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Abstract19

Humid heatwaves, characterized by high temperature and humidity combinations,20

challenge tropical societies. Extreme wet-bulb temperatures (TW) over tropical land are21

coupled to the warmest sea surface temperatures (SST) by atmospheric convection and22

wave dynamics. Here, we harness this coupling for seasonal forecasts of the annual max-23

imum of daily maximum TW (TWmax). We develop a multiple linear regression model24

that explains 80% of variance in tropical mean TWmax and significant regional TWmax25

variances. The model considers warming trends and El Niño and Southern Oscillation26

(ENSO) indices. Looking ahead, a moderate-to-strong El Niño with an Oceanic Niño In-27

dex (ONI) of 1.5 by the end of 2023 suggests a 42% (11%, 78%) probability of break-28

ing the tropical mean TWmax record in 2024. For an El Niño similar to 2015/2016 (ONI29

of 2.64), the probability escalates to 90% (50%, 99.5%). This approach also holds promise30

for regional TWmax predictions.31

Plain Language Summary32

The heat and humidity in the tropics can be particularly challenging for people to33

stay comfortable and healthy. This combination of heat and moisture is described us-34

ing a measure called the wet-bulb temperature (TW). We found that these extremely35

humid and hot conditions on land can be predicted about five months in advance using36

a physics-based statistical model. The forecast is possible because the peak of El Niño37

comes before the peak in the warmest sea surface temperatures, which affects the max-38

imum TW on land. This prediction can help tropical societies to better prepare for ex-39

treme heat.40

1 Introduction41

The tropics, characterized by high temperatures and humidities, face heightened42

risks from heat-related impacts (Sherwood & Huber, 2010; Raymond et al., 2020, 2021;43

Parkes et al., 2022). This vulnerability is exacerbated by the consistent warming trend,44

leading to more frequent and intense heat events. Superimposed on the warming trend45

is the El Niño-Southern Oscillation (ENSO). El Niño events, typified by warmer central46

and eastern equatorial Pacific Ocean temperatures, trigger shifts in atmospheric circu-47

lation that modify global temperature and precipitation patterns (Yulaeva & Wallace,48
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1994). These events often result in more frequent and intense heatwaves in many regions,49

including the tropics (Thirumalai et al., 2017; Arblaster & Alexander, 2012; Revadekar50

et al., 2009). In contrast, La Niña events, marked by cooler Pacific Ocean temperatures,51

tend to bring cooler and wetter conditions. In light of ongoing global warming, an El Niño52

event superimposed on the current warming could result in unparalleled hot weather,53

underscoring the need for further investigation and preparedness.54

The physical mechanism underlying pan-tropical land warming during El Niño years55

is the free-tropospheric heating that arises from deep convection over anomalously warm56

SSTs. This heating causes atmospheric columns over remote land to adjust to a warmer57

state in response to the elevated free troposphere temperatures (Brown & Bretherton,58

1997; Chiang & Sobel, 2002). Notably, this free-tropospheric warming occurs a few months59

after peak El Niños (Pan & Oort, 1983; Sobel et al., 2002; Chiang & Sobel, 2002), as the60

SSTs in convective regions (the warmer portions of tropical SSTs) take a few months to61

warm following peak El Niño events (Klein et al., 1999; Xie et al., 2009; Fueglistaler, 2019;62

Hogikyan et al., 2022).63

As recognition of humid heat’s importance grows, the effects of global warming and64

ENSO on extreme humid heat, in addition to extreme temperatures, are emerging as ac-65

tive areas of research. Anthropogenic warming is a primary driver of tropical increases66

in wet-bulb temperature (TW), a common measure of humid heat (Sherwood & Huber,67

2010; Buzan & Huber, 2020; Zhang et al., 2021). According to Zhang et al. (2021), ex-68

treme TW in the tropics is projected to rise by 1◦C for every 1◦C increase in tropical69

mean warming due to the mechanism described above. Concurrently, ENSO variability70

can significantly impact TW patterns over shorter timeframes (Rogers et al., 2021; Speizer71

et al., 2022; Ivanovich et al., 2022). Research has highlighted anomalously high tropi-72

cal land mean TW associated with the 1997-1998 El Niño (Raymond et al., 2020; Zhang73

et al., 2021), as well as the more frequent occurrence of regional extreme TW during El74

