimensional feature space.151

We use the software package DINO from Facebook Artificial Intelligence Research (FAIR)152

(Caron et al., 2021) based on PyTorch (Paszke et al., 2019) and the open-source VISSL153

computer vision library (Goyal et al., 2021) to adapt the network to our requirements.154

As a backbone neural architecture to process images, we use Vision Transformer (ViT),155

which has a sequence of self-attention (Vaswani et al., 2023) and feed-forward layers (Bebis156

& Georgiopoulos, 1994) paralleled with skip connections. This setup helps to identify157

long-range spatial dependencies by learning relevant information in the image (Khan et158

al., 2022). To focus on the structural similarities of the cloud system, every epoch, we159

opt for two random global crops with a 0.75 fraction (192 x 192 pixels) of the parent satel-160

lite image. As the largely overlapping global-crop pair has very similar cloud structures,161

the network learns their essential features and puts the pair closer to each other in the162

high-dimensional feature space. More details are given in S2.163
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After obtaining the continuously sorted representation of cloud systems (see Fig.164

1.a), we intend to find optimal boundary conditions within the sorted order and, based165

on it, train a second neural network (N2) to discretize it. As a first step, we reduce the166

384-dimension features of the satellite images obtained from N1 to two dimensions us-167

ing the well-established t-distributed Stochastic Neighbor Embedding (tSNE) algorithm168

(van der Maaten & Hinton, 2008). tSNE tries to preserve the relative local position be-169

tween features and the overall global structure of the feature distributions while map-170

ping on a reduced two-dimensional space. On this 2-dimensional representation space,171

we apply a set of three statistical approaches, namely metric scores of distortion, silhou-172

ette (Rousseeuw, 1987), and Calinski-Harabasz (Caliński & Harabasz, 1974) to identify173

the possible number of optimal classes into which the given features could be clustered.174

Schubert (2023) suggests taking a collective inference from these three methods to best175

fit the spherical k-means clustering algorithm used during the training of N2. Supple-176

ment 3 illustrates how the three metrics point to an optimal clustering into seven classes.177

N2 from Chatterjee et al. (2023) learns to put each satellite image in one of the seven178

classes as it progressively improves the feature space’s clustering, minimizing the cross179

entropy between two global random crops (192 x 192) from the parent satellite image.180

Here, the main difference from N1 is that additional augmented image versions (random181

flipping and noise addition by random Gaussian blur) of global random crops (see Fig.182

S2.2.b) are included. Augmentations try to provide auxiliary support to the network’s183

generalizability and better capture the differences in diversity of the shallow cloud sys-184

tems (Nie et al., 2021; Paletta et al., 2023). After obtaining the label of each satellite185

image, we transfer the assigned class to the continuous representation space, which proves186

helpful because N1 has learned the sorting arrangement of keeping similar cloud systems187

closer. Therefore, it helps to visualize how each cluster with distinct characteristics can188

form a separate local region. The N2 feature space is i) more sparse than N1 (see S2 for189

explanation) and ii) arranged by closeness to the centroids, which, unlike N1, may not190

be ideal for representing smooth transitions of cloud systems.191

4 Results192

4.1 Continuous and discrete representations193

To investigate how the satellite images arrange themselves in the feature space of194

N1, we first study the high-dimensional feature space and asses the arrangement of di-195

verse cloud systems inside it. We reduce the feature dimensions to a 2D space to visu-196

alize the continuum using the tSNE algorithm (described in Section 3). Different cloud197

organizations can be identified in different areas of the 2D space (Fig. 1.a). Going an-198

ticlockwise from the top, arch-shaped cloud systems lie in the top-left, followed by flower-199

type distributions on the left side of the 2D feature space. Close to the flowers in the bottom-200

left are the flowers spreading out into stratocumulus. Note that while modeling stud-201

ies suffer from capturing the transition of stratocumulus to cumulus (Sarkar et al., 2020),202

these cloud regimes are adjacent to one another in the 2D representation.203

The bottom part of the feature space contains long bony skeletons, i.e., fish-type204

cloud systems, and the bottom-right corner shows an extended part of fish-type cloud205

organizations delineated by unusually large cloud-free regions. The top-right region of206

the 2D space is a collection of deep convective cells. These primarily occur in the month207

of November. Arc-shaped cloud systems appear on the left and top-left of the 2-D fea-208

ture space. Vogel et al. (2021) suggest that the horizontal structure of mesoscale arcs209

is intrinsically linked to gravel, flowers, and fish. In sequence, Figure 1a shows a contin-210

uous link in the spatial arrangement of cloud systems rather than the distinct classes.211

