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S1 Domain description

Figure S1 (Domain). GOES’s COD image on February 2, 2020, at 13:00 UTC with coastal

boundaries (thick yellow) and Barbados Cloud Observatory (red dot). One (out of five) random

and a fixed (Barbados domain) 256 x 256-pixel crop over EUREC4A domain are shown. During

the learning process, each crop is twice randomly sub-cropped (pink and green dashed lines) by

the network, leading to a spatial dimension of 75% (192 x 192 pixels) of the original crop. The

Barbados domain enables comparison with ground-based measurements in future studies.
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S2 Network architectures Here, N1 and N2 (Chatterjee et al., 2023) architectures are de-

scribed in detail.
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Figure S2.1 (Schematic diagram of N1). This work adopts a deep learning architecture

from Caron et al. (2021), where x1 and x2 are 75% random crops of the parent satellite image x.

The student and teacher vision transformers (gθs/t) have the same number of trainable parameters

(weights and biases) θ. The feature output hxi from gxi subsequently connects to Proj(hxi), a

3-layer multilayer perceptron activated by Gaussian error linear units (GELU, with the last layer,

l2 normalized). Softmax (Bridle, 1989) normalizes MLP’s raw activation (zs/t), and centering

maintains teacher activations (zt) near batch mean properties. Ps and Pt represent normalized

student distribution of zs and centered and normalized distribution of teacher activation zt. The

student network optimizes its parameters through stochastic gradient descent (SGD), minimizing

cross-entropy between Pt and Ps. Teacher parameters (gθt) are exponential moving averages

of students (gθs), aligning the networks. This interaction forms the architecture’s backbone,

enhancing performance and knowledge transfer in the deep learning framework.
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1. Continuous network (N1)

1.1. Definition of the network input

N satellite images of COD built the input training data set X = {x1, x2, x3....., xN}

of the deep learning architecture illustrated in Fig. S2.1 (Schematic diagram of N1).

The only intuitive augmentation we opt for here is global random cropping for learning

continuous representations. For random cropping, we opt for two global crops (x1, x2)

with a random 0.75 fraction (192 x 192 pixels) of the parent satellite image to focus on

the global distribution of the cloud system. Figure S2.1 (Schematic diagram of N1) shows

each random crop fed into different branches of the network, and from the learning aspect

of the neural network, it becomes challenging for one side of the network to know what

part of the parent satellite image the other is being fed with; therefore, it focuses on

learning the critical semantics of global cloud distribution.

1.2. General network architecture

The neural network’s task is to learn visual features from each satellite image. A

function g represents the transformations performed by the network’s vision Transformer

(ViT) as g(xi) = hj with i = 1...N, j = 1....M that maps the image xi into the array of

features h ={h1, h2, h3....., hM}, where M is the output dimension of ViT feature arrays.

The selected dimension of M is equal to 384, which means the information contained in the
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192 x 192 satellite observation space is being non-linearly dimensionally reduced to 384

vector space. ViT is a sequence of self-attention (Vaswani et al., 2023), and feed-forward

layers paralleled with skip connections. The mechanism of ViT (Dosovitskiy et al., 2021)

takes non-overlapping contiguous image patches of resolution NxN pixels, where N=16

for this work, along with their positional encoding as an input. Without the positional

encoding, the output feature vector from ViT is invariant to the arrangement of these NxN

patches. But with positional encoding, it learns the relative position of the objects in the

image. This becomes helpful if we want the model to learn the relationship between the

patches. Thus it learns how a particular arrangement of cloud distribution usually occurs,

and it learns the constrained settings behind the appearance of a given cloud distribution.

Therefore, the ViT architecture can identify long-range spatial dependencies (Khan et al.,

2022) by learning relevant information in the image. The activation function used in the

ViT is Gaussian error linear units (Hendrycks & Gimpel, 2023) (GELU), as the GELU

function behaves smoother when values are closer to zero and thus is more effective at

learning complex patterns in the data.

