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S1 Domain description

Figure S1 (Domain). GOES’s COD image on February 2, 2020, at 13:00 UTC with coastal

boundaries (thick yellow) and Barbados Cloud Observatory (red dot). One (out of five) random

and a fixed (Barbados domain) 256 x 256-pixel crop over EUREC4A domain are shown. During

the learning process, each crop is twice randomly sub-cropped (pink and green dashed lines) by

the network, leading to a spatial dimension of 75% (192 x 192 pixels) of the original crop. The

Barbados domain enables comparison with ground-based measurements in future studies.
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S2 Network architectures

1. Continuous network (N1)

1.1 Definition of the network input

N satellite images of COD built the input training data set X = {x1, x2, x3....., xN} of the

deep learning architecture illustrated in Fig. S2.1 (Schematic diagram of N1). The only intuitive

augmentation we opt for here is global random cropping for learning continuous representations.

For random cropping, we opt for two global crops (x1, x2) with a random 0.75 fraction (192 x

192 pixels) of the parent satellite image to focus on the global distribution of the cloud system.

Figure S2.1 (Schematic diagram of N1) shows two random crops (teacher t and student s) are

fed into different branches of the network. Therefore, it becomes challenging for one side of the

network to know what part of the parent satellite image the other is being fed with; therefore,

during the learning process, it focuses on the critical semantics of global cloud distribution.

1.2 General network architecture

The neural network’s task is to learn visual features from each satellite image. A function g

represents the transformations performed by the network’s vision Transformer (ViT) as g(xi) = hj

with i = 1...N, j = 1....M that maps the image xi into the array of features h ={h1, h2, h3....., hM},

where M is the output dimension of ViT feature arrays. The selected dimension of M is equal

to 384, which means the information contained in the 192 x 192 satellite observation space is

being non-linearly dimensionally reduced to 384 vector space. ViT is a sequence of self-attention

(Vaswani et al., 2023), and feed-forward layers paralleled with skip connections. The mechanism

of ViT (Dosovitskiy et al., 2021) takes non-overlapping contiguous image patches of resolution

NxN pixels, where N=16 for this work, along with their positional encoding as an input. Without
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the positional encoding, the output feature vector from ViT is invariant to the arrangement of

these NxN patches. Meanwhile, with positional encoding, it learns the relative position of the

objects in the image. Therefore, the model learns the relationship between the patches, and thus,
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Figure S2.1 (Schematic diagram of N1). This work adopts a deep learning architecture

from Caron et al. (2021), where x1 and x2 are 75% random crops of the parent satellite image x.

The student and teacher vision transformers (gθs/t) have the same number of trainable parame-

ters (weights and biases) θ. The feature output hxi from gθ subsequently connects to Proj(hxi),

a 3-layer multilayer perceptron. Softmax (Bridle, 1989) normalizes MLP’s raw activation (Zs/t),

and centering maintains teacher activations (Zt) near batch mean properties. Ps and Pt repre-

sent normalized student distribution of Zs and centered and normalized distribution of teacher

activation Zt. Back propagation in student network optimizes its parameters through stochastic

gradient descent (SGD), minimizing cross-entropy between Pt and Ps. Teacher parameters (gθt)

are exponential moving averages (EMA) of students (gθs), aligning the networks.
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it learns how a particular arrangement of cloud distribution usually occurs. The ViT architecture

can identify long-range spatial dependencies (Khan et al., 2022) by learning relevant information

in the image. The activation function used in the ViT is Gaussian error linear units (Hendrycks &

Gimpel, 2023) (GELU), as the GELU function behaves smoother than other activation functions

when values are closer to zero and thus is more effective at learning complex patterns in the data.

Further, hj is non-linearly projected to Zl with l = 1....L using a three-layer multilayer per-

ception (MLP) (Rumelhart et al., 1986) activated by GELU followed by l2 normalization and

a linear layer. Here Z ={Z1, Z2, Z3....., ZL} is the final output dimension of the pipeline. The

feature space dimensions are decided based on input dimensions, the complexity of information

context, and neural network complexity. Caron et al. (2021) suggest that if the training dataset

size is much less than 1.3 million, then the final dimensions of Zl should be reduced compared to

the default dimensions L = 65536. We tested rather two different values (L = 128 and L = 8192)

and found a much better suitability of the larger value from visual inspection. Our aim here is

not to find the optimal feature vector size but a functional size that can optimize the network

and smoothly converge the training. Therefore, the optimal dimension size of the dimensionally

reduced images in self-supervised learning is not the focus of this work. Figure S2.1 (Schematic

diagram of N1) shows two different branches in the network: student and teacher. The point

to note here is that they have the same general architecture and pipeline, but the parameters

(weights and biases) learned during training are different.