Niño years (Rogers et al., 2021; Speizer et al., 2022).75

In this study, we draw upon existing knowledge that 1) maximum wet-bulb tem-76

peratures (TWmax) over land are influenced by the warmest sea surface temperatures77

(SSTs) in the tropics, and 2) a lag of about four months occurs in the warming of the78

warmest SSTs after a peak El Niño event. We aim to construct a predictive model for79

extreme TW that can provide early warning of extreme TWmax levels several months80
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in advance. While earlier research has studied the delayed effects of El Niño the follow-81

ing summer in Asia, known as the “Indian Ocean capacitor effect” (Xie et al., 2009), our82

focus extends to extreme TW in all tropical land areas. Our research aims to enhance83

seasonal predictions of extreme TW in the tropics, offering more accurate climate risk84

assessments and enhancing preparedness efforts in these regions.85

2 Data and Methods86

2.1 Wet-bulb temperature87

Wet-bulb temperatures (TW) are calculated using the ERA5 hourly reanalysis prod-

uct (Hersbach et al., 2020) by solving the following equation:

cpTs + Lvqs = cpTW+ Lvqsat(TW), (1)

where Ts and qs represent the 2-meter temperature and 2-meter specific humidity, re-88

spectively. Lv denotes the latent heat of vaporization, and cp represents the specific heat89

capacity of air at constant pressure. In our computations, we use cp as 1004.7090 J/kg/K90

and Lv as 2.5008×103 J/kg. Although neglecting the temperature dependence of cp and91

Lv introduces a small error in TW, it is sufficient for our purposes.92

Since the ERA5 dataset does not directly provide the 2-meter specific humidity,

we calculate it using the hourly 2-meter dewpoint temperature (Td) and surface pres-

sure (ps), considering the molecular mass ratio of water vapor and air (ϵ) of 0.621981.

The specific humidity (qs) is determined as follows:

qs =
ϵesat(Td)

ps − (1− ϵ)esat(Td)
, (2)

where esat represents the saturation vapor pressure calculated using the Clausius-Clapeyron

equation, specifically the Teten’s formula, consistent with the methodology of the Eu-

ropean Centre for Medium-Range Weather Forecasts (ECMWF) (ECMWF, 2014):

esat = a1e
a2

T−T0
T−a3 , (3)

with the parameter values for saturation over water: a1=611.21 Pa, a2=17.502, a3=32.1993

K, and T0=273.15 K.94

To focus on extreme TW values, we consider the daily maximum TW and then de-95

termine the annual maximum, denoting it as TWmax.96
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2.2 ENSO index97

The strength of the El Nino-Southern Oscillation (ENSO) phenomenon is assessed98

using the Oceanic Niño Index (ONI), which serves as NOAA’s primary index for mon-99

itoring the oceanic component of ENSO. The ONI is calculated as the rolling 3-month100

average temperature anomaly, from the long-term average, of the surface of the east-central101

tropical Pacific near the International Dateline.102

3 Results103

3.1 ONI leads TWmax by months104

To demonstrate that extreme TW over land is controlled by the warmest SSTs through105

the mediation of deep atmospheric convection and free-tropospheric wave dynamics, we106

show the time series of these variables in Figure 1a. All time series are presented as run-107

ning means of 6 months with the monthly climatology removed. The tropical land-average108

of monthly maximum TW exhibits a notable long-term warming trend of approximately109

0.2 K per decade from 1979 to 2022, accompanied by significant interannual variability.110

The monthly average 500-hPa temperature (T500) and the top 25% of monthly mean SST111

(SST25%) show similar interannual variabilities and long term trends as TW, with con-112

temporaneous peaks. These findings support the notion put forward by Zhang et al. (2021)113

that the warmest SSTs control the maximum TW over land, with the coupling occur-114

ring rapidly enough to render the maximum TW and SST25% variations appear nearly115

simultaneous in monthly data.116

To predict extreme TW over land, we turn our attention to the predictors for the117

warmest 25% of SSTs. ENSO induces significant shifts in atmosphere-ocean circulations,118

altering the energy budget of the ocean’s mixed layer and influencing the relatively warm119

SSTs that lie in regions of deep atmospheric convection. The interannual variability in120