Further, hj is non-linearly projected to zk with k = 1....K using a three-layer multilayer

perceptron activated by GELU followed by l2 normalization and a linear layer. Here

z ={z1, z2, z3....., zK} is the final output dimension of the pipeline. The feature space

dimensions are decided based on input dimensions, the complexity of information context,

and neural network complexity. Caron et al. (2021) suggest that if the training dataset size

is much less than 1.3 million ImageNet datasets (Russakovsky et al., 2015), then the final

dimensions of zk be reduced compared to the default dimensions of 65536. We iterated on
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a smaller K dimension of 128 and a higher K dimension of 8192; in this case, we visually

found the latter working better to understand the similarity between cloud fields. Our

intuition is giving the final output feature more dimensions gives the model more freedom

to observe small semantic details of cloud distributions. Also, since the loss function used

here (explained in section 1.3) is non-contrastive, higher dimensional features are still

computationally inexpensive. Our aim here is not to find the optimal feature vector size

but a functional size that can optimize the network and smoothly converge the training.

Therefore, the optimal dimension size of the dimensionally reduced atmospheric fields in

self-supervised learning is not the focus of this work. Figure S2.1 (Schematic diagram of

N1) shows two different branches in the network: student and teacher. The point to note

here is that they have the same general architecture and pipeline, but the parameters

(weights and biases) learned during training are different.

1.3. Upper branch of the network

The upper branch of the network, represented in Figure S2.1 (Schematic diagram of

N1), by the student transformer gs and further projected by multi-layer perceptron (MLP)

(Rumelhart et al., 1986), ingests one random augmented global crop of the parent satellite

image and outputs feature vector zs. zs is normalized and converted to a probability

distribution. This means that the original feature vector zs (which has 8192 dimensions);

some values could be negative or greater than one, but after applying soft-max (Bridle,

1989), it normalizes to (0,1), and all the 8192 dimensions will add to one. Additionally,

the larger input components will correspond to larger probabilities. This probability

distribution of the feature vector zs is an input to the cross entropy loss function described
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later. The soft-max probability for an input xi of the student network can be described

as

p(i)s =
exp(1

ζ s
Z(i)

s )∑k
m=0 exp(

1
ζ s
Z

(m)
s )

. (1)

where ζs is the temperature parameter for the student network and is set to 0.1. The

ζ parameter controls the sharpening of the probability distribution. A higher value of ζ

implies smoothed probability.

1.4. Lower branch of the network

The lower branch of the network represented in Figure S2.1 (Schematic diagram of

N1) by the teacher transformer applies function gt to the other remaining global crop of

the parent satellite image, and the MLP projects outputs feature vector zt. Unlike ps,

before normalizing pt individually with soft-max, vector zt is centered around the mean

properties of all images in a batch. A batch refers to the number of samples propagating

through the neural network before updating the model parameters. Centering is done to

prevent any feature from dominating, as the mean will be somewhere in the middle of the

batch sample properties. While applying the temperature ζt parameter for the teacher,

it is kept lower to 0.05 to sharpen the probability of zt artificially. Therefore, the feature

vector zt of the teacher branch went through centering and sharpened soft-max before

being input to the loss function.

1.5. Cross entropy loss of the network

When the feature vectors of the two branches capture similar information from the

global crops of the satellite parent image, the loss becomes lower and vice-versa. That’s
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how the network branches are encouraged to focus on the common image characteristics,

progressively making the feature vectors similar.

min
θs

∑
x∈(x1,x2)

pt(x)log(ps(x)) (2)

This is achieved through the cross-entropy loss function applied on the centered and

sharpened probability distribution of the teacher branch pt and smoothened distribution

of the student branch ps. As shown in equation 2, the loss function minimizes θs, i.e.,

the student network’s parameters (weights and biases). Teacher network parameters or

pt guide the student network during the training phase, as discussed in subsection 1.6.

1.6. Optimization for convergence

The loss function minimization happens progressively layer by layer, derivating the loss

function with respect to θs parameters and adjusting parameter values in each layer by

backpropagation. At the end of the minimization, we obtain a configuration of parameters

for the student network that will be ready for the next iteration with a new batch of

images. Stochastic gradient descent (Bottou, 2012) (SGD) is only applied to the student

network parameters θs, and the teacher parameters θt are built through past iterations of

the student network (Caron et al., 2021). As shown in equation 3, θt is the exponential

moving average (EMA) of θs with λ following a cosine scheduled from 0.996 to 1 during

training.

θt = λθt + (1− λ)θs (3)

During optimization, a collapse can occur regardless of the input provided to the model;

the output becomes constant or is predominantly influenced by a single dimension. In

other words, the model’s predictions across different dimensions or features become uni-

November 3, 2023, 12:55pm



CHATTERJEE ET AL. 2023: CAPTURING THE DIVERSITY OF TRADE WIND CUMULUS X - 11

form, leading to zero ideal loss value. Therefore, centering and sharpening introduced

in subsection 1.3 and 1.4 and EMA (subsection 1.6) are the easiest acceptable ways to

prevent collapsing in the described teacher-student framework.