1.3 Upper branch of the network (Student)

The upper branch of the network, represented in Figure S2.1 (Schematic diagram of N1), by

the student transformer gs and further projected by MLP, ingests one random augmented global
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crop of the parent satellite image and outputs feature vector Zs. Softmax normalizes Zs such that

all values are between 0 and 1, and the integration over all L = 8192 elements of its probability

distribution yields 1. This probability distribution of the feature vector Zs is input to the cross

entropy loss function described later. The soft-max probability for an input xi of the student

network can be described as

p(i)s =
exp(1

ζ s
Z(i)

s )∑k
m=0 exp(

1
ζ s
Z

(m)
s )

(1)

where ζs is the temperature parameter for the student network and is set to 0.1. The ζ parameter

controls the sharpening of the probability distribution. A higher value of ζ implies smoothed

probability.

1.4 Lower branch of the network (Teacher)

The lower branch of the network represented in Figure S2.1 (Schematic diagram of N1) by

the teacher transformer applies function gt to the other remaining global crop of the parent

satellite image, and the MLP projects outputs feature vector Zt. Unlike Ps, before normalizing

Pt individually with soft-max, vector Zt is centered around the mean properties of all images in

a batch. A batch refers to the number of samples propagating through the neural network before

updating the model parameters. Centering is done to prevent any feature from dominating, as

the mean will be somewhere in the middle of the batch sample properties. While applying the

temperature ζt parameter for the teacher, it is kept lower (ζt= 0.05) to sharpen the probability of

Zt artificially. Therefore, the feature vector Zt of the teacher branch is centered and sharpened

before it becomes input for the loss function.
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1.5 Cross entropy loss of the network

When the feature vectors of the two branches capture similar information from the global crops

of the satellite parent image, the loss becomes lower and vice-versa. That’s how the network

branches are encouraged to focus on the common image characteristics, progressively making the

feature vectors similar.

min
θs

∑
x∈(x1,x2)

Pt(x)log(Ps(x)) (2)

This is achieved through the cross-entropy loss function applied on the centered and sharpened

probability distribution of the teacher branch Pt and smoothened distribution of the student

branch Ps. As shown in equation 2, the loss function minimizes θs, i.e., the student network’s

parameters (weights and biases). Teacher network parameters or Pt guide the student network

during the training phase, as discussed in Subsection 1.6.

1.6 Optimization for convergence

The loss function minimization happens progressively layer by layer, derivating the loss function

with respect to θs parameters and adjusting parameter values in each layer by backpropagation.

At the end of the minimization, we obtain a configuration of parameters for the student network

that will be ready for the next iteration with a new batch of images. Stochastic gradient descent

(Bottou, 2012) (SGD) is only applied to the student network parameters θs, and the teacher

parameters θt are built through past iterations of the student network (Caron et al., 2021). As

shown in equation 3, θt is the exponential moving average (EMA) of θs with λ following a cosine

scheduled from 0.996 to 1 during training.

θt = λθt + (1− λ)θs (3)
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During optimization, a collapse can occur regardless of the input provided to the model; the

output becomes constant or is predominantly influenced by a single dimension. In other words,

the model’s predictions across different dimensions or features become uniform, leading to zero

ideal loss value. Therefore, centering and sharpening introduced in Subsection 1.3 and 1.4 and

EMA (Subsection 1.6) are the easiest acceptable ways to prevent collapsing in the described

teacher-student framework.

1.7 Training and libraries

To set up this architecture, we use the software package DINO from Facebook Artificial Intelli-

gence Research (FAIR) (Caron et al., 2021) based on PyTorch. The open-source VISSL computer

vision library (Goyal et al., 2021) adapted the DINO neural network to our requirements. Based

on sensitivity tests on training loss, visualization of dimensionally reduced feature space, and

ablation study of the original network on longer training showing improving performance, we

train the model up to 800 epochs. Training the neural network for 800 epochs on 4 V100 GPUs

took 16.5 hours or 66 core hours.

2 Discrete network (N2)

We briefly describe the functional mechanism of the discrete neural network (N2) and its learn-

ing scheme. Refer to Section 3 from (Chatterjee et al., 2023) for a detailed network description.

