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Abstract14

At mesoscale, trade wind clouds organize with various spatial arrangements, shap-15

ing their effect on Earth’s energy budget. Representing their fine-scale dynamics even16

at 1 km scale climate simulations remains challenging. However, geostationary satellites17

(GS) offer high-resolution cloud observation for gaining insights into trade wind cumuli18

from long-term records. To capture the observed organizational variability, this work pro-19

poses an integrated framework using a continuous followed by discrete self-supervised20

deep learning approach, which exploits cloud optical depth from GS measurements. We21

aim to simplify the entire mesoscale cloud spectrum by reducing the image complexity22

in the feature space and meaningfully partitioning it into seven classes whose connec-23

tion to environmental conditions is illustrated with reanalysis data. Our framework fa-24

cilitates comparing human-labeled mesoscale classes with machine-identified ones, ad-25

dressing uncertainties in both methods. It advances previous methods by exploring tran-26

sitions between regimes, a challenge for physical simulations, and illustrates a case study27

of sugar-to-flower transitions.28

Plain Language Summary29

Clouds are a fundamental player affecting our planet’s energy balance, making their30

accurate representation crucial in climate models. One open question is how they orga-31

nize on a scale of a few 100 km (mesoscale) in the tropical northern Atlantic region east32

of Barbados. Satellite observations can help to categorize these clouds, but previous meth-33

ods had limitations in capturing the full range of cloud arrangements and transitions be-34

tween different cloud forms. We have introduced a novel approach that utilizes machine35

learning and geostationary satellite data to address this issue. Our machine learning model36

autonomously learns to recognize various cloud patterns and distributions. We conducted37

a comparative analysis between the categories generated by the machine and those iden-38

tified by human experts to understand the strengths and weaknesses of both methods.39

Additionally, we explore a case study where clouds undergo a transformation, changing40

from a structure resembling sugar to one resembling flowers. This particular transfor-41

mation was found difficult to capture with physical simulation before. The clear signa-42

tures of the transition identified by our machine learning approach can help to better43

understand cloud evolution, which is crucial for improving climate models and predict-44

ing how cloud behavior may change in a changing climate.45

1 Introduction46

Shallow convective clouds, though individually small (measuring in tens of meters),47

cover large areas of the tropical oceans, forming distinct cloud fields that span hundreds48

of km. They are vital in regulating the Earth’s energy balance, exerting a net cooling49

effect by reflecting more sunlight than retaining outgoing long-wave radiation (Bony et50

al., 2004). However, the representation of these clouds, even in the advanced 1km scale51

climate simulations, is insufficient (Schneider et al., 2019). This contributes to a signif-52

icant inter-model spread in predicted cloud feedback and climate sensitivity (Bony & Dufresne,53

2005; Nuijens & Siebesma, 2019). To address this challenge, Bony et al. (2017) proposed54

the EUREC4A field campaign, organized in January-February 2020, around the Barba-55

dos region of the North Atlantic Trades (NAT) (Stevens et al., 2021). This initiative aimed56

to enhance our understanding of shallow cloud dynamics by leveraging a diverse set of57

observations and thus possibly improving their representation in numerical models.58

During the preparation of the campaign Stevens et al. (2020) identified four shal-59

low convective organization regimes (Sugar, Gravel, Flower, Fish) (SGFF), with frequent60

occurrence on meso-β (20 to 200 km) and meso-α (200 to 2,000 km) spatial scale. These61

regimes exhibit differences in net cloud radiative feedback (Bony et al., 2020) and are62
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related to different environmental conditions (Schulz et al., 2021). Of specific interest63

are transitions between different organizations, e.g., from sugar to flower, which has been64

studied in Large-Eddy-Simulation (LES) to understand the governing processes and prove65

to be difficult (Narenpitak et al., 2021; Dauhut et al., 2023).66

Yet, imposing four distinct classes on the diversity of the observed organization does67

not cover the intermediate cloud patterns or transient states, as highlighted by LES stud-68

ies. Hence, some processes critical for climate feedback may be ignored or neglected. Fur-69

thermore, recent studies trying to quantify these labeled well-organized systems find that70

they occur only around 50% over NAT (Janssens et al., 2021; Schulz et al., 2021; Vial71

et al., 2021) and some ambiguities in agreement from the labeler’s side exist (Schulz, 2022).72