1.7. Training and libraries

To set up this architecture, we use the software package DINO from Facebook Artificial

Intelligence Research (FAIR) (Caron et al., 2021) based on PyTorch. The open-source

VISSL computer vision library (Goyal et al., 2021) adapted the DINO neural network to

our requirements. Based on sensitivity tests on training loss, visualization of dimension-

ally reduced feature space, and ablation study of the original network on longer training

showing improving performance, we train the model up to 800 epochs. Training the neural

network for 800 epochs on 4 V100 GPUs took 16.5 hours or 66 core hours.
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S2 Network architectures

Figure S2.2 (N2 outputs). a) Sparse 2D feature space obtained from N2 by applying the

tSNE algorithm on zx features of 51,000 satellite images. The perplexity and epsilon derived

from auto-configuration for t-SNE runs is 30 and 1150. b) Same as b but using direct clustering

on the satellite images using N2. Here, the labels are overlaid on the continuous feature space

from N1 for comparison with Figure 2.b in the main article.

2. Discrete network (N2)

We briefly describe the functional mechanism of the discrete neural network (N2) and its learn-

ing scheme. Refer to section 3 from (Chatterjee et al., 2023) for a detailed network description.

The data loading nature of N2 remains the same as of N1 (subsection 1.1 of text S2). The general

architecture has a pipeline similar to the continuous approach setup, with the image processing

backbone here being a convolutional residual network with 50 layers of depth (ResNet-50, (He

et al., 2015)), followed by a projection head of MLP with ReLU activations (Fukushima, 1975)

and a linear layer. Therefore, similar to Figure S2.1 (Schematic diagram of N1), there are two

branches. For the upper branch, the features obtained at the end of the pipeline (like Zs in
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the continuous approach) are clustered using spherical k-means (where k=7), and features are

allocated a pseudo-label (L) according to their closest centroid. Further, the features obtained

from the lower branch are compared with the calculated upper branch centroids using cosine

distance (DL). Finally, L from the upper branch and DL from the lower branch are inputs of

the cross-entropy loss function as discussed in subsection 1.5 of text S2 and is progressively min-

imized during training. We call the labels as pseudo-labels during the training stage as they can

change to minimize the loss function better. Finally, at the end of the training, we collect the

labels for each satellite image and further evaluate their separation using auxiliary datasets.
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S3 Identify the optimal class

Figure S3 (Metric scores). Results of three different metric scores of distortion, silhou-

ette, and Calinski-Harabasz, shown along with varying cluster numbers along the abscissa. The

vertical-dashed line is drawn at cluster 7, which shows the chosen inflection point for the optimal

cluster.

Text S3: Determination of optimal cluster number

We apply the following metrics to two-dimensionally reduced representations (using

tSNE) on hj from N1 to identify the best optimal cluster:

1. Distortion metric: The distortion metric considers the cluster’s tightness by com-

puting the sum of squared distances (SSD) from each point to its assigned center, which

tends to decrease toward 0 as we increase the number of clusters (K). This shows an

exponential shape leveling off such that the shape of the curve results in an elbow, but
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the optimal cluster or the point of inflection represents the point where adding additional

clusters stops adding useful information. Also, adding clusters beyond the inflection point

also makes the clusters harder to separate; thus, we start to observe diminishing returns

by increasing k. The elbow blue line curve in figure S3 (Metric scores) shows k = 7 as the

sweet spot of optimal clustering.

2. Silhouette metric: Apart from taking cluster closeness into account, this metric

also considers distances between points of one cluster and the nearest other cluster center.

This means that in order to have a good silhouette score, clusters generally need to be

tighter and farther apart from each other. If the Silhouette coefficient for each point is

close to 0, it means that the point is between two clusters; if it is close to -1, then that

point is in the wrong cluster, and if it is close to +1, it is in the correct cluster. The

average silhouette coefficient calculated for all 51,000 samples shows two local maxima at

values of 0.37 (k=3) and 0.36 (k=7), as shown in Figure S3 (Metric scores). Note that

the values are not close to one, meaning the cluster doesn’t lie very far from each other,

further suggesting the continuous nature of cloud organizations.