The data loading nature of N2 remains the same as of N1 (Subsection 1.1 of S2). The general

architecture has a pipeline similar to the continuous approach set up, with the image processing

backbone here being a convolutional residual network with 50 layers of depth (ResNet-50, (He

et al., 2015)), followed by a projection head of MLP with ReLU activations (Fukushima, 1975)

and a linear layer.
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Figure S2.2 (N2 outputs). a) Sparse 2D feature space obtained from N2 by applying the

tSNE algorithm on zx features of 51,000 satellite images. The perplexity and epsilon derived

from auto-configuration for t-SNE runs are 30 and 1150, respectively. b) Same as Figure 1.b in

the main text, this uses direct clustering on satellite images with N2, overlaying labels on the

continuous feature space from N1 for comparison.

Therefore, similar to Figure S2.1 (Schematic diagram of N1), for the upper branch, the features

obtained at the end of the pipeline (like Zs in the continuous approach) are clustered using

spherical k-means (where k=7), and features are allocated a pseudo-label (T) according to their

closest centroid. Further, the features obtained from the lower branch are compared with the

calculated upper branch centroids using cosine distance (DT ). Finally, T from the upper branch

and DT from the lower branch are inputs of the cross-entropy loss function as discussed in

Subsection 1.5 of S2 and are progressively minimized during training. We call the labels pseudo-

labels during the training stage as they can change to minimize the loss function better. Finally,

at the end of the training, we collect the labels for each satellite image and further evaluate their

separation using auxiliary datasets.

February 16, 2024, 12:06pm



CHATTERJEE ET AL. 2023: CAPTURING THE DIVERSITY OF TRADE WIND CUMULUS X - 11

S3 Determination of optimal cluster number

We apply the following metrics to two-dimensionally reduced representations (using tSNE) on

hj from N1 to identify the best optimal cluster:

Distortion metric: The distortion metric considers the cluster’s tightness by computing the

sum of squared distances (SSD) from each point to its assigned center, which tends to decrease

toward 0 as we increase the number of clusters (K). This shows an exponential shape leveling

off such that the shape of the curve results in an elbow, but the optimal cluster or the point of

inflection represents the point where adding additional clusters stops adding useful information.

Also, adding clusters beyond the inflection point also makes the clusters harder to separate; thus,

we start to observe diminishing returns by increasing k. The elbow blue line curve in figure S3

(Metric scores) shows k = 7 as the sweet spot of optimal clustering.

Silhouette metric: Apart from taking cluster closeness into account, this metric also considers

distances between points of one cluster and the nearest other cluster center. This means that

in order to have a good silhouette score, clusters generally need to be tighter and farther apart

from each other. If the Silhouette coefficient for each point is close to 0, it means that the point

is between two clusters; if it is close to -1, then that point is in the wrong cluster, and if it is

close to +1, it is in the correct cluster. The average silhouette coefficient calculated for all 51,000

samples shows two local maxima at values of 0.37 (k=3) and 0.36 (k=7), as shown in Figure S3

(Metric scores). Note that the values are not close to one, meaning the cluster doesn’t lie very

far from each other, further suggesting the continuous nature of cloud organizations.
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Figure S3 (Metric scores). Results of three different metric scores of distortion, silhou-

ette, and Calinski-Harabasz, shown along with varying cluster numbers along the abscissa. The

vertical-dashed line is drawn at cluster 7, which shows the chosen inflection point for the optimal

cluster.

Calinski-Harabasz metric: In comparison, the Calinski-Harabasz metric assesses the separa-

tion and compactness of the clusters. It denotes the ratio of the sum of inter-cluster dispersion

and the sum of intra-cluster dispersion for all clusters. A good clustering result has a high

Calinski-Harabasz Index value. The maximum lies at cluster 7, having a score of 43000.

In summary, the two metrics directs towards k=7, and the difference between the two maxima

(k=3 and 7) in silhouette is insignificant. Therefore, we take the common agreement of k=7 as

the optimal cluster number and train N2 (Section 2 of S2) from scratch using 7 clusters.
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S4 sensitivity tests

Here, we show that the choice of seven classes has passed several sensitivity tests, such as

the dimensionality-reduction technique, size of the dataset, initial weights of the network, and

different global crop sizes.

