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ABSTRACT 12 

Water resources planning often uses streamflow predictions made by hydrologic models. 13 

These simulated predictions have systematic errors which limit their usefulness as input to 14 

water management models. To account for these errors, streamflow predictions are bias-15 

corrected through statistical methods which adjust model predictions based on comparisons 16 

to reference datasets (such as observed streamflow). Existing bias-correction methods have 17 

several shortcomings when used to correct spatially-distributed streamflow predictions. First, 18 

existing bias-correction methods destroy the spatio-temporal consistency of the streamflow 19 

predictions, when these methods are applied independently at multiple sites across a river 20 

network. Second, bias-correction techniques are usually built on simple, time-invariant 21 

mappings between reference and simulated streamflow without accounting for the hydrologic 22 

processes which underpin the systematic errors.  23 

We describe improved bias-correction techniques which account for the river network 24 

topology and which allow for corrections that are process-conditioned. Further, we present a 25 

workflow that allows the user to select whether to apply these techniques separately or in 26 

conjunction. We evaluate four different bias-correction methods implemented with our 27 

workflow in the Yakima River Basin in the Pacific Northwestern United States. We find that 28 

all four methods reduce systematic bias in the simulated streamflow. The spatially-consistent 29 

bias-correction methods produce spatially-distributed streamflow as well as bias-corrected 30 

incremental streamflow, which is suitable for input to water management models. We also 31 

find that the process-conditioning methods improve the timing of the corrected streamflow 32 

when conditioned on daily minimum temperature, which we use as a proxy for snowmelt 33 

processes. 34 

SIGNIFICANCE STATEMENT 35 

To make streamflow predictions from hydrologic models more informative and useful for 36 

water resources management they are often post-processed by a statistical procedure known 37 

as bias-correction. In this work we develop and demonstrate bias-correction techniques which 38 

are specifically tailored to streamflow prediction. These new techniques will make modeled 39 

streamflow predictions more useful in complex river systems undergoing climate change. 40 

1. Introduction 41 
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The use of computational models of hydrologic systems has become a nearly ubiquitous 42 

way to forecast streamflow and plan for the allocation of water resources. However, these 43 

predictions are often biased, because they are subject to systematic errors in the model inputs, 44 

model parameter values, and process representations. Regardless of the source of these errors, 45 

which are often difficult to determine, the introduction of such biases in predictions degrades 46 

their quality. To address these biases, it is common to “bias-correct” or “post-process” these 47 

predictions through some statistical procedure (Chen et al. 2013; Guo et al. 2020; Hashino et 48 

al. 2007). These corrections are particularly important when simulated streamflow values are 49 

used as input to water resources models, in which specific streamflow and storage thresholds 50 

trigger water management decisions. We refer to these correction methods generally as “bias-51 

correction” techniques for simplicity, though they typically correct for the entire range of 52 

distributional errors rather than only for an overall bias in the mean. 53 

Bias-corrections are commonly applied at multiple steps and to multiple variables along 54 

the modeling chain, most often precipitation and temperature in atmospheric model output 55 

and streamflow in hydrologic model output. Most studies in the bias-correction literature deal 56 

with the correction of atmospheric variables, especially in the context of climate change 57 

studies (Cannon 2018; Maraun 2013; Pierce et al. 2015; Shi et al. 2008; Wood et al. 2004). 58 

Precipitation and temperature in particular are often bias-corrected before they are used as 59 

input to hydrologic models. Few studies explicitly discuss streamflow bias-correction. 60 

Hashino et al. (2007) evaluated three bias-correction methods (multiplicative correction, 61 

regression method, and quantile mapping) to bias-correct ensemble streamflow forecasts for a 62 

single site on the Des Moines River in Iowa, USA. Hamlet et al. (2013) used a quantile 63 

mapping procedure to bias-correct streamflow estimates in a study of climate change impacts 64 

on the hydrology of the Columbia River basin in the Pacific Northwest. Their bias-correction 65 

procedure was based on earlier work by Snover et al. (2003) and Wood et al. (2002) in which 66 

a monthly varying correction was calculated based on naturalized historical flows and model 67 

simulations for the same period. These same corrections were then applied to simulated flows 68 

under different climate scenarios. Farmer et al. (2018) used flow-duration-curves to bias-69 

correct simulated streamflow at ungauged locations. 70 

We focus on bias-correction methods for streamflow simulations and address two 71 

shortcomings found in the existing methods as used in the previously discussed studies. First, 72 

streamflow bias-correction methods that originate from the atmospheric science literature 73 
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tend to assume that bias-corrections can be applied independently at multiple locations on a 74 

river network. In doing so, they ignore the upstream-downstream connection imposed by the 75 

river network (which we refer to as spatial consistency). Bias-correction at upstream and 76 

downstream sites treat the same parcels of water, that originated at the headwaters, in 77 

potentially different ways. This alters the relationships between streamflow at upstream and 78 

downstream sites and reduces the spatial-consistency of streamflow across a river network. 79 

As a result, incremental flows between sites along a river network, which are often used as 80 

input to water management models often become physically unrealistic, especially at shorter 81 

time intervals (e.g. daily flows). For example, in the Missouri Headwaters Basin Study 82 

(Bureau of Reclamation and Montana Department of Natural Resources and Conservation 83 

