loading page

The internal structure and dynamics of Jupiter unveiled by a high resolution magnetic field and secular variation model
  • +3
  • Shivangi Sharan,
  • Benoit Langlais,
  • Hagay Amit,
  • Erwan Thebault,
  • Mathis Pinceloup,
  • Olivier Verhoeven
Shivangi Sharan
Laboratoire de Planétologie et Géosciences, Laboratoire de Planétologie et Géosciences

Corresponding Author:[email protected]

Author Profile
Benoit Langlais
Laboratoire de Planétologie et Géodynamique, Univ. Nantes, Univ. Angers, CNRS, UMR 6112, Laboratoire de Planétologie et Géodynamique, Univ. Nantes, Univ. Angers, CNRS, UMR 6112
Author Profile
Hagay Amit
Universite de Nantes, Nantes Atlantiques Universites, Universite de Nantes, Nantes Atlantiques Universites
Author Profile
Erwan Thebault
Laboratoire Magma et Volcans, Université Clermont Auvergne, UMR CNRS 6524, IRD, OPGC, Clermont-Ferrand, France., Laboratoire Magma et Volcans, Université Clermont Auvergne, UMR CNRS 6524, IRD, OPGC, Clermont-Ferrand, France.
Author Profile
Mathis Pinceloup
Laboratoire de Planétologie et Géosciences, Laboratoire de Planétologie et Géosciences
Author Profile
Olivier Verhoeven
Université de Nantes, Université de Nantes
Author Profile

Abstract

Jupiter possesses the strongest magnetic field of all planets in the solar system. Unique information about the dynamo process acting at Jupiter can be inferred by modelling and interpreting its field. Using the fluxgate magnetometer measurements acquired during the four years of the Juno mission, we derive an internal and secular magnetic field model in spherical harmonics. The static part is derived to degree 16 with a secular time variation to degree 8. We use properties of the power spectrum of the static field to infer the upper boundary of the dynamo convective region at 0.830±0.022 Jupiter radius. This confirms the role of the transition layer in the field generation inside Jupiter. The secular variation timescales indicate that advective effects dominate the dynamo and the secular variation structures estimated at the dynamo radius suggest that the complex flow involves non-zonal features.