Additionally, in S4, we investigate how N1 is sensitive to different visual features of cloud212

organizations and find that the network pays attention to specific patterns in cloud or-213
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Figure 1. a) Visualization of four hundred randomly selected 256 x 256 satellite images ar-

ranged in the dimensionally reduced 2D continuous feature space where the closeness of one

satellite image to another is learned by N1. b) Optimized classification learned by N2 provides

labels overlaid on the continuous feature space to show the clustering performance. Each class

shows low, mid-low, mid-high, and high cloud amounts (%) obtained from the CERES hourly

data set. c) Centroid COD images belonging to seven clusters as identified by the discrete neural

network (N2). The table shows per class mean of cloud fraction (CF, %) from GOES retrieval

and integrated water vapor (IWV, kgm−2) from ERA-5.
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ganization, such as deep convective semantics, adjacent thin convection around deep con-214

vection, and clear sky features.215

Using N2, each of the images can be attributed to one of the seven classes (refer216

to Section 3), revealing distinct spaces within the 2D continuous representation space217

(Fig. 1.b). To help investigate how well the seven classes separate, they are evaluated218

using cloud amount at four different height levels from CERES data. This analysis, on219

the one hand, reflects how each class differs from the others, and on the other hand, it220

reasons for the underlying closeness of each class with neighbor classes in the feature space.221

The difference between the seven clusters is especially evident when looking at their cen-222

troid images (Fig. 1.c).223

Deep convective class three has by far the highest cloud fraction of 76% and a third224

more water vapor amount (47.0 kgm−2) than all other classes (mean = 32.5 kgm−2). Neigh-225

boring class six (in feature space) includes less frequent higher-level clouds and has a re-226

duced CF of 59% compared to class three. All other classes are dominated by low-level227

clouds with lower than 50% CF. Classes one and four (neighbor to class six) still have228

some mid to high-level cloud amount (below 10%). Class one can be interpreted as rep-229

resenting arch-shaped cloud systems, and four resembles the fish class with a more open230

sky (also shown by reduction in CF). Classes two, five, and seven, being close in the 2D231

feature space, have similar cloud vertical distributions and IWV ranging from 30 to 32232

kgm−2; however, their organization is very different, as illustrated by the centroids (Fig.233

1.c) and mean CFs (43%, 27%, and 33%, respectively). Class two primarily comprises234

shallow cloud cover, corresponding to cloud systems resembling fish-type formations. Class235

five has the lowest cloud fraction and is an intermediary class type between classes two236

and seven. Finally, class seven has a presence of low cloud amounts and negligible mid237

to higher cloud amounts, which visually resembles flower-type cloud distributions. There-238

fore, discretizing the continuous feature space helps us visually find three main classes239

(one, two, and seven) frequently resembling features identified by humans, i.e., sugar,240

fish, and flower, respectively. However, it also shows the remaining diversity and their241

characteristics in a cohesive approach.242

4.2 Machine versus human labels243

While we checked for visual correspondence and class-wise characteristics in Sec-244

tion 4.1, we now aim to quantify how human labels compare to the machine’s seven clus-245

ters. We use the seven previously identified cluster boundaries and cloud system posi-246

tions in the continuous feature space (N1 + N2 together defined as “framework” from247

now on) and the dataset by Schulz (2022), providing human labels with an agreement248

score ranging between 0 and 100%.249

For each timestamp where at least one of the four patterns was identified within250

our domain, we select a 256 x 256-pixel satellite image centered over the area of high-251

est human agreement. In this way, we ensure the best possible intercomparison. Apply-252

ing the pre-processing (as in Section 2) leaves us with 52 samples of human-labeled satel-253

lite images (fish: 19.3%, gravel: 26.9%, flower: 28.8%, sugar: 25.0%). Note that the best254

and worst cloud organization agreements with this procedure are 91% and 7%, respec-255

tively. Finally, we get the feature vectors of the images corresponding to the human sam-256

ples from N1 and the machine-identified labels from N2.257

The framework classifies 40% flower-labeled cloud systems in class seven (see the258

hit rate along each class in Fig. 2.a) while sugar-labeled cloud systems are 31% classi-259

fied in class one and 20% in class four. For class four, note sugar’s low agreement in Fig.260