SST25% closely resembles that in the Oceanic Niño Index (ONI), which does not exhibit121

a long-term trend by design. Moreover, major El Niño events coincide with pronounced122

spikes in SST25% and TWmax anomalies, with the latter two typically occurring with a123

lag of approximately four months. Notably, the warming of TWmax during the devel-124

oping phase of the 1991-1992 El Niño was interrupted by the aerosol cooling effect of the125

Mt. Pinatubo eruption in June 1991, leading to a missed peak in TWmax despite rising126

ONI. Another significant volcanic eruption, El Chichón in 1982, also coincided with an127
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Figure 1. ENSO variability leads tropical land TWmax by a few months. a, Monthly anoma-

lies of tropical (between 30◦S and 30◦N) land mean TWmax (red), the upper-quartile-mean SST

(blue) from Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) (Rayner

et al., 2003), and the average 500-hPa temperature divided by the moist adiabatic amplification

factor 1.4 (cyan), as well as the Oceanic Niño Index (ONI) in grey. Timing of strong El Niños

(ONI >1.5) are marked with vertical dotted lines. b, R2 values of the multiple linear regression

model specified in Eq. (4) using ONI from January to December of preceding years (solid) and

contemporaneous years (dashed). The grey line shows the fit using all 43 years between 1990 and

2022, while the magenta line shows the fit of 39 years to exclude major volcanic eruptions.
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El Niño event. Although elevated TWmax values still occurred, they were partially off-128

set by volcanic cooling, and the peak TWmax lagged the ONI peak by 9 months. Exclud-129

ing the volcanic eruptions, other major El Niño events consistently precede anomalous130

high SST25% values and, consequently, extreme TWmax values. These findings suggest131

the potential to use the ONI to statistically predict TWmax some months later, perhaps132

even in the following year.133

3.2 Multiple linear regression model of TWmax134

We develop a multiple linear regression model to predict the annual maximum of

daily maximum wet-bulb temperature (TWmax) using two independent variables: a year

variable to account for the warming trend and the Oceanic Niño index (ONI) to repre-

sent ENSO. The objective is to explain anomalies in TWmax as a linear combination of

a constantly rising baseline and the ONI from a specific month of the preceding year:

TWmax,t = β0 + β1t+ β2ONIm,t−1 + ϵt (4)

Initially, we examine whether this model can capture the tropical land average values135

of TWmax between 30◦S and 30◦N. Even though the exogenous variable is an annual max-136

imum, the process of spatial averaging yields an error term with a near-Gaussian dis-137

tribution, justifying the use of multiple linear regression analysis. We compute the R2
138

values for different months (m) in the model using the tropical land average of TWmax139

from 1980 to 2022, with the year t and ONI from 1979 to 2021 as the independent vari-140

ables (Figure 1b). The highest R2 value of 0.764 is obtained when using the ONI from141

all Novembers to predict the land-mean TWmax in the following years. However, con-142

sidering the impact of major volcanic eruptions on TWmax, we exclude the years affected143

by these eruptions to enhance the accuracy of the linear regression model. We exclude144

TWmax for the two years following the Mt. Pinatubo eruption (1992 and 1993) and the145

two years following the El Chichón eruption (1983 and 1984). Consequently, we discard146

ONI values from 1982, 1983, 1991, and 1992. The performance of the regression improves,147

with the highest R2 value of 0.803 achieved using December ONI from the preceding year.148

Notably, the R2 values exhibit substantial increases from April to August, reaching a rel-149

atively high value of 0.735 in June. This aligns with the spring predictability barrier and150

suggests that a skillful prediction for TWmax in the subsequent year might be obtained151

as early as June of the current year.152
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For completeness we also show the R2 values using ONI for each month of the same153

year as the TWmax in Figure 1b. The explained variance does not increase when using154

ONI of the same year as the occurrence of TWmax. This is because TWmax over land155

is not constrained by the contemporaneous ONI but rather the warmest SSTs which lag156

ONI by a few months.157

Given the performance of December ONI (years affected by volcanic eruptions ex-158

cluded), all regression in the rest of the paper are against December ONI with the four159

years affected by volcanism removed between 1980 and 2022, resulting in 39 data points160

and two independent variables. Note that the ONI is a three-month running mean, there-161

fore December ONI values contain information from January of the following years; how-162

ever, TWmax occurs in January primarily for some land regions south of 15◦S (Figure163