2021), bias-corrected streamflow used as input to a water resources model was problematic, 84 

because bias-corrections were developed independently for more than 20 sites, many of 85 

which had overlapping watershed areas. The methods we propose in this paper address this 86 

problem directly. An unrelated problem, which we do not address, was that reference 87 

streamflow time series were based on multiple unrelated sources, which is often the case in 88 

studies encompassing large watersheds. In the absence of a robust alternative methodology, 89 

such as that described here, an ad hoc approach was developed to complete the Missouri 90 

Headwaters Basin Study. 91 

Second, many existing streamflow bias-correction methods assume stationarity in the 92 

underlying processes between the reference period, which is used to train the bias-correction 93 

method, and the application period, for example the end of the 21st century. This has been 94 

shown to be a particularly important problem in the context of climate change projections 95 

(Maraun 2016). Although some methods condition the bias-correction on time-of-year (for 96 

example, a different quantile mapping for each month), the underlying assumption is that the 97 

same quantile mapping is valid for the same time-of-year in the future. This can be 98 

problematic. For example, imagine that a hydrologic model performs poorly in simulating 99 

snow melt and that snow melt historically occurs during April. A monthly varying bias-100 

correction procedure would then indicate a large correction in April. However, under a 101 

warming climate, snow melt may occur earlier or seasonal snow may disappear altogether 102 

(Musselman et al. 2017; Livneh and Badger 2020). In this case, the bias-correction would 103 

still result in a large bias-correction in April. This is because, as pointed out by Vrac and 104 

Friederichs (2015), many bias-correction techniques are not able to change the timing (that is, 105 

for example the “rank-chronology” as determined by the Spearman correlation) of the 106 
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corrected timeseries. While some multivariate bias-correction techniques do not strictly 107 

adhere to this limitation (François et al. 2020), shifts in timing are more of an indirect-effect 108 

rather than the primary purpose of the techniques, so they are not suitable for correcting 109 

streamflow predictions in a changing climate. Similarly, models may have different biases 110 

under more extreme conditions which may become more prevalent in the future climate 111 

(Slater et al. 2021), thereby altering the cumulative distribution functions (CDFs) of 112 

simulated streamflow used to calculate corrections. Rather than assuming stationarity for the 113 

underlying CDFs, we would like to allow for non-stationarity in processes that are primarily 114 

responsible for the systematic biases (process-conditioning). 115 

We propose to preserve spatial consistency across the river network by bias-correcting 116 

only the independent portions of the flows, that is, we correct the local flow contribution 117 

from each individual sub-basin. Then, these locally bias-corrected flows can be re-aggregated 118 

by a routing model that integrates surface runoff and upstream flow, as is normally done to 119 

produce the total streamflow. Bias-correction of intervening flows automatically ensures 120 

spatial consistency of the flows between upstream and downstream sites. This approach 121 

requires estimation of local inflows at all locations, including sites for which we do not have 122 

reference flows (for example, streamflow measurements). 123 

To allow for non-stationarity in the bias-correction and to allow for process-conditioning, 124 

we propose to condition our bias-corrections with respect to another variable on which the 125 

simulated errors may depend. This idea was originally proposed by Bellprat et al. (2013) who 126 

suggested such a method might be useful for accounting for the role of soil moisture in the 127 

correction of air temperatures. However, to our knowledge the idea remains untested for 128 

streamflow bias-correction. 129 

We evaluate our implementation of these bias-correction techniques on the Yakima River 130 

Basin in the Pacific Northwestern United States and demonstrate their ability to better 131 

preserve spatial consistency by comparing them against an independent bias-correction 132 

technique. Further, we show how process-conditioning, while accounting for environmental 133 

factors such as the air temperature, can improve bias-corrections. In section 2 we describe our 134 

methodology, including both a description of the spatially-consistent bias-correction method 135 

as well as our method of incorporating process-awareness into bias-correction methods. We 136 

also outline details of the Yakima River Basin and data sources in section 2. In section 3 we 137 

present the results of each of our test cases. Following the results, we discuss the current state 138 
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of our workflows and discuss future avenues for development in section 4. Finally, we 139 

summarize and provide concluding remarks in section 5. 140 

2. Methods 141 

a. Study region and data 142 

We apply our bias-correction techniques to the Yakima River Basin in the Pacific 143 

Northwestern United States (figure 1). The Yakima River Basin is a 16 thousand square 144 

kilometer sub-basin of the Columbia River Basin located on the eastern slopes of the Cascade 145 

mountains in central Washington state. The Yakima River Basin has a strong gradient in 146 

hydroclimate from the headwaters to the outlet. The headwaters are characterized by the 147 

humid eastern slopes of the Cascade mountains and receive over 2500 mm of precipitation in 148 

an average year. The outlet at the confluence of the Yakima and Columbia Rivers is arid, 149 

receiving on average less than 250 mm of precipitation per year. This gradient in 150 

precipitation coincides with a large gradient in elevation, with the headwaters exceeding an 151 

elevation of 2000 meters and the outlet at just over 120 meters above mean sea level. Due to 152 

orographic effects in the headwaters, most of the precipitation falls as snow through the fall 153 

and winter months which drives a strong seasonal cycle in streamflow. 154 

 155 
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Figure 1. Yakima River Basin map. Gauged sites are shown in red, and are labeled with 156 

their stream gauge abbreviations in panel a. The stream network topology, with gauged 157 

locations highlighted in red is shown in panel b.  158 

 159 

For this study we used simulations covering the entire Columbia river basin as described 160 

by Chegwidden et al. (2019). In particular we use the runoff generated by the simulations at a 161 

daily timestep for the historical period, 1980-2010, from the Variable Infiltration Capacity 162 

