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Abstract: 

Melt electrowriting (MEW) is a solvent-free (i.e., no volatile chemicals), high-resolution 3D 

printing method that enables the fabrication of semi-flexible structures with rigid polymers. 

Despite its advantages, the MEW process is sensitive to changes in printing parameters (e.g., 

voltage, printing pressure, and temperature), which can cause fluid column breakage, jet lag, 

and/or fiber pulsing, ultimately deteriorating the resolution and printing quality. In spite of 

the commonly used error-and-trial method to determine the most suitable parameters, here, 

we present a machine learning (ML)-enabled image analysis-based method for determining 

the optimum MEW printing parameters through an easy-to-use graphical user interface 

(GUI). We trained 5 different ML algorithms using 168 MEW 3D print samples, among 

which the gaussian process regression ML model yielded 93% accuracy of the variability in 

the dependent variable, 0.12329 on root mean square error for the validation set and 0.015201 

mean square error in predicting line thickness. Integration of ML with control feedback loop 

and MEW can reduce the error-and-trial steps prior to the 3D printing process, decreasing 

the printing time (i.e., increasing the overall throughput of MEW) and material waste (i.e., 

improving the cost-effectiveness of MEW). Moreover, embedding trained ML model with the 

feedback control system in a GUI facilitates a more straightforward use of ML-based 

optimization techniques in the industrial section (i.e., for users with no ML skills). 
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Introduction 

Since Hull's invention of the stereolithography (SLA) technology and the construction 

of the first three-dimensional (3D) printed object in the 1980s, 3D printing has become widely 

used in a variety of fields, including engineering, manufacturing, medicine, and education 

[1]. Such small fiber diameters can be facilitated with electrohydrodynamic (EHD) 

techniques such as melt electrowriting (MEW) and melt electrospinning (MES) [2, 3]. Since 

its introduction in 2011 [4-6], the MEW has been notably adopted in biomedical applications. 

The MES, specifically in tissue engineering, is widely preferred due to its non-woven fiber 

diameters for the application of scaffolds where high porosity is desired [2, 7]. On the other 

hand, the MEW defines a well-ordered fiber structures and patterns to achieve strong, 

durable, and organized high porosity scaffold [5] with small fiber diameters [5, 8]. MEW’s 

precision has been embedded in the fabrication of microchannel systems [5, 9] and 

microfluidics [8] overcoming the conventional techniques [9]. Its application extends across 

many sectors from optics to photonics and lap-on-chip devices [5, 8]. The accuracy of having 

such high craft precision for microscale application is due to its control over jetting process 

and stability [10]. Many parameters influence this stability such as applied pressure, electric 

field, and collector speed, understanding their interdependence and relation is an area of 

interest [10]   

A MEW device consists of a printing head with a heating system that melts the 

material stored in a syringe and delivers it to a metal nozzle. A computer-aided translation 

system is installed in the MEW head, allowing for direct writing onto a collector. The 

extrusion of the material melt through the nozzle is forced by a delivery system (typically air 

pressure), and an applied potential difference between the nozzle and the collector generates 

an electrical field. When an electric field is applied to a fluid drop, it concentrates charges at 

the closest point to the collector, overcoming surface tension forces and ejecting a conical-

shaped jet toward the collector. The beginning of this jet and the remaining fluid at the tip of 

the nozzle is termed the Taylor cone which will be generated within seconds, as soon as the 

applied electrical field overcomes the surface tension of the droplet at the tip of the nozzle 

[11]. As the Taylor cone is filled with more molten polymer, the weight of the melt begins to 

neck from the initial droplet, forming a thin column. This proceeds until the forces 

(gravitational and charges) draw the solidified polymer to be in contact with the collector. 

The resulting fiber diameter can be controlled, adjusted, and direct-written in varying 

configurations depending on the printing parameters [12]. Small-diameter fiber placement 

enables for the printing of porous structures known as scaffolds, which are used in the 

biomedical sciences [13]. To date, melt-electrowritten scaffolds have been investigated in the 

skin, heart valves, and musculoskeletal soft tissues, where poly-ε-caprolactone (PCL) is 

commonly used [14]. PCL, a Food and Drug Administration-approved bioresorbable 

polymer, is the biomaterial of choice for constructing tissue-engineered melt electrowritten 

scaffolds due to its easy processability, low cost, and lack of immunogenicity [15]. 