Denby (2020) and Janssens et al. (2021) argue for a continuum of cloud organiza-73

tion where Denby (2020) employs an unsupervised neural network for grouping similar74

cloud structures and demonstrate its effectiveness via hierarchical clustering (HC) and75

associated radiative properties. However, their training approach involved a possibility76

of false negative sampling (Huynh et al., 2022), where the negative pair’s distant tile (taken77

from a random location on a different day) does not necessarily guarantee a dissimilar-78

ity in their cloud system’s structure and distribution. Further, employing high-dimensional79

features in HC has performance and scalability issues (Du, 2023; Gilpin et al., 2013). Janssens80

et al. (2021) assumes a linear combination of traditional cloud metrics for describing the81

cloud systems. Utilizing these metric scores and a k-means algorithm, they attempted82

to partition their metric space into seven arbitrary clusters, as finding meaningful cloud83

regimes (CRs) seemed non-trivial.84

The overarching goal of our study is to develop a simplified approach to describe85

cloud organization from high-resolution images. In this way, it should open up new path-86

ways to exploit the information content of existing comprehensive satellite data records.87

Our first objective is to develop a streamlined representation that captures the entire88

cloud spectrum’s organizational relationships, which we call a continuum. Second, we89

target the four somewhat arbitrary classes from Stevens et al. (2020) and delve deeper90

into finding useful CRs from an interpretable continuum. We approach our objectives91

by developing a two-step self-supervised deep learning approach (Section 3) applied on92

GOES – 16 E cloud optical depth (COD) images (Section 2). Section 4.1 delves deeper93

into the representations and their characteristics, highlighting the differences to Denby94

(2023)’s approach. Our work demonstrates that the presence of derived partitions fa-95

cilitates a comparison of human labels with these partitions (Section 4.2). Finally, in Sec-96

tion 5, we illustrate how the partitioning of the continuum supported by environmen-97

tal data allows us to monitor when a particular cloud system transitions to another.98

2 Satellite dataset99

We use COD retrieved from GOES-16 E Advanced Baseline Imager (Schmit et al.,100

2005) using the daytime cloud optical and microphysical properties algorithm (DCOMP)101

(Walther & Heidinger, 2012) at 2 km horizontal resolution and 10 – 15 minutes tempo-102

ral resolution. Our domain in NAT (5 - 20◦ N and 40 – 60◦ W) is similar to domains used103

in past studies (Bony et al., 2020; Schulz et al., 2021). The regional climate defines De-104

cember to May as dry and June to November as wet seasons (Stevens et al., 2016). We105

consider November to April 2017 - 2021 as our study period. November is added to the106

typical dry period because we want to see how stronger convective events influence our107

approach.108

We chose COD because it is closely related to the cloud radiative effect and mit-109

igates solar and surface influences. The uncertainty associated with COD retrieval re-110

mains below 10% for all ranges in water clouds (see Figure 4 in Walther and Heidinger111

(2012)). Note that some fine-scale cloud systems, such as sugar and gravel (meso-β scale),112