(VIC; Liang et al. 1994) model with the VIC-P1 parameter set (Chegwidden et al. 2019). The 163 

resulting runoff fields from the VIC simulations were arranged on a 1/16º latitude-longitude 164 

grid, however the approach we take for streamflow routing is based on a vector, or 165 

unstructured, river network mesh. To align the simulated runoff to the river network we then 166 

remapped the gridded 1/16º VIC output onto the Geospatial Fabric unstructured mesh (Viger 167 

and Bock 2014) using a weighted averaging scheme. The remapped runoff is then routed 168 

through the river network using the mizuRoute river routing model (Mizukami et al. 2016) to 169 

produce the raw simulated streamflow that is analyzed in this study. Our bias-correction 170 

technique can be run on either gridded or unstructured domains, and we chose to use the 171 

unstructured domain because we had the mizuRoute setup for the Yakima River available on 172 

the unstructured mesh.  173 

Because neither VIC nor mizuRoute incorporates any land use or reservoir regulation 174 

components we use no reservoir, no irrigation (NRNI) flows as our reference dataset instead 175 

of observations, which include the effects of human infrastructure (Pytlak et al. 2018). These 176 

NRNI flows are used to calculate the CDFs which are used to bias-correct the simulated 177 

flows. For all bias-corrections we use the period 1981-1991 to train the CDFs and 1992-2009 178 

to apply the bias-corrections. Bias-correction is performed at the daily timestep. 179 

 180 

Site Winter 

Average 

Daily Low 

Temp (ºC) 

Summer 

Average 

Daily High 

Temp (ºC) 

Winter 

Average 

Precipitation 

(mm/day) 

Summer 

Average 

Precipitation 

(mm/day) 

Upstream 

area (𝑘𝑚2) 

KEE -5.7 17.8 11.0 2.1 144 

KAC -4.6 21.1 7.1 0.9 167 
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EASW -6.5 20.5 6.8 1.0 679 

CLE -5.3 22.8 4.6 0.5 526 

YUMW -6.5 23.3 4.7 0.7 1304 

BUM -8.2 17.9 6.8 0.9 192 

AMRW -8.2 17.5 6.9 1.0 206 

CLFW -8.3 21.3 5.3 0.8 1228 

RIM -6.5 22.0 4.2 0.6 485 

NACW -7.7 25.2 2.2 0.4 2437 

UMTW -6.9 26.3 1.7 0.4 4135 

AUGW -5.5 28.5 1.4 0.4 525 

PARW -4.3 29.7 0.9 0.3 9592 

YGVW -3.2 30.0 0.8 0.3 13767 

KIOW -3.1 29.6 1.0 0.3 14444 

Table 1. Average meteorologic conditions at gauged sites which have reference NRNI 181 

streamflow 182 

 183 

b. Description of the bias-correction workflows 184 

The overall workflow for the bias-correction methods is shown in schematic form in 185 

figure 2. The workflow is split into two pieces, a preprocessing step and the bias-correction 186 

step. We built a reference implementation of this workflow in the software package, bmorph, 187 

which is freely available and open source (Bennett et al. 2021). For specifics of the input data 188 

requirements and configuration options see the bmorph documentation 189 

(https://bmorph.readthedocs.io).  190 

The preprocessing step depends on whether the chosen bias-correction method should 191 

enforce spatial consistency and whether the chosen bias-correction method should consider 192 

external variables through conditioning. If a spatially consistent method is selected the 193 

locations of the reference gauges must be mapped onto the river network topology, which is 194 

then used to locate upstream and downstream gauges for each river reach, along with an 195 
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interpolation factor which is used to provide regionalized bias-corrections at each river reach. 196 

If process conditioning on another variable is used the other variable must also be associated 197 

with the underlying river network and gauge sites. For example, the meteorological data used 198 

to force the hydrologic model may not be on the same spatial domain as the river routing 199 

model, and so a way of selecting the meteorologic data which is overlapping with each river 200 

reach is determined in this step. We expand on the implementation of these bias-correction 201 

options in sections 2b and 2c, respectively. If neither of these options are selected, as in most 202 

traditional streamflow bias-correction methods, the preprocessing step may be omitted. 203 

 204 

Figure 2. Schematic of the workflow for the bias-correction options implemented in this 205 

study. 206 

 207 

Once preprocessing is complete, the resulting data can be input into the bias-correction 208 

workflow. This workflow also has branches for performing spatially consistent bias-209 

correction and conditional bias-correction. The current implementation allows for these 210 

options to be chosen independently, resulting in a flexible workflow that can be extended to 211 
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add additional steps and/or options. For instance, we provide two underlying bias-correction 212 

techniques, the conditional bias-correction that we describe in section 2c and the Equidistant 213 

Cumulative Distribution Function method (EDCDFm; Li et al. 2010). In principle any 214 

number of other bias-correction techniques could be implemented independently of whether 215 

spatially consistent bias-correction is used. 216 

A post-processing technique similar to the one described in the PresRat method (Pierce et 217 

al. 2015) was used to preserve changes in the mean flow between the training period and the 218 

application period. Ours differs only in that it uses a rolling window (overlapping periods) of 219 