Alternatively, when MEW is performed at collector speeds lower than the electrified jet 

speed, the jet buckles, similar to a column of honey falling onto toast [16]. Such mechanical 



buckling of a viscoelastic column produces an array of different patterns that can be modeled 

and predicted [17].  

In this paper, we introduce an innovative methodology for combining the fields of 

MEW, image processing, ML and control theory to be embedded within a friendly GUI. First, 

samples from the MEW at different setup of printing parameters has been printed and 

collected. 4 input parameters were used for this purpose; the pressure at which air is 

compressed into the MEW’s nozzle, the speed at which the feed rate of material is extruded, 

the gap between the nozzle and printing surface, and high voltage difference between 

applied between the nozzle and print bed. Second, a custom-designed algorithm image 

processing technique carried out for line thickness calculation. Upon the collection of data, 

some prints are classified as “bad prints” as these patterns are not preferred in the real 

printing process. Only “good prints” were undertaken in the image processing part. Third, 

the dataset collected were preprocessed and trained in ML regression models where a 

Bayesian hyperparameter optimization has been handled. Fourth, a PID controllers for each 

of the four inputs are tuned according to the sensitivities returns of the plant (regression) 

model. A saturation and anti-windup configuration within the controllers were used. Finally, 

a GUI has been developed that provides a user-friendly interface to grant instant feedback 

and to enhance the user experience and visual representation.  

 

Methods 

Device: The MEW bio-printer used for this study was manufactured by Axolotl 

Biosystems in Istanbul, Turkey. The Axolotl printer comes with multi-head components for 

where it offers versatile usage, enabling users to switch between different printing materials, 

methods, or applications via swapping the printheads upon the desired request of the user. 

The specific printer from Axolotl is equipped with a UV curing toolhead that facilitates the 

photocrosslinking of biomaterials and bioinks, a high/low temperature printheads that 

demands a high/low temperature extrusion of several polymer types for working with 

bioresorbable and biocompatible materials, and a MEW printhead. The MEW printhead can 

simultaneously deposit multiple layers allowing for intricate design and the integration of 

functionalities within a single print session. It also capable of writing melted material with 

high voltage, hence the name “Melt ElectroWriting”. The Axo MEW can achieve micro-level 

of precision that provides a 3D fabrication of fiber scaffolds which aids in the various 

medical applications such as tissue engineering and regenerative medicine. The printer was 

specifically set to electrowrite line thickness for voltages that fall in ranges of 2 to 3 kV, gaps 

of 0.2 to 1 mm, pressures of 1 to 23 psi, printhead’s feedrate of 300 to 2000 mm/min, and a 

stable printhead temperature of 150 °C.  

Material: The printing material used in this study was Polycaprolactone (PCL). PCL 

is a dielectric material, which means it is an insulator that can become polarized when 

subjected to an electric field [18]. When an electric field is applied to PCL, the positive and 

negative charges within the polymer molecules may shift and align themselves with the field 

direction. This phenomenon is known as polarization. Therefore, PCL is a suitable material 

for the MEW 3D printer that uses electric field difference (EFD) between the nozzle and the 



print surface to ensure a steady flow of the material out of the nozzle by overcoming the 

surface tension of the molten polymer, causing it to elongate and form a continuous filament 

or jet [3]. 

Line thickness experiments: The line thickness of printed designs is of great 

importance as it can determine the print resolution and mechanical properties. In 

microfluidic applications, in which MEW is used for the fabrication of negative mold [19], 

line thickness control is necessary to obtain the designed channel width/thickness. Decisive 

paraments affecting the line thickness can be cartridge temperature, print pressure, EFD 

between the nozzle and the printing surface, printing gap, and print speed (i.e., feed rate). 

The study aims to develop an ML-enabled platform through which a user can find the best 

combination of printing parameters (e.g., print pressure and voltage) to acquire desired line 

thickness without a need for error-and-trial steps, resulting in a faster process time and less 

material waste (Figure 1). 