–3–



manuscript submitted to Geophysical Research Letters

their individual cloud cells might not be fully resolved with the spatial resolution of this113

product. However, since our study focuses on the organizational aspects of shallow con-114

vection clouds (spanning hundreds of km), we expect the resolution limit to have a lim-115

ited impact on our study.116

Representation learning, also known as feature learning, is a specialized field within117

machine learning that focuses on extracting meaningful features of a given dataset. To118

better represent the mesoscale cloud distributions, we use six images per timestamp, in-119

cluding an additional fixed image over the Barbados domain (see S1). Although they might120

overlap in some instances, random cropping aims to get mesoscale distributions as di-121

verse as possible without human interference. Note that the Barbados domain enables122

comparison with ground-based measurements in future studies. To have an adequate spa-123

tial scale of typical occurring cloud fields over NAT (as discussed in Section 1), we use124

256 x 256 pixels (roughly 512 square km) as also found in Muller and Held (2012). We125

exclude crops affected by glint or poor retrieval quality using the respective data flags.126

Time stamps are limited to 9 am - 3 pm Barbados local time to avoid sun glinting. We127

use land class data to filter out images with convection over land, specifically over the128

northeast of the South American continent. Finally, to mitigate uncertainties at high COD129

from DCOMP retrieval, COD values above a threshold of 50, already indicating deep clouds,130

are clipped to 50. This results in a sample size of 51,000 satellite images.131

For further analysis, we make use of hourly ERA-5 (Hersbach et al., 2020) large-132

scale environmental parameters (integrated water vapor (IWV), horizontal and vertical133

wind speed, relative humidity) and cloud fraction at a spatial resolution of 0.25◦. Hourly134

cloud amount for four vertical ranges (surface-700 hPa, 700 hPa-500 hPa, 500 hPa-300135

hPa, 300 hPa-tropopause) is used from the Clouds and Earth’s Radiant Energy System136

fourth edition (CERES, Edition - 4A) (Wielicki et al., 1996), characterized by a spatial137

resolution of 1◦.138

3 Methods139

The workflow is as follows: a) A neural network (N1) ingests satellite images to con-140

tinuously sort cloud organizations based on visual similarity, yielding the feature vec-141

tor ’Z’ (384 dimensions) for each image. b) Z is reduced to a 2-dimensional (2D) space142

for visualizing a continuous arrangement of images with respect to their cloud structures143

(continuum). c) The optimal number ‘K’ of meaningful clusters or CRs is derived from144

the 2D representation, d) A second neural network (N2) of similar architecture as N1145

but constrained by ’K’ classes ingests the satellite images to finally assign each image146

to a discrete class.147

a) N1 identifies the structural similarities in the cloud systems and maps the learned148

visual features into the 384-dimensional feature space Z. To learn similar embeddings149

of semantically similar mesoscale structure and distributions, every epoch, we opt for two150

random global crops with a 0.75 fraction (192 x 192 pixels) within a single parent satel-151

lite image. Each crop is processed in a separate branch (called student and teacher) by152

a Vision Transformer (ViT), which has a sequence of self-attention (Vaswani et al., 2023)153

and feed-forward layers (Bebis & Georgiopoulos, 1994). Note that both branches have154

the same general architecture, but the parameters (weights and biases) learned during155

training are slightly different. As the largely overlapping global-crop pair has very sim-156

ilar cloud structures, the network learns their essential features and puts the pair closer157

to each other in the high-dimensional feature space. A cross-entropy loss function min-158

imizes the difference in the output of both branches and yields the 384-element feature159

vector Z. More details on the implementation are given in S2. This way of training, un-160

like Denby (2020), eliminates the need for a negative pair and avoids linearized assump-161

tions like in Janssens et al. (2021).162
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b) Z includes the continuously sorted representation of cloud organization. We re-163

duce its 384 dimensions to two dimensions using the well-established t-distributed Stochas-164

tic Neighbor Embedding or t-SNE algorithm (van der Maaten & Hinton, 2008). It pre-165

serves relative local positions by using cosine distance in affinity computation and tries166

to retain global structure by initializing with principal components for mapping to a two-167

dimensional space. This proves helpful because high-dimensional data when directly ap-168

plied to cluster analysis, face challenges like the curse of dimensionality (Aggarwal et al.,169