365 days rather than a strided window (non-overlapping periods). For clarity, because two 220 

methods of bias-correction were introduced in Pierce et al. (2015), the bias-correction 221 

technique that we mimic for our underlying implementation is applied in the time domain 222 

rather than the frequency domain. 223 

c. Spatially consistent bias-correction 224 

To implement a spatially consistent bias-correction technique for distributed streamflow 225 

predictions we have developed a regionalization technique which interpolates the target 226 

distribution between reference flow sites. A regionalization technique is required to perform 227 

bias-corrections for each local inflow, many of which do not have associated reference flows. 228 

The regionalization technique makes use of the topology of the river network by selecting 229 

target distributions which are nearby and interpolating between them as a function of some 230 

statistical measure (such as the correlation or a mean bias error). A schematic representation 231 

of this interpolation is shown in figure 3.  232 
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 233 

Figure 3. Schematic of interpolated bias-correction. Panel a shows a schematic of stream 234 

segments where upstream and downstream gauge sites are highlighted with a black outline. 235 

Intermediate stream segments are colored via a linear color gradient. Panel b shows how 236 

CDFs are interpolated along the stream network. The color gradient of the CDFs matches the 237 

interpolation as you go from the upstream gauge site to the downstream gauge site in panel a. 238 

 239 

When interpolating between gauged sites we use the formula: 240 

𝑄̃𝑖𝑛𝑡𝑒𝑟𝑝 = 𝛼 ⋅ 𝐵𝐶𝑢𝑝(𝑄𝑜𝑐
𝑢𝑝, 𝑄𝑚𝑐

𝑢𝑝 , 𝑄𝑚𝑝) + (1 − 𝛼) ⋅ 𝐵𝐶𝑑𝑜𝑤𝑛(𝑄𝑜𝑐
𝑑𝑜𝑤𝑛 , 𝑄𝑚𝑐

𝑑𝑜𝑤𝑛 , 𝑄𝑚𝑝) (1) 241 

where 𝑄̃𝑖𝑛𝑡𝑒𝑟𝑝 is the bias-corrected streamflow for locations for which no reference flows 242 

are available, 𝐵𝐶𝑖 is the is the bias-correction function at either the upstream (𝑢𝑝) or 243 

downstream (𝑑𝑜𝑤𝑛) location, 𝑄𝑜𝑐  is the observed or reference data, 𝑄𝑚𝑐  represents the 244 

simulated streamflow values during the reference period, and 𝑄𝑚𝑝  the simulated streamflow 245 

that will be bias-corrected . The values for α are computed in the preprocessing step, which is 246 

also when the locations of the upstream and downstream gauge sites for each river reach are 247 

recorded (figure 3).  248 

The calculation of the α value can be done in a number of ways. For this study, we use 249 

the coefficient of determination ( ) between the streamflow at each intermediate site and the 250 

up/downstream simulated streamflow to determine the interpolation factor. Given an 251 

https://www.codecogs.com/eqnedit.php?latex=up#0
https://www.codecogs.com/eqnedit.php?latex=down#0
https://www.codecogs.com/eqnedit.php?latex=x_%7Bmc%7D#0
https://www.codecogs.com/eqnedit.php?latex=x_%7Bmp%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
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upstream streamflow, 𝑄𝑢𝑝 , and downstream streamflow, 𝑄𝑑𝑜𝑤𝑛, then the interpolation factor 252 

for an intermediate streamflow, 𝑄𝑖 , is given by: 253 

α =
𝑟2(𝑄𝑖 , 𝑄𝑢𝑝)

𝑟2(𝑄𝑖 , 𝑄𝑢𝑝) + 𝑟2(𝑄𝑖 , 𝑄𝑑𝑜𝑤𝑛)
(2) 254 

Two edge cases for computing the interpolation factor require special handling. When 255 

there are no gauge sites to select either up or down stream, we use gauges at other locations 256 

in the network that have the highest  value. When a site has multiple upstream gauge sites 257 

as tributaries, we similarly choose the site which has the highest  value of the available 258 

upstream sites. While we use the coefficient of determination as our method of interpolating 259 

between sites, it is possible to implement this approach for a wide array of appropriate 260 

measures of similarity. Our reference implementation in bmorph also includes options to 261 

regionalize based on spatial distance, Kullback-Leibler divergence (Cover and Thomas 262 

2006), and Kling-Gupta efficiency (Gupta et al. 2009), though we have not explored how 263 

these choices affect the resulting bias-corrections. 264 

To compute the bias-corrected local flows we take the ratio of the bias-corrected total 265 

flow and raw total flow, which results in a multiplier describing the relative change that 266 

should be applied to the local inflows. Given that 𝑄𝑖  is a total uncorrected streamflow, 𝑄̃𝑖 is 267 

the bias-corrected total streamflow from equation 1, and 𝑞𝑖 is a local simulated streamflow, 268 

then we compute the bias-corrected local flow at each river reach as 269 

𝑞̃𝑖 = 𝑞𝑖 ⋅
𝑄̃𝑖

𝑄𝑖
(3) 270 

These corrected local flows are then re-routed through mizuRoute to produce a spatially-271 

consistent bias-corrected streamflow (SCBC). 272 

d. Conditional bias-correction 273 

We incorporate process information into the bias-correction scheme by modifying the 274 