S3), and we later demonstrate predictive skill of the model 3-7 months in advance for164

some sample regions.165

Figure 2 illustrates the multiple linear regression model in Eq. (4) when m is De-166

cember. There is negligible multicollinearity between the two independent variables (Fig-167

ure 2a), year (t) and ONI of the preceding December (ONIDec,t−1). Each independent168

variable alone explains slightly less than 40% of variance in the tropical mean TWmax.169

Figure 2d shows the observed versus the model-predicted TWmax with 80% of variance170

explained.171

3.3 Impact of warming trend and ENSO variability on TWmax172

To assess the relative contributions of warming and ENSO to explaining the vari-173

ance in TWmax, we estimate the standardized regression coefficients (β̂∗) by carrying out174

the multiple linear regression on standardized variables, with the standardization follow-175

ing x−x
sx

where x denotes the average and sx the standard deviation. The standardized176

regression coefficients provide the change in the dependent variable per one-unit change177

in the independent variable measured in standard deviations. The 95% confidence in-178

tervals of the standardized coefficients for the warming trend and ENSO variability are179

0.65±0.15 and 0.64±0.15, indicating that both factors contribute similarly to the vari-180

ance of the tropical land mean TWmax (Figure 3a).181

To examine the spatial distribution of these coefficients, we compute β̂∗ by regress-182

ing the standardized zonal land mean TWmax (i.e., TWmax at each grid point zonally183
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Figure 2. Visualization of the multiple linear regression for 30◦S-30◦N land-mean TWmax. a,

Scatter plot of independent variables – December ONI of preceding years (ONIDec,t−1) and year

(t). b, Scatter plot of 30◦S-30◦N land-mean TWmax and year (t). c, Scatter plot of 30◦S-30◦N

land-mean TWmax and ONIDec,t−1. d, Actual TWmax from ERA5 versus the predicted TWmax

by the regression model (open circles). Years following major volcanic eruptions are excluded

from the fit and are plotted separately in grey. The grey dotted line indicates 1/1.
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averaged over land only) against the same two standardized independent variables. Fig-184

ure 3b illustrates the estimated β∗ as a function of latitude. Over most latitudes in the185

tropics, the 95% confidence intervals of β̂∗
1 (warming) and β̂∗

2 (ENSO) strongly overlap,186

suggesting a similar contribution at each latitude. However, in the southern subtropics,187

the magnitude of β̂∗ values for both variables declines, and the 95% confidence interval188

encompasses 0 south of 20◦S, indicating that the regression model is not valid in these189

latitudes. Notably, warming exerts a stronger influence on the northern subtropics com-190

pared to ENSO.191

The implications of a one-standard-deviation change may differ when the indepen-

dent variables follow the same type of distribution, as is the case here with the uniformly

distributed t variable and the approximately normally distributed ONI. To provide fur-

ther evidence and a complementary perspective, we employ an alternative approach by

calculating the increment in R2 (∆R2) for each variable:

∆R2
i = R2

full −R2
Reduced,i, (5)

where R2
full represents the R2 value of the full model (Eq. 4), and R2

Reduced,i corresponds192

to the R2 value when the ith independent variable is removed from the regression model.193

∆R2
i can be loosely regarded as the contribution of the ith variable to the full model.194

This method yields similar results (Figure 3c,d), with warming contributing 0.428 and195

ENSO contributing 0.413 for the tropical mean TWmax. The latitudinal patterns of the196

relative magnitudes of ∆R2 values closely resemble those of β̂∗. Furthermore, the R2 value197

of the full model indicates that the model performs best in the deep tropics, consistent198

with with empirical findings that support the validity of the weak-temperature-gradient199

assumption in that latitudinal range (Zhang & Fueglistaler, 2020).200

3.4 Regional regression201

When evaluating the model’s performance for gridbox-level annual maxima, the202

assumption of a Gaussian error term in Eq. (4) becomes less appropriate. In this con-203

text, we assume a generalized extreme value (GEV) distribution for the error term and204

determine the parameters through maximum likelihood estimation (Text S1).205

The model’s performance exhibits a spatial pattern consistent with the zonal-mean206

analysis discussed above, with its lowest RMSE values in the deep tropics and an increase207

towards higher latitudes (Figure 4a).208
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The β̂ values for both warming (Figure 4b) and ENSO (Figure 4c) are compara-209

ble in magnitude when multiplied by the standard deviations of the respective indepen-210

dent variable, implying their similar impacts on TWmax variability across different lo-211

cations. Contrary to expectations that TWmax in all tropical land is constrained by the212

warmest SSTs irrespective of place, the coefficient for warming (β̂1; Figure 4b) exhibits213

notable spatial variations. In contrast, the ENSO coefficient (β̂2; Figure 4c) is relatively214

uniform, with El Niños leading to higher TWmax in the following years across most re-215

gions. This suggests that, despite El Niño’s inherent spatial characteristics, its occur-216

rence induces a relatively uniform response in the following year’s continental TWmax.217