2001), where increased dimensions make distances between data points less meaningful.170

Also, the presence of noise and outliers can distort clusters, hindering the algorithm’s171

ability to identify distinct clusters (Steinbach et al., 2004).172

c) After obtaining the continuously sorted 2D representation of cloud systems (see173

Fig. 1.a), we intend to find optimal boundary conditions within the sorted order to de-174

rive distinct clusters (CRs). Selecting a meaningful and interpretable number of clus-175

ters is crucial to avoid over-fitting, where excessive clusters can capture noise, and also176

under-fitting, where too few clusters can miss significant patterns in the data. On this177

2D representation space, we apply a set of three statistical approaches, namely metric178

scores of distortion, silhouette (Rousseeuw, 1987), and Calinski-Harabasz (Caliński &179

Harabasz, 1974) to identify the number of optimal classes into which the given features180

could be clustered. Schubert (2023) suggests taking a collective inference from these three181

methods to best fit the spherical k-means clustering algorithm used during the training182

of N2. S3 illustrates how the three metrics point to an optimal clustering of the contin-183

uum into seven CRs. Note that the choice of seven classes is robust, as illustrated by sev-184

eral sensitivity tests (shown in S4), such as the dimensionality-reduction technique, size185

of the dataset, initial weights of the network, and different global crop sizes.186

d) N2 from Chatterjee, Acquistapace, et al. (2023) is similar to N1 concerning the187

two branches: When the feature vectors of both branches capture similar information188

from the global crops, the loss decreases; conversely, it increases when they diverge. How-189

ever, before the cross-entropy loss is computed in each branch, a spherical k-means clus-190

tering is applied. Herein, the feature vector from the upper branch gets assigned a class191

(target label) based on proximity to its nearest centroid while the lower branch feature192

vector tries to reduce its cosine distance with the allocated centroid (predicted proxy)193

to reduce the loss. In this way, the network learns to allocate both global crops to the194

same class. After obtaining the label of each satellite image, we transfer the assigned class195

to the continuum space, which proves helpful because N1 has learned the sorting arrange-196

ment of keeping similar cloud systems closer. Therefore, it helps to visualize how each197

cluster with distinct characteristics can form a separate local region. Additionally, the198

N2 feature space is i) more sparse than N1 (see S2 for explanation) and ii) arranged by199

closeness to the centroids, which, unlike N1, may not be ideal for representing smooth200

transitions of cloud systems. Note that there are further differences between N1 and N2,201

e.g., image augmentation, which are detailed in S2.202

4 Results203

4.1 Continuous and discrete representations204

We now analyze the diversity of cloud systems included in the satellite data record205

within their continuous and discrete representations. Both are visualized in 2D contin-206

uum space using the t-SNE algorithm (Section 3). The organization state captured in207

the satellite images changes smoothly and different cloud organizations can be identi-208

fied in different areas of the continuum (Fig. 1.a). Going anticlockwise from the top, arch-209

shaped cloud systems lie in the top-left, followed by flower-type distributions on the left210

side of the continuum. Close to the flowers in the bottom-left are the flowers spreading211

out into stratocumulus. Note that physically simulating the transition is challenging as212
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modeling studies struggle to capture the stratocumulus to cumulus transition (Sarkar213

et al., 2020), although they lie adjacent in the continuum.214

The bottom part of the feature space contains long bony skeletons, i.e., fish-type215

cloud systems, and the bottom-right corner shows an extended part of fish-type cloud216

organizations delineated by unusually large cloud-free regions. The top-right region of217

the continuum is a collection of deep convective cells. These primarily occur in the month218

of November. Arc-shaped cloud systems appear on the left and top-left of the contin-219

uum. Vogel et al. (2021) suggest that the horizontal structure of mesoscale arcs is in-220

trinsically linked to gravel, flowers, and fish. In sequence, Figure 1a shows a continuous221

link in the spatial arrangement of cloud systems rather than the distinct classes. This222

demonstrates the good performance of our continuous approach, which is further sup-223

ported by the analysis of attention maps in S5. Note that any newly taken satellite im-224

age can be placed into this continuum using the weights of N1, allowing a quick assess-225

ment of its organizational status. Also, similar trajectories of subsequent images can be226

tracked within the continuum space.227

After training N2, each of the images can be attributed to one of the seven classes228