EDCDFm algorithm (Li et al. 2010). The original EDCDFm equation is given as: 275 

𝑄̃𝑚𝑝 = 𝑄𝑚𝑝 + 𝐹𝑜𝑐
−1 (𝐹𝑚𝑝(𝑄𝑚𝑝)) − 𝐹𝑚𝑐

−1 (𝐹𝑚𝑝(𝑄𝑚𝑝)) (4) 276 

where 𝑄𝑚𝑝  is the modeled streamflow, 𝐹𝑜𝑐
−1is the inverse of the CDF of the observed or 277 

reference data, 𝐹𝑚𝑝 is the CDF of the modeled projection, 𝐹𝑚𝑐 is the CDF of the modeled data 278 

https://www.codecogs.com/eqnedit.php?latex=q%5E%7Bdown%7D#0
https://www.codecogs.com/eqnedit.php?latex=q%5E%7Bi%7D#0
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during the reference period, and 𝑄̃𝑚𝑝 is the corrected modeled projection. This formulation is 279 

extended to condition on a two-dimensional (2-D) probability distribution function (PDF): 280 

𝑄̃𝑚𝑝 = 𝑄𝑚𝑝 + 𝐹𝑜𝑐
−1(𝐹𝑚𝑝(𝑄𝑚𝑝|𝑦𝑚𝑝)|𝑦𝑜𝑐) − 𝐹𝑚𝑐

−1(𝐹𝑚𝑝(𝑄𝑚𝑝|𝑦𝑚𝑝)𝑦𝑚𝑐) (5) 281 

where 𝑦𝑖 is the conditioning variable. To compute 𝑄̃𝑚𝑝 we first calculate the 2-D PDF via 282 

a histogram estimator and then for each timestep at which we wish to correct, we compute the 283 

CDF conditioned on the value of 𝑦𝑖 for that timestep (figure 4). We refer to this method as 284 

conditional bias-correction (CBC). 285 

 286 

Figure 4. Schematic of conditional bias-correction (CBC). Panel a shows how 287 

conditioning on two-dimensional PDFs is computed. First, the PDFs are estimated from the 288 

data using histograms. In this example, we show the daily minimum temperature on the x-289 

axis and streamflow on the y-axis. The left sub-plot shows the calculated PDF for the raw 290 

model data, while the right sub-plot shows the reference data. Areas of high probability are 291 

shown in brighter colors. The line at 0 ℃ indicates the position of conditioning for the daily 292 

minimum temperature. Panel b shows the CDF functions for both the raw and reference data 293 

as conditioned at 0 ℃. 294 

 295 

For this study we use as 𝑦𝑖 the daily minimum temperature given by the forcing data 296 

which was used to run the VIC model and set the number of bins in our histogram estimator 297 

to be 100 in both dimensions, though these parameters are adjustable by the user. We use the 298 

daily minimum temperature because we hypothesize that there are snowmelt related biases in 299 

the late-spring and early-summer periods, as will be explored in the results. 300 

e. Evaluation Scenarios 301 

To evaluate the spatially consistent and conditional bias-correction methods in the 302 

Yakima River Basin, we compare the results of each of the combinations of the two new 303 

https://www.codecogs.com/eqnedit.php?latex=y_i#0
https://www.codecogs.com/eqnedit.php?latex=y_i#0
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methods against EDCDFm (Li et al. 2010). The four evaluation scenarios are detailed in 304 

Table 1. We refer to methods which use the blending as spatially consistent bias-correction 305 

(SCBC) techniques, while those that do not as independent bias-correction (IBC) techniques. 306 

Similarly, we denote methods which use the conditional bias-correction with C and those 307 

which do not condition as U (for univariate). In this case we refer to EDCDFm as IBC_U. By 308 

comparing each of the methods both independently and in conjunction we are better able to 309 

understand their impacts on bias-correction of streamflow. 310 

 Spatially consistent BC 

(using interpolation) 

Independent BC  

(no interpolation) 

Univariate BC SCBC_U IBC_U 

Conditional BC SCBC_C IBC_C 

Table 2. Combinations of methods used in the analysis. Both the blending and 311 

conditioning can be turned on and off independently, leading to four bias-correction methods. 312 

 313 

3. Results 314 

Our results are organized into three sections which evaluate different aspects of the bias-315 

correction process. In section 3a, we provide a general evaluation that compares the 316 

performance of the bias-correction methods across the Yakima River Basin. We show that all 317 

four correction methods can largely reduce the bias of the raw simulated streamflow, though 318 

some of their qualitative behaviors differ. In sections 3b and 3c, we further analyze these 319 

differences with respect to our two new methods. In section 3b, we show how conditioning 320 

on daily minimum temperatures improves the seasonal cycle of the bias-corrected streamflow 321 

as well as look at how the underlying probability distributions change with respect to the 322 

daily minimum temperature. In section 3c, we show how SCBC eliminates artifacts between 323 

river reaches. We also show how our SCBC method allows for finer grained analysis of bias-324 

correction on spatially distributed streamflow simulations. 325 

a. General evaluation 326 

In figure 5, we show the mean weekly hydrographs for all scenarios (including raw and 327 

NRNI flows) for the bias-corrected period at each of the gauged sites. For the northern sub-328 
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regions (KEE, KAC, EASW, CLE, YUMW, and BUM), we see general agreement between 329 

the raw flows and the NRNI flows. At some of the sites (notably CLE and BUM) we see 330 

improvements in timing with the conditional bias-correction methods. In the western portions 331 

of the catchment between UMTW and PARW (that is, at AMRW, CLFW, RIM, NACW, and 332 