Printing and Imaging: Firstly, using SolidWorks software, nine similar straight lines 

(with the same thickness of 0.2 mm) (Figure 2E) were drawn and exported to the 3D printer 

as G-code. The thickness of lines was set to be the same in the CAD design to minimize the 

effect of design and focus/study the pure effect of print parameters on the thickness of the 

designed lines. Next, each of line was printed using a different combination of printing 

parameters (Figure 2F). For example, for the first set of nice lines, to study the effects of 

printing pressure on the line thickness, all the abovementioned printing parameters were 

kept constant, while the printing pressure was changed at the beginning of each line. Upon 

completion of the printing process, the printed design was removed from the printer to 

capture images of the printed lines using a microscope. All images were taken from the same 

lens distance to maintain a similar aspect ratio in all images. Captured images were then 

labeled with the printing parameters used for the 3D printing of the line in the image and fed 

into a custom-designed image processing algorithm for the automatic calculation of line 

thickness. The same process was repeated for other printing parameters (e.g., printing with 

different EFD while other abovementioned parameters were kept constant). The cartridge 

temperature was set to 150 °C during all experiments, as per the guideline of the Axolotl 

company. 

Custom-designed algorithm for line thickness calculation: We developed an image 

processing method which can automatically calculate the thickness of the line in a captured 

image. In the context of image processing, our developed algorithm plays a pivotal role in 

automatically quantifying line thickness from captured images. Commencing with the 

conversion of images to grayscale, it subsequently applies Gaussian blur to mitigate noise 

while retaining line continuity. Employing thresholding, it transforms the image into binary 

format, distinguishing line pixels from the background. Significantly, our method utilizes a 

3x3 filter to effectively eliminate isolated black pixels, minimizing potential outliers. By 

systematically evaluating each column, the algorithm counts consecutive black pixels to 

determine line thickness. This culminates in the computation of an average thickness value. 

The resulting data, including image names, printing parameters (pressure, gap, EFD), feed 

rate, and line thickness, are methodically stored in a CSV file. This comprehensive approach 



not only facilitates the precise measurement of line thickness but also enhances the utility of 

this data for machine learning training and GUI development in a variety of applications. 

Figure 2 illustrates the process where each step of the image processing method is detailed. 

Machine Learning: Machine learning (ML) is a subset of artificial intelligence (AI) 

that focuses on the design of systems so that they can learn and make predictions based on 

previous experience that is called data [20]. The algorithm should first be trained on the data 

in the training set in which the parameters in the algorithm will be improved during the 

training process, and a machine learning model will be generated. It can then predict the 

results with new input data using the updated machine learning parameters. Supervised 

learning, unsupervised learning, and reinforcement learning are the most often used 

machine learning algorithms [20]. 

An ML model was developed to correlate the printer’s input parameters and line 

thickness retrieved previously by the custom-designed algorithm for line thickness 

calculation. Regression models were employed to map 4 printer’s parameters and the single 

output line thickness captured by the algorithm. To ensure faster convergence, enhance the 

accuracy of ML models, and prevent numerical instabilities, the input dataset was 

normalized to a consistent scale ranging from [-1 1], while the output data remained 

unchanged. Out of a total of 168 printed samples, the dataset was divided into training and 

validation sets using an 80:20 ratio, where only 34 datapoints were reserved for validation 

after model training. Different ML models such as linear, vector support machine (SVM), 

decision trees, gaussian process (GP), neural network (NN) along with other regressions 

were trained with the remaining dataset. The models were assessed based on their mean 

squared error (MSE), root MSE (RMSE) and R2 scores, with the aim of minimizing potential 

errors during both computation and execution phases.  