(refer to Section 3), revealing distinct spaces within the continuum (Fig. 1.b). To assess229

how well the seven classes separate, they are evaluated using cloud amounts at four dif-230

ferent height levels from CERES data. This analysis, on the one hand, reflects how each231

class differs from the others, and on the other hand, it reasons for the underlying close-232

ness of each class with neighbor classes in the continuum. The difference between the233

seven clusters is especially evident when looking at their centroid images (Fig. 1.c).234

Deep convective class three has by far the highest cloud fraction of 76% and a third235

more water vapor (47.0 kgm−2) than all other classes (mean = 32.5 kgm−2). We use IWV236

as a fingerprint for the origin of air masses and intend to test it later to investigate the237

connection between CR and air mass origin. Figure 1.b already shows that class 3, which238

by far has the highest IWV, is also related to the deepest convection. Neighboring class239

six includes less frequent higher-level clouds and has a reduced CF of 59% compared to240

class three. All other classes are dominated by low-level clouds with lower than 50% CF.241

Classes one and four (neighbor to class six) still have some mid to high-level cloud amounts242

(below 10%). Class one can be interpreted as representing arch-shaped cloud systems,243

and four resembles the fish class with a more open sky (also shown by reduction in CF).244

Classes two, five, and seven, being close in the continuum, have similar cloud ver-245

tical distributions and IWV ranging from 30 to 32 kgm−2; however, their organization246

is very different, as illustrated by the centroids (Fig. 1.c) and mean CFs (43%, 27%, and247

33%, respectively). Class two primarily comprises shallow cloud cover, corresponding to248

cloud systems resembling fish-type formations. Class five has the lowest CF and is an249

intermediary class type between classes two and seven. Finally, class seven has a pres-250

ence of low cloud amounts and negligible mid to higher cloud amounts, which visually251

resembles flower-type cloud distributions. Therefore, discretizing the continuum helps252

us visually find three main classes (one, two, and seven) frequently resembling features253

identified by humans, i.e., sugar, fish, and flower, respectively. However, it also shows254

the remaining diversity and their characteristics in a cohesive approach. Note that in con-255

trast to the challenges faced by Denby (2023) or Janssens et al. (2021) in isolating mean-256

ingful clusters, our N1 + N2 framework excels in simplifying the cloud organization com-257

plexities by efficiently categorizing the continuum into seven interpretable classes.258

4.2 Machine versus human labels259

While we checked for visual correspondence and class-wise characteristics in Sec-260

tion 4.1, our framework now creates the opportunity to quantify how human labels com-261

pare to the machine’s seven clusters. For this, we use the dataset from Schulz (2022),262

which is a 1km x 1km resolution manually labeled dataset for the NAT region and EUREC4A263

–6–



manuscript submitted to Geophysical Research Letters

Figure 1. a) Visualization of four hundred randomly selected satellite images arranged in

the continuum space. b) Same as a), but now, instead of an image, the discrete class determined

by N2 is shown (colored). For each class, statistics on low, mid-low, mid-high, and high cloud

amount (%) obtained from the CERES hourly data set are provided. c) Centroid COD images

belonging to seven clusters as identified by the discrete neural network (N2). The table shows per

class the average of cloud fraction (CF, %) from the GOES retrieval and integrated water vapor