AUGW) we see relative disagreement between methods. Generally, methods which were 333 

conditioned on daily minimum temperatures were better able to capture the falling limb of the 334 

summer streamflow, indicating resulting flows were corrected to better correspond with 335 

hydrologic processes associated with minimum temperature. At the downstream, mainstem 336 

sites (UMTW, YGVW, and KIOW) we see that the conditional bias-corrections were largely 337 

better at capturing the patterns of the NRNI streamflow. 338 

 339 

Figure 5. Mean weekly flows over the bias-corrected period for each of the scenarios 340 

arranged in approximate stream order (upper left as headwaters, lower right as outlet). 341 

 342 

Aggregating this into percent biases across both gauged sites and time (figure 6) we see 343 

that all methods are largely able to reduce the bias with respect to the raw simulations. The 344 

raw flows have a high bias of, on average, about 25%, while all other methods had biases of 345 

less than +/-5%. Additionally, the spread in the mean biases is reduced considerably for all 346 

bias-correction techniques. The IBC methods show about twice as much reduction in the 347 
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spread of biases as the SCBC methods, however the SCBC methods show better mean-bias 348 

reductions. 349 

 350 

Figure 6. Boxplots of total percent biases across all sites and all time during the bias-351 

correction period.  352 

 353 

In addition to just the mean biases, water managers may also be interested in the annual 354 

flow volumes throughout the river network. We analyze how these biases are changed at all 355 

of the gauged sites for each bias-correction method in figure 7. Generally, we see that all of 356 

the bias-correction methods improve the average and spread of the bias in annual flow 357 

volumes. Differences between bias-correction methods are most apparent between IBC and 358 

SCBC methods in the headwaters. We speculate that this is because of the way we select the 359 

upstream reference flows in the headwaters, as discussed in section 2c. At the downstream 360 

locations (PARW, YGVW, and KIOW) we see that all bias-correction methods reduce the 361 
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mean bias effectively, though the SCBC methods show higher variability in their ability to do 362 

so. 363 

 364 

Figure 7. Boxplots of the ratio between each scenario and raw annual flow volumes 365 

during the application period (1992-2009, N=19). Subplot l) at AUGW is cut off to make the 366 

comparison across subplots easier. 367 

b. Effect of conditioning on the seasonal cycle 368 

To understand the effect of introducing a secondary variable to the bias-correction 369 

methodology. we analyzed the improvement of simulated streamflow for conditional bias-370 

correction methods (IBC_C and SCBC_C). From figure 5 we see that the conditioned bias-371 

correction methods are able to better match the timing of the falling limb of the hydrograph. 372 

To quantify this effect, we calculate the percent biases on a seasonal basis, as shown in figure 373 

8.  374 
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Generally, we see that for the winter and summer months (figure 8 panels a and b, 375 

respectively) the conditioning on daily minimum temperature results in substantially reduced 376 

bias from the raw flows. In the case of the winter season, the unconditioned bias-corrections 377 

actually increased the flow biases. During the spring and fall seasons (figure 7 panels c and d, 378 

respectively) we see that the conditioned bias-correction methods perform similarly to the 379 

unconditioned variants. This is one indication that our choice in using the daily minimum 380 

temperature as a proxy for model bias was a reasonable choice. We further explore this 381 

choice in section 3c. While we could have chosen any number of other conditioning 382 

variables, we chose daily minimum temperatures based on the knowledge of the underlying 383 

hydrometeorology of the Yakima River Basin. In the discussion we expand on how we might 384 

be able to more systematically understand or derive processes or variables to condition on. 385 

 386 

Figure 8. Boxplots of the percent bias for each of the seasons. Panel a shows the biases 387 

for all scenarios in winter months, panel b summer months, panel c spring months, and panel 388 

d fall months. 389 



 

19 

File generated with AMS Word template 2.0 

 390 

To better understand how the conditioning on daily minimum temperature impacted bias-391 

corrections we compute the reference CDFs across a range of values for the conditioning 392 

variable, daily minimum temperature, at basins in the headwaters (at EASW) and near the 393 

outlet along the mainstem (at YGVW) in figure 9. To do so, we first compute the joint 2-D 394 

PDFs and then marginalize on the values of 𝑇𝑚𝑖𝑛 at equally spaced quantiles across the 395 

distribution of 𝑇𝑚𝑖𝑛. For both sites we found that there were substantial differences in the 396 

CDFs for different daily minimum temperatures. At EASW all of the CDFs appear to be 397 

unimodal, though the steepness and location of the median flow changes with different 398 

temperatures.  399 

However, at the downstream site (YGVW; figure 9 panel b), we see that the relative 400 

shapes of the CDFs change based on the daily minimum temperature. For both the low and 401 

high daily minimum temperatures the CDFs are generally steeper than the univariate 402 

equivalent and are still unimodal. However, the CDFs for the curves conditioned at 𝑇𝑚𝑖𝑛 =403 

