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Abstract 18 

Lacustrine proxy reconstructions and paleoclimate modeling are important for understanding 19 

terrestrial climate change. Geochemical methods, including carbonate clumped isotope 20 

thermometry and TEX86, have emerged as powerful tools for reconstructing past lake surface 21 

water temperature (LSWT). Nevertheless, global climate and earth system models often exclude 22 

lakes or simplify their representation due to limitations in grid resolution, computational 23 

intensity, variable complexity, and cost. These models prioritize the representation of large-scale 24 

atmospheric and oceanic processes that govern Earth's climate system, notably mean annual air 25 

temperature (MAAT). To facilitate proxy-model and proxy-proxy comparison, we develop new 26 

lake-to-air temperature transfer functions based on a comprehensive analysis of satellite and 27 

reanalysis data from 965 modern lakes. We use inverse modeling to examine LSWT during five 28 

seasonal intervals (spring, summer, warmest month, spring through summer, and annual) and 29 

assess the impact of climate variables, including latitude and elevation, on MAAT prediction 30 

from transfer functions. Compared to prior work, our models reduce random variations and 31 

biases, yielding more reliable predictions and improve generalizability, allowing for a broader 32 

range of conditions and locations like those of ancient lakes to be represented by our transfer 33 

functions. To showcase their utility, we employ the new transfer functions for reconstructing 34 

Pliocene-Pleistocene MAAT from lacustrine proxy data.  35 



 

 

 

Main text 36 

1. Introduction 37 

Proxy-derived reconstructions of lake water temperature have been instrumental in 38 

advancing our understanding of terrestrial hydroclimate throughout the geologic record (Powers 39 

et al., 2005; Santi et al., 2020; Cheng et al., 2022). Lakes are optimal for studying climate change 40 

due to their sensitivity and rapid response to radiative forcing, and because of the widespread 41 

distribution and long-term preservation of lacustrine sediments (Adrian et al., 2009; Leavitt et 42 

al., 2009; Gierlowski-Kordesch, 2010). Lake-based proxy reconstructions are excellent 43 

paleoclimatic data sources, essential for assessing the efficacy of global climate models 44 

(Members, 1988; Braconnot et al., 2012; Oster et al., 2015). However, the disparity between 45 

directly simulated physical variables in models (e.g air temperature) and lake water temperature 46 

derived from paleoclimate proxies (e.g., Δ47, δ18O, TEX86) presents challenges for direct proxy-47 

to-model comparisons, evaluating climate model performance, and validating proxy-based 48 

reconstructions. 49 

Many paleoecological and paleoclimatological studies have utilized an inverse modeling 50 

approach to create transfer functions, empirical calibrations between proxy variables (e.g., tree 51 

ring width, pollen taxa, and microfossil assemblages) and physical (observed or simulated) 52 

variables (e.g., temperature and precipitation) (e.g. Imbrie and Kipp, 1971; Sachs et al., 1977; 53 

Bartlein et al., 1984; Birks, 1995). Previously, inverse modeling was utilized to develop seasonal 54 

lake-to-air temperature transfer functions, a method for translating proxy-derived reconstructions 55 

of lake surface water temperature (LSWT) to mean annual air temperature (MAAT) (Hren and 56 



 

 

 

Sheldon, 2012). These lake-to-air temperature transfer functions have been widely used to 57 

interpret clumped isotope T(Δ47) constraints on LSWT from lacustrine sediments (Huntington et 58 

al., 2015; Li et al., 2020; Santi et al., 2020; Cheng et al., 2022) as well as have been employed in 59 

proxy-model comparisons (Santi et al., 2020; Cheng et al., 2022). However, it is important to 60 

note the current calibrations were based on a dataset of 88 lakes with long-term temperature 61 

monitoring. This dataset is limited in monitoring location, duration, and geographic coverage, 62 

primarily representing lakes in northern latitudes with low elevations and mid-latitude regions, as 63 

revealed in the study by Hren and Sheldon (2012) 64 

The recent development of modern satellite derived LSWT and air temperature reanalysis 65 

data products has presented an opportunity to conduct large-scale analyses capturing long-term 66 

global variability in lake water and air temperature across various climatological and 67 

hydrological settings (Sharma et al., 2015; Woolway et al., 2021; Wang et al., 2021). We 68 

hypothesize this advancement has the potential to reduce MAAT reconstruction uncertainties 69 

which is crucial when engaging in proxy-to-model comparisons. In this paper, we analyze data 70 

for 965 lakes to generate novel seasonal lake-to-air temperature transfer functions to facilitate 71 

paleoclimate reconstructions and proxy-model evaluation. We also examine the empirical link 72 

between LSWT and MAAT, by evaluating the importance of climate and geographical factors, 73 

such as latitude, elevation, total solar radiation, wind speed, cloud cover, and lake area. We 74 

hypothesize these previously unexplored variables might offer a more comprehensive 75 

explanation for the variance observed in the data and should be used as predictor variables in our 76 

transfer functions. 77 



 

 

 

2. Methods 78 

2.1 Lake and climatological data  79 

We utilized long-term LSWT satellite-derived observation measurements from the 80 

Global Observatory of Lake Responses to Environmental Change (GloboLakes) project (Carrea 81 

and Merchant, 2019) and long-term monthly-averaged near-surface air temperature reanalysis 82 

data from ERA5-Land to capture the historical relationship between seasonal LSWT and MAAT 83 