There are two potential causes of the spatial pattern in the coefficient of warming218

(β̂1): the influence of local land surface conditions, and the uneven response of free-tropospheric219

temperatures to localized convective heating (Matsuno, 1966; Gill, 1980). Further anal-220

ysis suggests that the former is more likely, as evidenced by the fact that the areas of221

negative β̂1 coincide with regions of strongly negative trends in the annual-mean 2-m spe-222

cific humidity (qs; Figure S1b). Such drying trends could stem from land use change, a223

process not explored in this study. A drier land surface deepens the planetary bound-224

ary layer, distributing surface heat fluxes within a deeper layer and enhancing entrain-225

ment of dry free tropospheric air; both of these processes lead to lower boundary layer226

moist static energy and surface TW (Pal & Eltahir, 2001; Kong & Huber, 2023).227

The above analyses illustrate the spatial heterogeneity in the relationships of TWmax228

with warming and ENSO. While it is reasonably true that tropical TWmax increases over229

land are uniformly limited by the warmest sea surface temperatures (Zhang et al., 2021),230

the regional disparities highlight the limitation of this assumption. These results empha-231

size the importance of conducting localized assessments, which we do next.232

We have chosen four regions (marked as red boxes in Figure 4a) to assess how the233

model in Eq. (4) predicts regional-mean TWmax. The choice of these regions is not gov-234

erned by any strict rule, but we generally pick regions that exhibit relatively high val-235

ues in climatological TWmax (Figure S2a) and population density (Figure S2b), and rel-236

atively low values in RMSE (Figure 4a). Spatial averaging produces error terms approx-237

imating Gaussian distributions, justifying the suitability of applying the multiple linear238

regression analysis. The model’s performance in these smaller regions is depicted in Fig-239

ure 5b-d, while Figure 5a illustrates the same for the tropical land mean. The model ef-240
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Figure 5. Example TWmax forecast for 2024. a-e, Performance of multiple linear regression

for 30◦S-30◦N land mean and four regions marked in Figure 4a. Color indicates the year of the

data point. Two major El Niños-1998 and 2016-are highlighted. f-j, Predicted TWmax,2024 as a

function of December ONI, 2023. Confidence intervals in red account for the standard error of

the predicted mean. Prediction intervals in blue additionally take into account the year-to-year

variability around the predicted mean. k-o, Estimated chance of TWmax setting new records in

2024 in the tropical mean and each region conditioned upon the strength of El Niño by the end

of 2023. ONI ranges of moderate (1.0≤ONI<1.5), strong (1.5≤ONI<2.0) and very strong (ONI≥

2.0) El Niño events are marked.
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Table 1. Summary of multiple linear regression resultsa

Region 30◦S-30◦N mean Sahel Southeast Asia Sumatra North India

β̂1 (◦C/year) 0.0125±0.0029b 0.0121±0.0037 0.0235±0.0034 0.0184±0.0038 0.0218±0.0050

β̂2 (◦C/unit ONI) 0.137±0.032 0.171±0.042 0.141±0.038 0.152±0.042 0.115±0.056

β̂∗
1 (standardized β̂1) 0.65 0.55 0.84 0.73 0.78

β̂∗
2 (standardized β̂2) 0.64 0.70 0.45 0.55 0.37

∆R2
1 0.428 0.300 0.700 0.538 0.607

∆R2
1 0.413 0.483 0.203 0.298 0.135

R2 0.803 0.749 0.869 0.800 0.716

F-statistic, P>F 73.36, 2.0e-13 53.66, 1.6e-11 119.3, 1.3e-16 72.04, 2.6e-13 45.50, 1.4e-10

t, P> |t| for β̂1 8.844, 1.5e-10 6.557, 1.3e-07 13.859, 5,3e-16 9.843, 9.5e-12 8.783, 1.8e-10

t, P> |t| for β̂2 8.686, 2.3e-10 8.321, 6.6e-10 7.465, 8.1e-9 7.328, 1.2e-8 4.134, 2.0e-4