4.7 𝐶∘  and 𝑇𝑚𝑖𝑛 = 8.6 𝐶∘  have a bimodal structure. This is because the daily minimum 404 

temperature occurs in an annual cycle and that values corresponds to two different times of 405 

year with much different streamflow signatures, for example in spring temperatures are 406 

warming and in fall when temperatures are cooling. This is in contrast to the high and low 407 

values, which only occur in the summer and winter months, respectively. We further explore 408 

this choice of conditioning variable in the supplementary information and discuss the 409 

implications of using a conditioning variable with a seasonal cycle in section 4. 410 
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 411 

 412 

Figure 9. Comparison of cumulative distribution functions (CDFs) for univariate bias-413 

correction (solid black line) and conditional bias-correction at several daily minimum 414 

temperatures (shaded blue to red lines). Panel a shows CDFs for a headwaters site (EASW) 415 

and panel b shows CDFs for a site on the mainstem of the Yakima River Basin near the outlet 416 

(YGVW). 417 

c. Effect of spatially consistent bias-correction 418 

Thus far we have only looked at the bias-corrections at each gauge location 419 

independently, and though we have found that generally the SCBC-based methods are able to 420 

reduce systematic bias in the simulated streamflow, they are not quite as performant as the 421 

IBC methods. However, as discussed in the introduction, independently bias-corrected 422 

streamflow can result in inconsistent behaviors for local inflows while the spatially consistent 423 

method was designed to avoid these artifacts. 424 

Figure 10 shows the weekly incremental streamflow at three locations (KEE, NACW, and 425 

CLFW) on the Yakima River Basin. We determined the incremental streamflow (or local 426 

inflow) by subtracting the flows at the upstream gauged sites. We chose to aggregate to the 427 

weekly timescale to eliminate any artifacts of the transit time from upstream to downstream 428 

gauged locations for IBC. In all three locations we found periods for which the IBC method 429 

shows negative streamflow for at least a week, while SCBC maintains positive streamflow. It 430 

is worth noting that in all three cases these are not losing reaches and that the negative 431 

streamflow is purely an artifact of the bias-correction technique. This is most noticeable at 432 

NACW with the inflows from RIM and CLFW removed, where these artificial negative 433 
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streamflow happen quite regularly and can be relatively large. While the resulting negative 434 

flows are less at the other two sites shown in figure 10, they are an artifact of the method and 435 

may cause errors in water management model simulations. 436 

 437 

Figure 10. Comparison of streamflow with the streamflow from upstream gauged sites 438 

removed. 439 

 440 

In addition to providing incremental streamflow at the gauged locations the SCBC 441 

method provides bias-corrected streamflow along every river reach in the simulation domain, 442 

something that the IBC methods do not provide. We show these as mean changes from the 443 

raw streamflow in figures 11 (winter streamflow) and 12 (summer streamflow). These figures 444 

show the spatial structure of the bias-corrections across the network. For both periods we see 445 

large, spatially coherent differences between unconditional corrections (SCBC_U) and 446 

conditional corrections (SCBC_C). During the winter period (figure 11) we see that 447 

unconditional bias-correction (SCBC_U) (figure 11a) largely works to decrease streamflow, 448 

except in the furthest headwaters. For conditional corrections (SCBC_C, figure 11b) we see 449 

that the bias-correction tended to increase streamflow, particularly along the upper portion of 450 

the basin. There are some decreases in the tributaries which flow into the mainstem further 451 

downstream, though not as drastic as the unconditional corrections (SCBC_U). 452 
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 453 

Figure 11. Change in the streamflow at each river reach in the Yakima River Basin for 454 

both spatially consistent configurations during winter (DJF). 455 

 456 

The summer unconditional corrections (SCBC_U) (figure 12a) look similar to those in the 457 

winter (figure 11a), because the unconditional bias-correction is not able to modify the timing 458 

of the corrected streamflow. This can be seen in the annual corrections as well (figure S3, in 459 

the supplemental information). However, for conditional (SCBC_C) corrections in the 460 

summer (figure 12b) we see that there are drastic changes from the corrections of winter 461 

(figure 12b). During the summer SCBC_C almost universally decreases streamflow, with the 462 

exception of a few locations in the upper headwaters. The reduction in streamflow during the 463 

summer and increase in the winter from SCBC_C, particularly in the snowy headwaters, 464 

further demonstrates that conditionally bias-correcting on daily minimum temperatures can 465 

be a good proxy for errors in snow representation of the hydrologic model. 466 
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 467 

Figure 12. Change in the streamflow at each river reach in the Yakima River Basin for 468 

both spatially consistent configurations during summer (JJA). 469 

 470 

4. Discussion 471 

We have implemented and demonstrated two new techniques for bias-correcting 472 

distributed streamflow simulations. The first technique, spatially consistent bias-correction, 473 

allows for bias-correcting spatially distributed streamflow simulations explicitly, which 474 

maintains the relationships between gauged locations. The second technique, conditional 475 

bias-correction, allows for considering other variables during the bias-correction process by 476 

conditioning on a multidimensional probability distribution built on the streamflow as well as 477 

the other variables to be considered. We have shown that these methods can be developed in 478 

a modular and composable way (that is, we can arbitrarily choose to use spatially consistent 479 

methods and conditional methods independently) and have demonstrated their effects when 480 

applied separately as well as in conjunction. 481 
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The spatially consistent bias-correction method is built on a regionalization technique 482 

which interpolates between gauged locations where reference streamflow is available. The 483 

current implementation is based on interpolating between gauged locations based on the 484 

correlation coefficient, though other methods of interpolation could, in principle, be 485 