S4.1 Different data sample size

Figure S4.1 (Different data sample size). t-SNE initialized by PCA and using cosine

distance as a unit of distance while constructing the two-dimensional space, on a sample size of

a) 10,000, b) 20,000, c) 30,000 d) 40,000 data points.

Text S4.2 Dimensionality reduction techniques Manifold extraction algorithm is a generic

term used for nonlinear dimensional reduction, or we can call them generalized PCA, which is

sensitive to nonlinear structures in the data.

(Denby, 2020) train their neural network using ‘Euclidean distance’ as a metric in the loss func-

tion. However, for dimensionality reduction, use Isometric feature mapping (Isomap, (Tenenbaum

et al., 2000)), an extension of kernel PCA. Isomap uses ‘geodesic distance’ as a measure of dis-
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tance while reducing the dimensions. The geodesic distance looks for the shortest curve in the

high dimensional space. Therefore, there are some limitations here:

1. Euclidean distance and high dimensions: First, we would like to point out that Euclidean

distance breaks down in high dimensions (Aggarwal et al., 2001). Euclidean distance is sensitive

to sparse data distribution in high dimensions. The direction becomes more critical since we

normalize our feature vectors (the magnitude becomes one). Therefore, cosine distance (used in

N1 and N2) is far more suitable for training.

2. Global versus local structures in the data: Second, we would like to mention that the

Isomap algorithm considers maintaining the global pairwise distance (Gao et al., 2021). In other

words, it neglects the local structure but only considers the global one.

Overcoming the limitations: t-SNE (van der Maaten & Hinton, 2008) preserves the neighboring

local distances better.

1. We inject the global structure into our initialization of tSNE through PCA, which dictates

which regions of the 2D space the points will appear.

2. Second, while reducing the dimensions, we keep cosine distance as a distance measurement

criterion in t-SNE.
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Figure S4.2 (Dimensionality reduction techniques). Different dimensionality reduction

techniques applied on our high dimensional feature space for cluster number optimization, which

is constructed using cosine distance (as unit of measuring distance between two feature vectors).

See the main text for an explanation of the distortion, Silhouette, and Calinski-Harabasz algo-

rithms. We can see the consensus between t-SNE and MDS, while Isomap and LLE could not

come to a logical conclusion.

For our high dimensional feature space, we demonstrate optimal cluster number sensitivi-

ties to different dimensionality reduction techniques in Figure S4.2 (Dimensionality reduction

techniques). In addition to t-SNE and Isomap, we also show multi-dimensional scaling (MDS)

and local linear embedding (LLE) methods.

1. MDS, distance-wise, is more geometrically aware as it tries to preserve the inner products

between the feature vectors.
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2. LLE pays attention to only the local structure of the data. LLE also assumes that the high

dimensional data is locally linear and a sample can be represented linearly by several samples in

the neighborhood.

S4.3 Different initial weights of the network

Figure S4.3 (Initial weights of the network). N1 and N2 initialized with different random

seeds. As compared to main figure 1.b, we find only the orientation of the low dimensional

projection to change where the black dashed line is the original location of class 1 and the blue

dashed line is with a different random seed. The rest (sorting order and classification) remains

the same.
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S4.4 Different overlap threshold

Figure S4.4 (overlap thresholds). Selecting different global crop size (65%, 75%, 85%) and

training N1. t-SNE is intialized by PCA, and using cosine distance as a unit of distance, we find

k =7 as the common consensus among the three.

Therefore, Figure S4 (1-4) mainly argues about four things:

1. While reducing dimensions, it is important to consider how the original high-dimensional

space was constructed. What distance was used while computing affinities? Then, use the same

distance while constructing the lower dimensions.

2. It is important to consider a dimensionality reduction technique that considers both the

local and global structure of the high dimensional data.

3. Varying number of samples from (10,000 to 50,000) still shows k = 7 as the most expressive

optimal cluster number

4. Varying the Global crops from the 65th to 85th fraction shows crop size might not be a

strong influencing factor in finding the optimal cluster number.
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S5 Attention maps of N1

From a human perspective, cloud system distributions may appear to be relatively chaotic and

noisy, and while trying to decide their visual characteristics, we may pay attention to some or

all of the following: the organizational semantics of convective organization, the semantics of the

clear sky regions, deep convective cell distributions, open and closed cells, and shallow convection

distributions.