To optimize the performance of the various ML models, they were subjected to 

Bayesian optimizer for tuning the hyperparameter optimization. Unlike grid search or 

random search methods which either exhaustively explore or randomly sample the 

hyperparameter space, the Bayesian optimizer uses an intensive search across the 

hyperparameter space which constructs a probabilistic model of function that maps 

hyperparameters with a given validation score allowing it to thoroughly explore the 

hyperparameter space. It then can create an approximation of the error as a function of the 

hyperparameters to improve the model. The learning process was set for 30 iterations which 

updates the model based on observed performances, hence, Bayesian optimization can more 

efficiently locate optimal hyperparameter configurations. Therefore, the hyperparameters 

were tweaked for each ML models to ensure that our models were configured in an optimal 

manner. Thus, enhancing their performance on the validation set. Again, model performance 

was evaluated based on MSE, RMSE and R2 scores.  

Sensitivity and Feedback Control: Seeking to attain the results of the line thickness 

from our previously obtained regression model, it serves as the core plant model in the 

controller feedback loop. Due to the shortage availability in dataset, this controller design 

approach solves the related issue. The proposed approach is mentioned as shown in Figure 



1. Each of the four inputs was controlled and managed by four PID controllers that 

minimizes the error coming from the feedback loop. The main drawback of this method is to 

be able to tune all the four PID controllers, hence, 12 parameters of P, I, and D combined. 

Despite that the tedious and complicated job, tuning those parameters was guided with the 

help of PIDTuner and Sensitivity Analyzer apps within MATLAB and Simulink environment.  

The target system behavior in the multi-input single-output (MISO) system was determined 

by a reference setpoint of a desired line thickness. In a feedback loop, the actual output from 

the plant model is subtracted from the reference point and fed into the controllers. The 

controllers then attempt to settle, manage, and adjust the deviation between plant’s 

prediction and reference setpoint by correcting new inputs values relayed back into the 

system. The loop correction is maintained as it ensures the system continually adjusts its 

behavior, aligning with the reference setpoint over time.  

PID stands for Proportional, Integral, Derivative which are the three types of control 

“actions”. The Proportional term amplifies the error value by a proportional gain. It is 

essentially the response to the present error in the model. The Integral term is responsible for 

all summation of past error values accumulated by the model. Inherently, the integral term 

attempts to eliminate and drive the system to zero steady state error by an integral gain. 

Finally, the Derivative term anticipates the system response based on its rate of change in 

error. The derivative gain control the effect of future error, thus, slowing down the rate of 

change in error. Each of the input parameters exhibits its own influence on the line thickness 

output in the plant model. The pressure and speed have the most impact on the model 

compared to the voltage and gap parameters. Therefore, a tuning in PID parameters was 

accompanied by a sensitivity analysis to assess the behavior of each input on the system. 

Whether one parameter is more sensitive to changes from another or more robust, etc. 

Additionally, the PID controllers where saturated at limits of [-1 1] in agreement with the 

regression model obtained earlier.  

 

Results and Discussion 

1. Results ML 

Several machine learning models are trained. Yet, we only picked the one which 

outperformed the other models in terms of RMSE, MSE, and R2 scores. The validated scores 

of the regression models fall between 0.12, 0.015, 0.93 and 0.15, 0.024, 0.89 of RMSE, MSE and 

R2, respectively. The MSE is the average of the squared error difference between the 

predicted and actual values that measures the average magnitude of the error, while the 

RMSE is simply the square root of the MSE which provides interpretable readings of the 

error magnitudes since it’s in the same unit at the output. The lower of these errors the better 

the model’s performance. The R2, also known as the coefficient of determination, provides a 

measure of how well the observed outcomes are being replicated by the model. It ranges 

from 0 to 1 (1 for a perfect score). These results were recorded when a Bayesian 

hyperparameter optimizer utilized. The GP regression was our best model for this work 



which optimized 5 hyperparameters namely: basis function, kernel function, kernel scale, 

sigma, and whether standardize is on or off. The search ranges of each hyperparameter were 

predefined automatically. For example, the basis function could be a constant, a zero, or a 

linear function; the kernel function can be nonisotropic exponential, nonisotropic rational 

quadratic, isotropic ration quadratic, etc. For each set of ranges, the Bayesian optimizer ran 

for 30 iterations looking for the best outcome using the several combinations of 

hyperparameters within the ranges. Additionally, the acquisition function in the Bayesian 

optimizer was set to expected improvement per second which takes into consideration the 

improvement in objection function and time required to evaluate the function. Finally, the 

optimized hyperparameters were found according to the selected search criteria and the 

training results were provided. As previously mentioned, the GP regression surpassed the 

performance of all other regression algorithms. This can be attributed to its ability to 

accurately model intricate data in non-parametric models. Moreover, GP regression 

effectively filters and manages noise inherent in the dataset along with uncertainties arising 

during training. We observed the following results for our GP regression model: the RMSE, 

