The internal structure and dynamics of Jupiter unveiled by a high
resolution magnetic field and secular variation model
Benoit Langlais
Laboratoire de Planétologie et Géodynamique, Univ. Nantes, Univ. Angers, CNRS, UMR 6112, Laboratoire de Planétologie et Géodynamique, Univ. Nantes, Univ. Angers, CNRS, UMR 6112
Author ProfileErwan Thebault
Laboratoire Magma et Volcans, Université Clermont Auvergne, UMR CNRS 6524, IRD, OPGC, Clermont-Ferrand, France., Laboratoire Magma et Volcans, Université Clermont Auvergne, UMR CNRS 6524, IRD, OPGC, Clermont-Ferrand, France.
Author ProfileAbstract
Jupiter possesses the strongest magnetic field of all planets in the
solar system. Unique information about the dynamo process acting at
Jupiter can be inferred by modelling and interpreting its field. Using
the fluxgate magnetometer measurements acquired during the four years of
the Juno mission, we derive an internal and secular magnetic field model
in spherical harmonics. The static part is derived to degree 16 with a
secular time variation to degree 8. We use properties of the power
spectrum of the static field to infer the upper boundary of the dynamo
convective region at 0.830±0.022 Jupiter radius. This confirms the role
of the transition layer in the field generation inside Jupiter. The
secular variation timescales indicate that advective effects dominate
the dynamo and the secular variation structures estimated at the dynamo
radius suggest that the complex flow involves non-zonal features.