(IWV, kgm−2) from ERA-5.
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time period (47 days). Approximately 50 scientists generated the dataset by identify-264

ing mesoscale patterns (SGFF) and marking variable-sized rectangles around homoge-265

neous organization states. Overlapping rectangles allowed a single grid point to be la-266

beled with multiple patterns by a scientist. Individual uncertainty is expressed through267

each pattern’s classification mask (cm) (Schulz, 2022). For example, if a grid point is within268

both gravel and sugar rectangles, the cm would be 0.5 for both and 0 for the other two269

patterns. Mutual agreement among scientists for each pattern at a grid point is deter-270

mined by averaging cm values, ranging from 0 to 100%.271

We hypothesize patterns with higher agreement are most likely attributed to their272

meaningful partitions within the continuum (as discussed in Section 4.1). For each time-273

stamp where at least one of the four patterns was identified within our domain, we se-274

lect a 256 x 256-pixel satellite image centered over the area of highest human agreement.275

In this way, we ensure the best possible intercomparison. This leaves us with 52 sam-276

ples of human-labeled satellite images (fish: 19.3%, gravel: 26.9%, flower: 28.8%, sugar:277

25.0%). Note that even with the highest consensus criteria, there’s still diversity in agree-278

ment. The inter-quartile agreement range is 35%, while the minimum and maximum agree-279

ments show consensus levels of 7% and 91%, respectively.280

The framework classifies 40% flower-labeled cloud systems in class seven (see the281

hit rate for each class in Fig. 2.a) while sugar-labeled cloud systems are 31% classified282

in class one and 20% in class four. Gravel has a total of 44% representation in classes283

one and five, whereas fish annotated labels are allocated 30% in class two and 20% each284

in classes four and five. Further, examining example images visually (Fig. 2.a), it be-285

comes apparent that images with lower human agreement notably diverge from the es-286

tablished definitions (provided in Stevens et al. (2020)) of SGFF cloud structures, in con-287

trast to images with high human agreement.288

Within the continuum (Fig. 2.b), flowers detected with high probability mostly oc-289

cur in areas of class seven, which was already well reflected in the centroids. Following290

a similar agreement is sugar (street-type cloud systems), which can be found in areas of291

class one. However, 38% of sugar samples, with a low agreement, lie in classes four and292

five, which are extended fish and flower type classes (Section 4.1). Note that even though293

these samples reside in those regions of the feature space, their confidence is less than294

25%. Similarly, in the gravel pattern, 21% samples belong to class six and exhibit min-295

imal human confidence. In contrast, the rest from the gravel class are positioned between296

classes one and seven, suggesting that gravel cloud cell sizes fall between sugar and flower.297

Rightly, no human-labeled samples are found in class three, which predominantly com-298

prise deep convective cells. Finally, the fish class exhibits relatively higher confidence in299

human labels, aligning well with the feature space characteristics, and lies in class two300

(fish) and four (extended fish-type cloud structures with large cloud-free regions). Hence,301

cloud systems characterized by higher agreement among human observers are situated302

within the designated regions, while those with lesser consensus are positioned within303

the ambiguous regions of the continuum.304

To compensate for the limited number of human label samples, we analyze the 30305

nearest satellite images to each human label as identified by N1 (Fig. 2.c). The major-306

ity of neighbors in human-identified fish-type cloud systems (more than 50%) belong to307

machine-identified classes two and four. The gravel regime includes members of all classes,308

with notable contributions from classes one, five, and seven, which exhibit cloud cell char-309

acteristics similar to gravel systems. The variability in the spread can be linked to the310

limited representation of gravel glass in Schulz (2022)’s dataset, as gravel occurrences311

were sporadic during the EUREC4A campaign. Additionally, 75% of gravel labels in our312

sub-samples had agreement levels below 0.25. In contrast, the flower regime mainly be-313

longs to class seven (46 %), further aligning with the high confidence of human labels.314