MSE, R2 were recorded at 0.12329, 0.015201, and 0.93, respectively. Figure 4A provides an 

insight of the GP regression model obtained for perfect prediction and imposed datapoints in 

normalized range. The hyperparameters that were calculated by the Bayesian optimizer are 

supported in Table 1. A RMSE of 0.12329 indicates that there is a deviation in predicted line 

thickness by this amount. Due to the nature of the dataset, taking the average between the 

minimum and maximum line thickness that are within the dataset (0.0172 and 2.2635, 

respectively) results in around 10.8% error. This has been also proven by the remaining 34 

datapoints in the testing set yielded 0.1054 for RMSE score. The discrepancy in scores can be 

explained by the limited number of prints in our experimental as it was tedious to print all 

these prints. Yet, a ten percent error can be accepted in our work due to the absence of other 

negligible factors.  

2. Results of Sensitivity and Feedback Control 

In the line of sensitivity results, the PID controllers were tuned separately and observed their 

impact on the output model. The sensitivity chart shows that pressure and speed had the 

most influence over the model as providing typically a lower Proportional gain to the 

parameters compared to the gap and voltage, Figure 4B.  On the other hand, the gap and 

voltage need a high Proportional value to avoid slow response and reach the setpoint 

quickly. Yet, a higher Proportional gain could lead to overshoot to the system. Thus, 

balancing between the Proportional gain among the input parameters is required. The 

sensitivity analysis also provides an insight after tuning the Proportional gain whether the 

inputs are oscillating around the setpoint or not reaching the desired output. The integral 

gain is introduced into the system to eliminate long term steady-state error. A Derivative 

term was needed to speed up the system’s response but could also introduce overshoots and 

noises to the system. Again, refining the gains based on the sensitivity chart to balance 

between robustness and aggressiveness in the regression model was an important step in the 

controller design phase. Interestingly, the sensitivity chart also provided the sign correlation 

between the input parameter and its output. Pressure has a negative correlation with the line 

thickness which indicates an inverse relationship, e.g., thinner line thickness in response to 

increasing pressure value. Whereas the speed has a direct affect as computed.    



After successive tuning each PID controller individually, the controllers struggle to bring the 

MISO system to the desired setpoint. This was due to nonlinearities within the controllers 

when they were saturated in [-1 1] ranges. Therefore, an anti-windup strategy through back-

calculation within each controller was implemented. The anti-windup technique avoids the 

accumulation of error within the controller when its output exceeds the saturation limits [21-

23]. This could cause overshoot, prolong settling times, and “stuck” behavior. The anti-

windup mechanism is built in the Integral gain that acts as a break whenever the saturation 

limits at the output is reached. The back-calculation anti-windup takes the difference 

between the saturated value and the actual PID output is fed back to the integrator to 

subtract it from the accumulated error in the feedback loop [23]. Moreover, the back-

calculation coefficient determines how aggressively the accumulated integral error is to be 

adjusted when the saturation occurs [24, 25]. Finally, the controller designs, incorporating the 

anti-windup mechanism for output saturation, were correctly tuned using untrained dataset 

in alignment with the provided sensitivity analysis. Figure 4C visualized the schematic 

control diagram along with associated PID gains in Table 2.  

3.  Graphical User Interface (GUI)  

A GUI of the line thickness model has been integrated within the feedback controller 

discussed earlier. Our primary objective is to be able to validate and operate the line 

thickness model where non-experienced users can utilize it. With this easy-to-use interface, 

users can easily monitor on running status, to know the model is at the running mode, and 

patiently wait for the operation to end (evaluation finished) without the need of manual 

interruption. The GUI allows users to enter the desired line thickness, denying negative 

numbers. Upon activating the calculate button, the system initializes the Simulink model at 

the background where it tries to track the error arising from the feedback loop of the 

controllers. Then finally displaying the printer’s input parameters within the interface. 