Root Mean squared error (RMSE; ◦C)c 0.103 0.134 0.124 0.136 0.182

Leave-one-out cross-validation RMSE (◦C) 0.113(+9.45%d) 0.147(+9.17%) 0.135(+8.86%) 0.149(+9.05%) 0.199(+9.71%)

Walk-forward validation RMSE (◦C) 0.119(+7.08%e) 0.138(+20.1%) 0.156(+17.6%) 0.171(+18.8%) 0.194(+17.6%)

Record-setting probability (ONI=1.5) 42%(11%-78%f ) 15%(1.8%-49%) 56%(15%-84%) 11%(0.5%-58%) 35%(7.7%-69%)

Record-setting probability (ONI=2.64) 90%(50%-99.5%) 66%(14%-95%) 92%(55%-99.5%) 51%(5.5%-95%) 63%(17%-94%)

a Number of Observations: 39; Residuals degree of freedom: 36; Model degree of freedom: 3

b 95% confidence interval

c Maximum likelihood estimate of MSE, not the unbiased MSE, is used throughout the paper

d Percentage change compared to the regression model with all 39 data points

e Percentage change of RMSE of the last 19 data points

f 95% BCa bootstrap interval

fectively explains TWmax variability at both regional and tropical mean scales. The con-241

tributions of warming and ENSO exhibit regional variations, as evidenced by the range242

of ∆R2 values in Table 1. In Southeast Asia, for instance, the variability of TWmax is243

predominantly influenced by the warming trend, with higher TWmax values occurring244

in more recent years (Figure 5c). Conversely, the Sahel region exhibits stronger sensi-245

tivity to ENSO variability, with 1998 and 2016 having the highest TWmax (Figure 5b).246

TWmax occur at different times of year in different regions. A general pattern emerges,247

with TWmax events occurring during boreal summer (June-August) north of 15◦N, bo-248

real winter (December-February) south of 15◦S, and boreal spring (March-May) and fall249

(September-November) between 15◦S and 15◦N (Figure S3a). For the four selected re-250

gions, TWmax typically occurs in April for Sahel, May for Southeast Asia and Sumatra,251

and June to August for North India (Figure S3b). The multiple linear regression model252

thus demonstrates an average lead time of approximately five months for tropical land253

areas and a range of three to seven months for the four regions of interest.254
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3.5 Forecasting TWmax months in advance255

Before making predictions with the multiple linear regression model, we assess its256

predictive skill using leave-one-out cross-validation and walk-forward validation which257

is more suitable for time series data. This is motivated by the possibility of overfitting,258

especially since our model was trained using the full dataset. The moderate increases259

in RMSE during cross-validation (Table 1) suggest that the model is not seriously over-260

fitted and is suitable for making predictions with details provided in Text S2 and Fig-261

ures S4.262

Our objective is to generate a forecast of TWmax for the upcoming year based on

the December Oceanic Niño Index (ONI) of the current year. Note that the ONI is a three-

month running mean, with December ONI of the current year technically containing in-

formation from January of the upcoming year, but nearly all land north of 15◦S has TWmax

occurring in March or later of the upcoming year (Figure S3b). Taking the year 2024

as an example, the predicted mean depends on ONIDec,2023 following:

ˆTWmax,2024 = β̂0 + 2024β̂1 + β̂2ONIDec,2023. (6)

Figure 5e-h presents the 95% confidence intervals of the predicted mean and the263

95% prediction intervals of TWmax,2024 as a function of ONIDec,2023 (Text S3). As ex-264

pected, even in a neutral ENSO state, the mean predicted TWmax,2024 values in all four265

regions (Figure 5f-h) as well as the tropical mean (Figure 5e) surpass the median of past266

records. This demonstrates the influence of the cumulative warming at the present level267

on TWmax. A rough estimate of the impact of warming since 1980 on TWmax is the num-268

ber of years (44 years) multiplied by β̂1, yielding 0.55K for the tropical mean. The ONI269

value required to achieve a comparable effect can be estimated by dividing the warming-270

induced increase in TWmax by β̂2. Remarkably, an ONI value of 4.0, representing a su-271

per El Niño of unprecedented magnitude, would be necessary to match the increase in272

tropical mean TWmax caused by cumulative warming. Although this estimation is not273

rigorous, it provides an estimate of the magnitude of the cumulative warming effect since274