2.b. Gravel has a total of 44% representation in classes one and five, whereas fish an-261

notated labels are allocated 30% in class two and 20% each in classes four and five. Fur-262

ther, looking at example images visually (Fig. 2.a), in contrast to images with high hu-263

man agreement, it is evident that those with lower agreement significantly deviate from264
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Figure 2. a) For better visualization and reference purposes of human labels, each column

shows 256 x 256 COD images belonging to a certain class marked with the highest and lowest

human agreement displayed along the two rows. Below, the images along each column show the

proportional machine-predicted class for human labels. b) Continuous feature space colored with

different classes (1-7) in the background, along with Human labels (fish, sugar, flower, gravel) in

the foreground. The level of human agreement on the identified patterns is indicated by symbol

size. c) Relative occurrence of 30 nearest neighbors to human-labeled fish, gravel, flower, and

sugar along the seven machine-labeled classes.
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the recognized definitions (as given in Stevens et al. (2020)) of sugar, gravel, flower, and265

fish cloud structures.266

Within the 2D feature space (Fig. 2.b), flowers detected with high probability mostly267

occur in areas of class seven, which was already well reflected in the centroids. Follow-268

ing a similar agreement is sugar (street-type cloud systems), which can be found in ar-269

eas of class one. However, 38% of sugar samples, with a low agreement, lies in classes270

four and five, which are extended fish and flower type classes (Section 4.1). Thus, even271

though these samples reside in those regions of the feature space, their confidence is less272

than 25%. Rightly, no human-labeled samples are found in class three, which predom-273

inantly comprise deep convective cells. For the gravel pattern, 21% samples belong to274

class six (Fig. 2.b)) and exhibit minimal human confidence; in contrast, the rest from275

the gravel class are positioned between classes one and seven, suggesting that gravel cloud276

cell sizes fall between sugar and flower. Finally, the fish class exhibits relatively higher277

confidence in human labels, aligning well with the feature space characteristics, and lies278

in class two (fish) and four (extended fish).279

To compensate for the limited number of human label samples, we analyze the 30280

nearest satellite images to each human label as identified by N1 (Fig. 2.c). This anal-281

ysis aims to show the generalization capacity of our approach and further enhance our282

understanding of the connection between organizations. The majority of neighbors in283

human-identified fish-type cloud systems (more than 50%) belong to machine-identified284

classes two and four, representing fish and extended fish-type cloud structures with large285

cloud-free regions. The gravel regime includes members of all classes, with notable con-286

tributions from classes one, five, and seven, which exhibit cloud cell characteristics sim-287

ilar to gravel systems. One of the reasons for the wider spread of neighbors might be due288

to the lower human agreement of the images labeled as gravel (75% of gravel-labeled sam-289

ples had agreement less than 0.25). In contrast, the flower regime mainly belongs to class290

seven (46 %), further aligning with the high confidence of human labels. Regarding sugar-291

type cloud systems, 37 % of the neighbors fall into class one, while those with low hu-292

man agreement are scattered across the remaining classes. Therefore, we find that machine-293

labeled classes encompass the human-labeled ones, especially for sugar, flower, and fish,294

but not so clearly for gravel.295

Comparing human labels with their nearest neighbors shows that the framework296

provides more objective freedom and improves our confidence about the feature vectors297

allocated to images corresponding to human samples. It also shows the uncertainty as-298

sociated with less agreed-upon human labels. Further, in S5, using ERA-5 large-scale299

environmental variables and cloud physical properties, we demonstrate that both the neigh-300

bors and the human crops share a similar, homogeneous distribution of physical prop-301

erties.302

5 Transitions303

To showcase an application that highlights the strengths and weaknesses of the pre-304

sented framework, we explore the ”sugar” to ”flower” (S2F) cloud system transition on305

February 2, 2020. Using LES, Narenpitak et al. (2021) showed a strengthening of large-306

scale upward wind motion and an increase in total water path and optical depth as the307

transformation develops towards the flower. Here, we look at how the transition in COD308

is represented in the feature space. For example, where do the representations of tran-309

sitions lie in the feature space? How smooth is the transition in the feature space?310

Covering the spatio-temporal developments, 47 COD images were collected (after311

applying quality filter checks (see Section 2)), centered at 12.5◦ N, 50◦ W. They cover312

the time from 10:50 to 19:20 UTC, with a gap between 17:00 to 18:00 UTC likely caused313

by local sun glint. We ingest the available samples into the trained framework, collect314
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Figure 3. a) Five COD images covering the transition period between sugar and flower on the

second of February 2020. Their position in the 2D feature space is indicated in the center of the

bottom row. b) Individual and standard deviation profiles of 1) vertical, 2) horizontal wind speed

describing the atmospheric dynamics, and 3) cloud cover showing changes in mesoscale structure

of the transition samples. c) Illustration of temporal transition development inside the feature

space: cosine distance of the first daytime image feature obtained at 10:50 UTC compared with

the cloud system evolution features for the rest of the day (blue). The last obtained image at