Additionally, the GUI can’t execute another calculation while it’s on the running status as 

shown in Figure 5.  

4. Validation 

The validation step of our work was of highly importance as the development of the final 

product, GUI of line thickness. We prepared a list of some desired line thickness to be 

fabricated by the MEW. The previous lines which were printed and collected as training 

dataset, were specified through CAD drawings, keeping the temperature, feed rate, voltage, 

and gap constant and while altering the pressure values to produce the dataset. However, 

this time, we specified the four input parameters to the printer configuration that has been 

predetermined by the GUI. The expected results were to show some error deviation from the 

actual thickness, as provided from ML model. Yet, after postprocessing the new validated 

results, the observed line thickness from the custom algorithm layout a line thick that is on 

average two times wider than the desired line thickness (Table 3). This claim can be 

explained via the error made in the regression model and the controllers’ approximation on 

PID values. On the other side, the MEW printer’s settings have been modified from the 

dataset collection due to technical issues with the printing heads. We have accounted for the 

ratio between the desired and obtained line thickness from the algorithm by defining an 



error factor constant, ranging between 2.2-2.4, to isolate and narrow down the difference. By 

addressing the mismatch, we were able to recreate new line thicknesses to matched down 

our desired prediction from GUI with acceptable difference of 5-7% error after adding the 

error factor. 

 

Conclusion 

In conclusion, this study provides an insight of how a MEW printer can be implemented 

with ML along with feedback controllers in which it can be designed and build inside a GUI 

for friendly use. Around 160 prints from the MEW printer were used to train different ML 

algorithms and based on certain criteria, the best regression model was used to represent the 

plant model in our feedback loop in the controller phase design. The prints were captured 

through microscope and reported their input printer’s parameters where each datapoint had 

unique inputs during the data extraction. Then image classification and image processing 

techniques were imposed to filter and classify “good” and “bad” prints that resulted in 

fabrication. Upon disregarding the “bad” prints, the classified “good” prints were filtered 

into a custom-designed algorithm to calculate the line thickness approximation. The 

collected results of line thickness along with the printer’s input parameters made up the 

dataset that was trained in regression analysis where GP regression provided the best 

performance with 0.12329 RMSE, 0.015201 MSE, and 0.93 R2 scores. Moreover, to link 

between the desired line thickness and printer’s input parameters, the model line thickness 

was implemented as a plant in a feedback controller loop where it returns the original model 

prediction from GP regression and reduces the error between the desired line thickness and 

model prediction from GP regression through the PID controllers. Additionally, the 

controllers were tuned according to the sensitivity of the input parameters using analyzer 

apps within the MATLAB environment. Finally, the whole system was customized and 

compacted to be made possible for a free to access in a GUI where the users would enter the 

desired line thickness as wishes then at background evaluation, the model would provide 

the printer’s input parameters. The proposed methodology not only enhances the 

accessibility of the system but also paves the way for broader applications, ensuring that 

possible further improvements and fixes in model at expertise levels.  
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Figures 

 

Figure 1. Schematic workflow of “line thickness” calculation and training. Designed patterns were transferred to 

the MEW 3D printer as G-code, where different printing parameters (e.g., pressure, voltage, etc.) were used to 

fabricate lines with different thicknesses. Images of the 3D-printed lines were taken under a microscope. A 

custom-designed algorithm classified straightly printed lines (labeled as “Good Prints”) from curvy print 

outcomes (labeled as “Bad Prints” as these patterns are not preferred in the real printing process). Images with 

“Good” labels were binarized for better visualization and image processing (i.e., changing pixels to black and 

white). Next, a standard stencil card was used, on which a standard line with a predetermined thickness of 0.1 

mm was drawn. The same microscope and imaging distance were used to capture the image of the standard line. 

Later, the image of the standard line was used to determine the thickness of the rest of the lines in the captured 

images. Subsequently, line thickness was collected in a CSV file which was used for ML algorithm training. Next, 

the trained ML regression model is implemented in a feedback loop using PID controllers where each controller 

was tuned according to the sensitivity of the model. Finally, the model system can assist MEW users in 

determining optimum printing parameters to achieve a desired line thickness without the need for error-and-trail 

steps. 