1980, equivalent to an exceptionally strong El Niño.275

Next, we estimate the probability of a new TWmax record being set in 2024, as-276

suming knowledge of ONIDec,2023. Rigorously estimating this probability is challenging,277

and our estimate is contingent upon certain assumptions. We assume that the predicted278
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TWmax at each xp = (1, 2024,ONIDec,2023)
T follows a Gaussian distribution centering279

at the predicted mean given by Equation (6) with a standard deviation equalling the root280

mean squared error (RMSE; we use the maximum likelihood estimate of RMSE rather281

than the unbiased estimate). For each ONIDec,2023 value, we then compute the area un-282

der this Gaussian distribution when the predicted TWmax exceeds the highest record,283

resulting in the central estimates of the probability of a new TWmax record being set (solid284

lines in Figures 5i-l). The 95% confidence intervals for this probability, shown as dot-285

ted lines in Figures 5i-l, were derived using the bias-corrected and accelerated (BCa) boot-286

strap method (Text S4).287

For the tropical mean TWmax, an Oceanic Niño Index (ONI) of 1.5 by the end of288

2023 leads to a central estimate of a 42% probability of surpassing the TWmax record289

in 2024 with the 95% confidence interval ranging from 11% to 78% (Figure 5k). In con-290

trast, if an El Niño as intense as the 2015/2016 event (with an ONI of 2.64) occurs, the291

central probability estimate increases to 90%, with the 95% confidence interval ranging292

from 50% to 99.5% (Figure 5k). These probabilities as well as the width of the confidence293

intervals exhibit regional variability (Table 1), with Southeast Asia emerging as a region294

with an elevated likelihood of experiencing record-breaking TWmax during a strong El295

Niño (Figure 5m, Table 1).296

4 Summary and Discussion297

This study establishes the potential for dynamically based predictions of the an-298

nual maximum of daily maximum wet-bulb temperatures (TWmax) across tropical land299

areas with an average lead time of five months. This predictability arises from two facts300

in tropical atmosphere-ocean dynamics: 1) TWmax over tropical land is closely coupled301

to free tropospheric temperature through deep convection and tropical wave dynamics,302

and 2) the free tropospheric temperature is determined by the warmest SSTs, which typ-303

ically reach their peak around five months after the peak of an El Niño event (Pan &304

Oort, 1983; Sobel et al., 2002; Chiang & Sobel, 2002).305

By using the Oceanic Niño Index (ONI) as a predictor and accounting for the warm-306

ing trend through a “year” variable, our multiple linear regression model effectively ex-307

plains a substantial portion—80%—of the variability in tropical land mean TWmax. Al-308

though the model’s performance varies across regions, it demonstrates promising skills,309
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especially in the deep tropics (Figures 3b,d, Figure 4a). Both warming trends and ENSO310

have contributed significantly to the variability in TWmax, and our analysis shows that311

the cumulative warming effect since 1980 is comparable to that of an exceptionally strong312

El Niño.313

We forecasted TWmax for the year 2024 assuming knowledge of the December ONI314

of 2023 and estimated the probability of setting new TWmax records in 2024. The strength315

of an El Niño event significantly influences the probability of breaking TWmax records.316

The tropical mean and regional variations in these probabilities are detailed in Figure317

5k-o and Table 1.318

Although TW may not be the most precise metric for evaluating heat stress (Lu319

& Romps, 2023; Baldwin et al., 2023), the methodology developed in this work has the320

potential to be adapted to temperature and Heat Index, which are influenced by SST321

through similar dynamics (Chiang & Sobel, 2002; Byrne, 2021).322

Finally, this study calls for increased efforts to enhance the accuracy of predictions323

of ENSO-induced free-tropospheric temperature variations. Improved predictions for free-324

tropospheric temperatures, such as T500, could benefit projections of extreme heat stress325

across tropical continents, as illustrated by the close correlation between the two in Fig-326

ure 1a. Note that the predictive model proposed in this study does not rely on forecast-327

ing future ENSO events; it leverages only the current ENSO state. This model’s predic-328

tive skill originates from the time lag between tropical tropospheric temperatures and329

ENSO variability. That said, advances in ENSO forecasting could further extend the lead330

times at which accurate TWmax predictions become feasible.331
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