3. Calinski-Harabasz metric: In comparison, the Calinski-Harabasz metric assesses

the separation and compactness of the clusters. It denotes the ratio of the sum of inter-

cluster dispersion and the sum of intra-cluster dispersion for all clusters. A good clustering

result has a high Calinski-Harabasz Index value. The maximum lies at cluster 7, having

a score of 43000.

In summary, the two metrics directs towards k=7, and the difference between the two

maxima (k=3 and 7) in silhouette is insignificant. Therefore, we take the common agree-
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ment of k=7 as the optimal cluster number and train N2 (section 2) from scratch using 7

clusters.
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S4 Visualizing the internal layers of the trained network

Text S4 Here, we investigate whether N1 learns reasonable visual features of satellite

images. This will help us to understand our network’s decision-making and may boost

our confidence in the neural network’s final representations Zk. From a human perspective,

cloud system distributions may appear to be relatively chaotic and noisy, and while trying

to decide their visual characteristics, we may pay attention to some or all of the following:

the organizational semantics of convective organization, the semantics of the clear sky

regions, deep convective cell distributions, open and closed cells, and shallow convection

distributions. Similarly, to build trust in the network’s performance, it is crucial to see

what the trained N1 architecture has learned to pay attention to when deciding the

features hj of cloud system distributions.
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Figure S4 (Visualization of different layers). Four cloud systems with different orga-

nizations are selected as examples. Their respective self-attention maps from the final head of

the teacher ViT trained with 8 x 8 patches are shown in layers 1 - 6. The color bar indicates

the range of the Gaussian error linear units (GELU) activation function for the activation maps.

Higher values indicate more important features. All experiments are run with a default of six

self-attention heads.
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Given a satellite image, the activation space in a neural network allows us to visualize

whether a neuron should be activated, indicating what part of the image is important

for the network. The self-attention layers in ViT try to decompose the input samples

and learn relatively independent features. Thus, this experiment aims to see whether the

activation space reveals the abstract patterns that we, as humans, can make sense of while

deciding the feature’s importance. In this setup, we use a single satellite image sample

and pass it through the trained model, freezing the weights. The granularity (N x N), or

the number of pixels in a single patch, is controlled by the patch size, which is 8 x 8 pixels

in this experiment.

Figure S4 (Visualization of different layers) shows that layer one activates at the domi-

nant convective cells and deactivates at thin spread-out convection while layer 2 activates

the thin spread convection. Layer three seems to try to learn and activate the clear sky

features. In contrast to layer one, layer four activates the rest of the prominent convec-

tions. Like layer two, layer five tries to look at the rest of the thin-spread convection.

Layer six is uncertain and is not obvious to our eyes, and it may somehow try to deacti-

vate for all the clear sky regions in the majority of cases and look for boundary semantics

in the satellite image. Examining other example cases shows the same consistency, and

therefore, it can be concluded that although the cloud system distributions are different,

each attention map has learned to pay attention to relatively different, consistent, sensible

semantics of the cloud systems distribution and further indicates that we can trust the

embedding space of the network.
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S5 Environmental characteristics of human labels and neighbors

Figure S5. Comparison of 52 human labels (hl) environmental conditions with their nearest

30 neighbors (nn) using ERA-5. The top to bottom rows shows weighted-average and standard

deviation profiles of cloud water content (clwc, kg kg −1), cloud cover (cc), and relative humidity

(rh, %) with the exception of cc variability shown in the interquartile range.

Text S5 Figure 3.c in section 4.2 of the main manuscript showed the occurrences of 30

nearest neighbors of human-labeled satellite images (mentioned as human crops below)
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with machine-identified seven classes. Here, we aim to assess their existing environmental

conditions. This complementary experiment can further help to trust human crops’ rela-

tive positions in the feature space. If the human crops and the neighbors have a similar

homogenous distribution of their physical properties, this implies that the human crops

are in the consistent region of the feature space. Here, we take the ERA-5 vertical profile of

cloud water content, cloud cover, and relative humidity (Fig. S5) to compare the weighted

averaged vertical profiles between human labels and their 30 nearest neighbors. When

calculating these properties for human-labeled scenes, we weigh them with the level of

agreement In this way, the contribution of well-agreed organizations will contribute more

than less agreed cloud organizations. We observe that there is hardly any difference in

the vertical profiles except for the relative humidity of sugar and cloud cover for flowers.

This may be due to quantitatively using 30 times more data.
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