Figure S5 (Visualization of different layers). Four cloud systems with different organi-

zations are selected as examples. Their respective self-attention maps from the final head of the

teacher ViT (Figure S2.1 (Schematic diagram of N1)) show for the 6 layers of the self-attention

head. The color bar indicates the range of the Gaussian error linear units (GELU) activation

function for the activation maps. Higher values indicate more important features. All experi-

ments are run with a default of six self-attention heads.
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To better understand N1’s decision and to build trust in the network’s performance, it is crucial

to see what the trained N1 architecture has learned to pay attention to when deciding the features

of cloud system distributions.

Given a satellite image, the activation space in a neural network allows us to visualize whether a

neuron should be activated, indicating what part of the image is important for the network. The

self-attention layers in ViT try to decompose the input samples and learn relatively independent

features. Thus, this experiment aims to see whether the activation space reveals the abstract

patterns that we, as humans, can make sense of while deciding the feature’s importance. In this

setup, we use a single satellite image sample and pass it through the trained model, freezing the

weights. The granularity (N x N), or the number of pixels in a single patch, is controlled by the

patch size, which is 8 x 8 pixels in this experiment. This is just for convenience and does not

change the result compared to the 16x16 setting used for the main experiment.

Figure S5 (Visualization of different layers) shows that layer 1 activates at the dominant con-

vective cells and deactivates at thin spread-out convection while layer 2 activates the thin spread

convection. Layer 3 seems to try to learn and activate the clear sky features. In contrast to layer

one, layer 4 activates the rest of the prominent convections. Like layer 2, layer 5 tries to look

at the rest of the thin-spread convection. Layer 6 is uncertain and is not obvious to our eyes,

and it may somehow try to deactivate for all the clear sky regions in the majority of cases and

look for boundary semantics in the satellite image. Examining other example cases shows the

same consistency, and therefore, it can be concluded that although the cloud system distributions

are different, each attention map has learned to pay attention to relatively different, consistent,
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sensible semantics of the cloud systems distribution and further indicates that we can trust the

embedding space of the network.
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S6 Environmental characteristics

Figure 2.c in Section 4.2 of the main manuscript showed the occurrences of 30 nearest neighbors

of human-labeled satellite images (mentioned as human crops below) with machine-identified

seven classes. Here, we aim to assess their existing environmental conditions.

Figure S6. Comparison of 52 human labels (hl) environmental conditions with their nearest

30 neighbors (nn) using ERA-5. The top to bottom rows shows weighted-average and standard

deviation profiles of cloud water content (clwc, kg kg −1), cloud cover (cc), and relative humidity

(rh, %) with the exception of cc variability shown in the interquartile range.

This complementary experiment can further help to trust human crops’ relative positions in

the feature space. If the human crops and the neighbors have a similar homogenous distribution

of their physical properties, this implies that the human crops are in the consistent region of the

feature space. Here, we take the ERA-5 vertical profile of cloud water content, cloud cover, and
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relative humidity (Fig. S6) to compare the weighted averaged vertical profiles between human

labels and their 30 nearest neighbors. When calculating these properties for human-labeled

scenes, we weigh them with the level of agreement In this way, the contribution of well-agreed

organizations will contribute more than less agreed cloud organizations. We observe that there

is hardly any difference in the vertical profiles except for the relative humidity of sugar and cloud

cover for flowers. This may be due to quantitatively using 30 times more data.
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S7 Transition probability

Based on our collected satellite imagery derived over Barbados cloud observatory (BCO, see

Figure S1 (Domain)), we performed a transition probability analysis for all machine-identified

cloud regimes. Here, we exploit the 10-minute temporal resolution of the data set to observe the

transformation of cloud systems with time. Note that some of the temporal consecutive satellite

imagery could be missing because of the pre-processing step.

Figure S7. Matrix representing the probability of transition of each machine identified cloud

regime to another over the Barbados cloud observatory. The total number of samples for this

analysis are 5,470.

The goal is to understand how close classes should be in the feature space to make a transition

and derive a transition probability from one cloud regime to another. We observe that sugar has

the highest possibility (62%) of transforming to flower-type cloud systems (Figure reviewer-2:3).

A mature developed fish could become a fish with more open sky with 68% probability (possibly
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due to cold pool downdraft effect). The deep convective systems follow their neighboring class in

the continuum, i.e., class six. Fish with more open sky is followed by mature fish-type structures.

Class five, which has cloud cells typically found in sugar, gravel, and flower, has 49% chance of

a follow-up by fish with more open sky. Finally, the flower class has 36% chance of a transition

to class 5 or 30% chance to sugar type distributions.
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