  



Figure 2: Printer Setup; A) the MEW (shown on top left) along with the voltage supplier. B) The air pressure 

supplier that pumps air to the nozzle head of MEW. C) The MEW printhead mounted onto the Axo 

BiosystemPrinter (shown on top right). D) Additionally, the Repetier-host software used as an interface to print 

the specified loaded CAD files to the MEW printer (shown on bottom right). E) The different combination of air 

pressure and federate obtained during the experimental printing of the line thickness. F) Similar lines (with the 

same thickness of 0.2 mm) were drawn in 3D using Solidworks then exported to printer as G-code. each of line 

was printed using a different combination of printing parameters.  

  

 
 

 

 



 

Figure 3: Flowchart of our developed image processing method for automatic line thickness quantification. 

Beginning with grayscale conversion and Gaussian blur application for noise reduction, the algorithm 

subsequently employs thresholding and a 3x3 filter to detect and refine the line structure. The method calculates 

line thickness by counting consecutive black pixels column-wise, resulting in an average thickness value. All data, 

encompassing image names, printing parameters, feed rate, and line thickness, are archived in a CSV file.  



Figure 4: A) The ML regression model obtained for the hyperparametrized GPR with MSE of 0.0152, R2 of 0.93, 

and RMSE of 0.12. For a normalized perfect model, the true and predicted responses are equal identified by the 

straight line.  The observations of the dataset are shown in black dots. B) The sensitivity analysis of printer’s 

inputs obtained for pressure, speed, voltage, and gap. The pressure and speed have the most impact on the model 

output, where the pressure has an inverse effect. While the voltage and gap have little effect on the printer’s 

thickness. C) The designed feedback controller loop of the whole analysis. The tuning of 4 PID controllers are 

accomplished based on the sensitivity chart obtained previously. The input parameters that have most of the 

influence (e.g, pressure & speed) would have lower Proportional gain relative to the diminished influence (e.g, 

gap & voltage). Integral and Derivative gains are adjusted based on the behavior and the performance of the 

model.  

  



 

Figure 5: The GUI provides an informative result when using the line thickness calculation app. The user would 

specify the desired line thickness into the line width field, upon the calculation of the model embedded into the 

GUI, the pressure, speed, gap, and voltage parameters are determined and can be used in a MEW printer. The 

live data plot offers a tracking curve to know whether the value is converging to the specified entered line 

thickness in the calculation part, or it does not. Additionally, the evaluation time helps the end-user to know how 

much time has elapsed if comparison between model is needed. 

  



Tables 

Table 1: Optimized Hyperparameters. 

Hyperparameters Name Search Range 
Optimized 

Hyperparameters 

Basis Function [Constant, Zero, Linear] Zero 

Kernel Function 

[Nonisotropic Exponential, 

Nonisotropic Matern 3/2, 

Nonisotropic Matern 5/2, 

Nonisotropic Rational 

Quadratic, Nonisotropic 

Squared Exponential, 

Isotropic Exponential, 

Isotropic Matern 3/2, 

Isotropic Matern 5/2, 

Isotropic Rational 

Quadratic, Isotropic 

Squared Exponential] 

Nonisotropic Matern 3/2 

Kernel Scale [0.002, 2] 0.53337 

Standardize [True, False] True 

Sigma [0.0001, 4.6186] 4.5461 
 

Table 2: PID Controllers Values and Back-calculation coefficient. 

Parameter PID Values Back-calculation coefficient 

Gap [40 30 5] 50 

Speed [0.1 1 0] - 

Voltage [50 15 1] 40 

Pressure [15 25 1] - 

 

Table 3: Validation Results obtained by the GUI and custom-designed algorithm. 

Desired from GUI Obtained from Algorithm Ratio Difference 

0.6 1.458559 2.43093167 

0.4 1.05952 2.6488 

0.2 0.47128 2.3564 

1 2.10528 2.10528 

0.8 1.61336 2.0167 

 