Regarding sugar-type cloud systems, 37 % of the neighbors fall into class one, while those315

with low human agreement are scattered across the remaining classes. Therefore, we find316
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Figure 2. a) To enhance visualization and reference for human labels, each column dis-

plays 256 x 256 COD images of a specific class, with the highest and lowest human agreement

shown in two rows. Below, the images in each column show the hit rate, representing the N2-

predicted class for each human label. b) Continuum space colored with different classes (1-7) in

the background, along with Human labels (fish, sugar, flower, gravel) in the foreground. Ascend-

ing symbol sizes with low (0-0.25), mid-low (0.25-0.50), mid-high (0.50-0.75), and high (0.75-1.00)

agreement are shown. c) Relative occurrence of 30 nearest neighbors to human-labeled fish,

gravel, flower, and sugar along the seven machine-labeled classes.

–9–



manuscript submitted to Geophysical Research Letters

that machine-labeled classes of the 30 nearest neighbors encompass the human-labeled317

ones, especially for sugar, flower, and fish, but not so clearly for gravel.318

Further, in S6, using ERA-5 large-scale environmental variables and cloud phys-319

ical properties, we demonstrate that the neighbors and the human crops share a simi-320

lar, homogeneous distribution of physical properties. Therefore, this analysis, for the first321

time, shows how to exploit the labels and physical properties of the semantically sim-322

ilar nearest-neighbors of any cloud system of interest further to enhance our understand-323

ing of the connection between organizations.324

5 Transitions325

To showcase an application that highlights the intelligible partitioning of the con-326

tinuum, we explore the ”sugar” to ”flower” (S2F) cloud system transition on February327

2, 2020. Using LES, Narenpitak et al. (2021) showed a strengthening of large-scale up-328

ward wind motion and an increase in total water path and optical depth as the trans-329

formation develops towards the flower. Here, we look at how the transition in COD is330

represented in the feature space. For example, where do the representations of transi-331

tions lie in the feature space? How smooth is the transition in the feature space?332

Covering the temporal developments, 47 COD images were collected (after apply-333

ing quality filter checks (see Section 2)), centered at 12.5◦ N, 50◦ W. They cover the time334

from 10:50 to 19:20 UTC, with a gap between 17:00 to 18:00 UTC likely caused by lo-335

cal sun glint. We ingested the available samples into the trained framework and collected336

their features (from N1) and machine labels (from N2).337

Sugar systems comprise small and shallow clouds with a large spread of individ-338

ual cloud cells in a domain, as evident in the beginning (10:50, Fig. 3.a). In contrast,339

flower systems appear in multiple deeper aggregates surrounded by large dry areas and340

are detected first in the southeast cover at 16:50 before becoming dominated at 19:20341

over the full domain. In general, the transition features lie at the border of well-defined342

clusters one (‘sugar’) and cluster seven (‘flower’) (Fig. 3.a), and the framework is able343

to capture their intermediary nature as they are neither perfect sugar nor flower type.344

We use wind speed (vertical and horizontal) to represent changes in atmospheric dynam-345

ics and changes in cloud cover to account for the changes in mesoscale structure from346

the ERA-5 product. A gradual increase in vertical velocity is observed as the system tran-347

sitions from S2F, and consequently, the surface wind speed gradually reduces its strength348

(Fig. 3.b). In addition, as expected, cloud fraction profiles show a gradual decrease as349

the transition progresses with time.350

Sugar-type mesoscale organizations typically occur during the daytime with shal-351

low boundary layers, while flowers occur at night with deeper boundary layers (Vial et352

al., 2021). We use the cosine distance between features, a unique quantifiable distance353

metric derived from N1, to show the gradual development of the S2F transition inside354

the feature space (Fig. 3.c). The transformation appears smooth initially, with relatively355

more significant changes occurring later (post-18:00 UTC) as the system approaches the356

flower state. We link the relatively high changes in cosine distance during flower stages,357

as opposed to initial sugar stages, to the progression of convective developments. It be-358

comes more accelerated as the system approaches the well-defined flower state.359