implemented in our framework. This method maintains spatial consistency by bias-correcting 486 

the local flows at each stream segment, and then aggregating them through a river routing 487 

model.  488 

Our implementation of spatially consistent bias-correction in the Yakima River Basin 489 

showed that correcting local streamflow directly and then rerouting it to recover the total 490 

bias-corrected streamflow has similar performance in reducing bias as independent bias-491 

correction. Further, it produces bias-corrected streamflow at every river reach in the domain, 492 

which can be used for other purposes, such as inputs into water management or other 493 

operational models (Bureau of Reclamation and Montana Department of Natural Resources 494 

and Conservation 2021). In addition to the benefits of producing bias-corrected local and total 495 

streamflow at all river reaches, this approach eliminates artifacts in the relationship between 496 

gauged locations that independent bias-correction can introduce. 497 

The conditional bias-correction method is currently built by computing discretized PDFs 498 

on streamflow and an additional conditioning variable via the histogram method. In this 499 

study, we chose to use the daily minimum temperature as the conditioning variable, as a 500 

proxy for snowmelt processes. We showed that conditioning on the daily minimum 501 

temperature was able to improve the timing of the bias-corrected streamflow in the Yakima 502 

River Basin. However, it remains an open question of how to choose the conditioning 503 

variable in general. While it is theoretically possible to include more variables to condition 504 

on, this becomes impractical quickly due to the curse of dimensionality, where the number of 505 

possible variable combinations grows exponentially faster than the amount of data, ultimately 506 

leading to empirically estimated PDFs which are very sparse, and thus noisy (Bellman 2010). 507 

We anticipate that additional pre-bias-correction analysis will need to be done on a region-508 

by-region basis to determine which dominant processes to correct for. 509 

5. Conclusions 510 

Our results from implementing two modular and composable streamflow bias-correction 511 

techniques show how bias-correction techniques, which are designed with streamflow in 512 
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mind, can make improvements over existing methods. Our simple regionalization technique 513 

based on interpolating between gauged locations provides spatially distributed (and spatially 514 

consistent) bias-corrections, while still maintaining performance close to the performance of 515 

bias-corrections that are tuned at each individual gauge location independently. We also show 516 

that correcting on daily minimum temperatures via conditional bias-correction can improve 517 

the timing of the bias-corrected streamflow over the unconditioned bias-corrections across 518 

seasons in the Yakima River Basin. The choice of the specific conditioning variable in the 519 

conditional bias correction method is flexible and can be based on locally dominant 520 

processes. 521 

Reducing bias in simulated streamflow is critical when it is used as input to a water 522 

resources model for the purpose of evaluating scenarios for long-term water management and 523 

planning. Federal agencies such as the Bureau of Reclamation rely on these techniques to 524 

study how scenarios of future hydrology may impact existing reservoir operations, for 525 

example. These studies may inform future investments in infrastructure or modifications to 526 

operations. Refinement of bias-correction techniques may help reduce uncertainty in planning 527 

scenarios, thereby saving costs in structural or non-structural modifications that may be based 528 

on over-conservative planning to compensate for future uncertainty. Currently, water 529 

managers rely on ad hoc approaches to developing local inflows based on streamflow 530 

simulations and simply live with the concept that bias-correction techniques cannot address 531 

changing streamflow timing. Alternative methods, such as the SCBC_C method described 532 

here are critical steps toward reducing uncertainties in planning scenarios. 533 

By demonstrating two approaches to bias-correcting streamflow simulations we find that 534 

improvements can be made to the previously used methods that are generally taken from 535 

bias-correcting climate and atmospheric models. By designing correction techniques which 536 

target distributed streamflow simulations we can design new bias-correction methods which 537 

perform well. However, these initial implementations were often built around the simplest 538 

possible method. Improving the way which interpolation between gauged locations, handling 539 

headwaters which flow into the mainstem, and allowing for conditioning on multiple 540 

variables may improve these methods further. 541 

The results of our bias-correction techniques are based on our initial workflow 542 

implementation. We have developed a python package, bmorph, which includes the 543 

implementation that was used for this analysis (Bennett et al. 2021). It also includes the setup 544 
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for the Yakima River Basin as analyzed here as a tutorial dataset. The code and data for 545 

running this analysis is also available at doi:10.5281/zenodo.5348461. We have designed 546 

bmorph in a way that allows it to be modular and extensible, making it easy to build on the 547 

initial implementations that we have described here.  548 
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APPENDIX 557 

Appendix A: Supplementary Figures 558 

Appendix A contains three supplemental figures which complement the main analysis . 559 
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 560 

Figure S1. Ratio of the annual variances between the simulated streamflow and reference 561 

streamflow. 562 

 563 

 564 
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Figure S2. Average seasonal cycle of daily minimum temperature and daily streamflow 565 

for EASW (panel a) and YGVW (panel b). Dots are colored by day of year. This figure 566 

shows how the bimodal distributions in figure 9 of the main text arise. Bias-corrections 567 

conditioned on daily minimum temperature at YGVW with minimum temperatures 568 

approximately between 4 and 10 °C have two distinct streamflow regimes with high flow in 569 

spring and low flow during fall. 570 

 571 

 572 

Figure S3. Mean percent difference between the raw simulated streamflow and bias 573 

corrected streamflow for every river reach in the Yakima River Basin, over the entire 574 

correction period. 575 

 576 
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