19:20 UTC towards the first image (orange) and θm represents the increasing cosine distance.

their features (from N1) and machine labels (from N2), and further dimensionally reduce315

the features for 2D visualization.316
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Sugar systems comprise small and shallow clouds with a large spread of individ-317

ual cloud cells in a domain, as evident in the beginning (10:50, Fig. 3.a). In contrast,318

flower systems appear in multiple deeper aggregates surrounded by large dry areas and319

are detected first in the southeast cover at 16:50 before becoming dominated at 19:20320

over the full domain. In general, the transition features lie at the border of well-defined321

clusters one (‘sugar’) and cluster seven (‘flower’) (Fig. 3.a), and the framework is able322

to capture their intermediary nature as they are neither perfect sugar nor flower type.323

We use wind speed (vertical and horizontal) to represent changes in atmospheric dynam-324

ics and changes in cloud cover to account for the changes in mesoscale structure from325

the ERA-5 product. A gradual increase in vertical velocity is observed as the system tran-326

sitions from sugar to flowers, and consequently, the surface wind speed gradually reduces327

its strength (Fig. 3.b). In addition, as expected, cloud fraction profiles show a gradual328

decrease as the transition progresses with time.329

Sugar-type mesoscale organizations typically occur during the daytime with shal-330

low boundary layers, while flowers occur at night with deeper boundary layers (Vial et331

al., 2021). We use cosine distance between the features to show the gradual development332

of the S2F transition inside the feature space (Fig. 3.c), which quantifies the variation333

in visual features of the 47 COD images. The transformation appears smooth initially,334

with relatively more significant changes occurring later (post-18:00 UTC) as the system335

approaches the flower state. We associate the relatively high changes in cosine distance336

compared to initial sugar stages to convective developments which are faster once the337

system starts approaching a well-defined flower state. This example illustrates that the338

framework can capture the intrinsic characteristics of S2F transitions and can be fur-339

ther exploited as a tool to study cloud system transformations and associated processes340

with large satellite datasets.341

6 Conclusion342

In this work, we develop and make use of a two-step self-supervised learning ap-343

proach to study shallow convective organization properties and their transitions. By an-344

alyzing organization in a continuous approach without imposing predefined classes, we345

include all occurring patterns and transitional states in our analysis. Moreover, the ap-346

proach shows that mesoscale cloud organizations in NAT can be classified into seven op-347

timal classes for the time period considered. Exploiting the cloud amount at different348

vertical levels from CERES measurements, we show how the classes are interlinked with349

each other within the continuous space, and thus, the feature space captures the vari-350

ability of tropical clouds in more detail.351

We compare human-labeled cloud systems (Schulz, 2022) to machine-identified clus-352

ter regions. Cloud systems with higher agreement among humans lie in the ”correct” re-353

gion of the feature space, while the ones with less consensus are in the ”wrong” regions354

of the feature space. Two of the seven optimal classes are strongly related to flower and355

sugar, respectively. Representing the sugar-to-flower transition case study (Narenpitak356

et al., 2021) for February 2, 2020, in the feature space illustrates the capability to iden-357

tify and represent the observed transformations smoothly in their clearly interpretable358

regions. We evaluate the transition’s large-scale environmental parameters and observe359

a gradual increase in vertical wind speed and a gradual decrease in cloud amount. Fi-360

nally, we demonstrate the framework’s capability to capture the underlying mesoscale361

visual transformations, such as the transition approaching mature flower convective stages362

through quick changes in consecutive cosine distances.363

One of the limitations of this study is that we use only the daytime cloud retrievals,364

and hence, the nocturnal nature of the organizations cannot be captured. Future stud-365

ies will use infrared satellite measurements for 24-hour coverage. We aim to fine-tune366

our framework with the ground-based observations of the EUREC4A campaign and fur-367

–11–
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ther extend our analysis to a climate scale. Currently, Destination Earth (Hoffmann et368

al., 2023) focuses on simulating high-resolution global digital twins at a 1 km grid scale.369

The developed workflow could be a testing ground for investigating the newly adjusted370

subgrid parameterization effects on mesoscale cloud systems or atmospheric processes371

at different scales.372

7 Open Research373
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cessed at https://doi.org/10.5281/zenodo.8352614378
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