Therefore, the framework reveals unbiased relative changes from the point of in-360

terest (in space or time) solely based on changes captured in high-dimensional feature361

space. Also, unlike previous works of Denby (2020) or Janssens et al. (2021), the intel-362

ligible partitioning of the continuum allows us to see when a particular system transi-363

tions to another. S7 provides insights into the transition probability of one class trans-364

forming to another over the Barbados domain.365
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Figure 3. a) Five COD images covering the transition period between sugar and flower on

the second of February 2020. Their position in the continuum is indicated in the center of the

bottom row. b) Individual and standard deviation profiles of 1) vertical, 2) horizontal wind speed

describing the atmospheric dynamics, and 3) cloud cover showing changes in mesoscale structure

of the transition samples. c) Illustration of temporal transition development inside the feature

space: cosine distance of the first daytime image feature obtained at 10:50 UTC compared with

the cloud system evolution features for the rest of the day (blue). The last obtained image at

19:20 UTC towards the first image (orange) and θm represents the increasing cosine distance.

6 Conclusion366

In this work, we develop a two-step self-supervised learning framework to study shal-367

low convective organization properties and their transitions. By analyzing organization368
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in a continuous approach without imposing predefined classes, we include all occurring369

patterns and transitional states in our analysis. Moreover, the approach shows that mesoscale370

cloud organizations in NAT can be partitioned into seven reasonable CRs for the time371

period considered. Exploiting the cloud amount at different vertical levels from CERES372

measurements, we show how the classes are interlinked with each other within the con-373

tinuous space and thus capture the variability of tropical clouds in more detail.374

We compare human-labeled cloud systems (Schulz, 2022) with the machine-identified375

partitions and underscore challenges in human-labeling of cloud organizations. Cloud376

systems with higher agreement among humans lie in the ”correct” region of the feature377

space, while the ones with less consensus are in the ”wrong” regions of the feature space.378

Also, the potential and interpretability of the continuum space become more evident when379

examining the classification and physical properties between human labels and their near-380

est neighbors.381

Two of the seven CRs are strongly related to sugar and flower. Representing the382

S2F transition case study (Narenpitak et al., 2021) for February 2, 2020, in the contin-383

uum illustrates the capability to identify and represent the observed transformations smoothly384

in their clearly interpretable regions. We evaluate the transition’s large-scale environ-385

mental parameters and observe a gradual increase in vertical wind speed and a gradual386

decrease in cloud amount. Finally, we showcase the use of cosine distance metric in cap-387

turing clear signatures of the S2F transition, which can help better understand cloud evo-388

lution. This is crucial for improving climate models and predicting how cloud behavior389

may change in a changing climate.390

One of the limitations of this study is the use of only daytime cloud retrievals; hence,391

the organizations’ nocturnal nature cannot be captured. Future studies will use infrared392

satellite measurements for 24-hour coverage. We aim to fine-tune our framework with393

ground-based observations of the EUREC4A campaign and extend our analysis to a cli-394

mate scale. The developed workflow could be a testing ground for investigating the newly395

adjusted subgrid parameterization effects in high-resolution global digital twins (Hoffmann396

et al., 2023) for mesoscale cloud systems or atmospheric processes at different scales.397

7 Open Research398

CERES, Edition-4A is available at (NASA et al., 2017), and ERA-5 reanalyses data399

(Hersbach et al., 2023) is available from the Copernicus climate change services. GOES-400

16 data has been accessed from the National Oceanic and Atmospheric Administration401

(NOAA), Climate Data Records (CDR) facility NOAA (2024b). Here, the COD retrieved402

using DCOMP algorithm (Walther & Heidinger, 2012) from GOES-16 measurements is403

available at NOAA (2024a). The code to produce this work and pre-trained weights of404

N1 and N2 can be accessed at Chatterjee, Schnitt, et al. (2023).405
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