(Muñoz Sabater, 2019). The Globolakes database contains 979 global lakes each with different 84 

LSWT time series, many spanning 1995 to 2016 at a spatial resolution of 0.025°. We obtain 85 

geographic and climatological information including lake elevation and surface area from the 86 

Global Lakes and Wetlands Database Level-1 (GLWD-1) (Lehner and Döll, 2004), monthly-87 

averaged climatological reanalysis data from ERA5-Land (Muñoz Sabater, 2019), covering the 88 

period of 1950 through 2022 for 2-meter near-surface air temperature, 10m u-component of 89 

wind, and surface net solar radiation, at a resolution of 0.1°, and low cloud cover data at a 90 

resolution of 0.25° from ERA5 (Hersbach et al., 2023). We joined the separate datasets 91 

(Globolakes, GLWD-1, ERA5-Land, and ERA5) by geographical coordinates and lake 92 

identification codes (Supplemental Table 1). Lakes with missing elevations were excluded from 93 

the analysis. We compared whole lake mean LSWTs to lake center LSWTs, which is defined by 94 

GloboLakes as the point farthest from land. Given the similarity in results, we chose to use lake 95 

center LSWT in our analysis (Supplementary Fig. 1). However, the use of the whole lake 96 

average value does not change our conclusions.  97 

https://www.zotero.org/google-docs/?broken=1YXTNI
https://www.zotero.org/google-docs/?broken=1YXTNI


 

 

 

2.2 Lacustrine proxy seasonality  98 

Considering what is known of lacustrine proxy seasonality, our analysis concentrates on 99 

five intervals: (1) boreal April, May, June—equivalent to austral October, November, December; 100 

(2) boreal June, July, August—equivalent to austral December, January, February; (3) boreal 101 

April-October—equivalent to austral October-April; (4) warmest month; and (5) mean annual. 102 

These intervals are hereafter referred to as spring, summer, spring through summer, warmest 103 

month, and annual, respectively. 104 

The impact of seasonal temperature biases on material-specific and individual species of 105 

carbonates for Δ47 and δ18O thermometry and isoGDGT productivity for TEX86 has been a 106 

subject of investigation. Biogenic carbonates, including mollusks, are tolerant to narrow water 107 

temperature ranges (Dettman et al., 1999; Yan et al., 2009) and rely on peak photosynthetic 108 

activity and food availability for shell formation, which is most favorable during the spring 109 

through summer or the spring through early fall at mid-high northern latitude lakes (Versteegh et 110 

al., 2010; Apolinarska et al., 2015). Temperature reconstructions from abiotic and biologically 111 

mediated carbonates, such as micrites, marls, tufas, and microbialites, are often biased towards 112 

the warmest period of the year (Kano et al., 2003). This bias occurs due to enhanced evaporation, 113 

high microbial-induced photosynthesis reducing pCO2, and increased lake water pH, which 114 

promotes high carbonate saturation (Platt & Wright, 2009). Significant correlations have been 115 

observed between TEX86 and mean annual LSWT derived from isoGDGTs (Powers et al., 2010, 116 

Loomis et al., 2017), indicating that isoGDGTs accumulate throughout the year. Nevertheless, 117 

recent research has highlighted that the productivity of archaea can be influenced by specific lake 118 



 

 

 

properties, including mixing regime, size, water depth, and other environmental gradients 119 

(Urbach et al., 2001, Varela et al., 2008). 120 

2.3 Statistical analysis 121 

We investigated the effects of seasonal LSWT and climate on MAAT by statistical 122 

analysis. First, we analyzed the relationships among MAAT, seasonal LSWT, latitude, elevation, 123 

net solar radiation, wind speed, cloud cover, and lake area through bivariate correlation analysis 124 

as indicated by Pearson correlation coefficients. Recognizing the interdependence among climate 125 

variables, we analyzed loadings from principal component analysis (PCA) and calculated 126 

variance inflation factors (VIF) to evaluate the relative importance of each variable on principal 127 

component one and two and to detect multicollinearity. This approach enabled us to select 128 

features most appropriate for our analysis. 129 

Following this, we proceeded to create a basic simple linear regression (SLR) model 130 

using ordinary least squares to investigate the relationship between seasonal LSWT and MAAT. 131 

The SLR model was then systematically refined through an iterative process by introducing 132 

additional predictor variables, chosen from on our preliminary assessments of correlation and 133 

feature importance. We evaluated each model generated through this approach using a 134 

comprehensive set of evaluation metrics, including the coefficient of determination (R2), root 135 

mean squared error (RMSE), and Akaike information criterion (AIC), and examined the 136 

residuals and checked for deviations from linearity. To rigorously validate our models, we 137 

implemented k-folds cross-validation (Cooil et al., 1987), separating the dataset into an 90% in-138 

sample training set and a 10% out-of-sample testing set. 139 



 

 

 

3. Results   140 

3.1 Geographical and seasonal temperature distribution of modern lakes 141 

Our dataset includes 965 modern lakes, spanning a wide range of latitudes and elevations 142 

from 82°N to 55°S and -400 to 5400 meters above sea level, respectively (Fig. 1a). The size and 143 

distribution of lakes is largely shaped by geographical, climatic, and geological factors. While 144 

the majority (825) are in the Northern Hemisphere, a substantial portion (140) is also found in 145 

the Southern Hemisphere, and approximately two-thirds of all these lakes are situated at 146 

elevations ranging from -410 to 500 meters and surface areas from 48 up to 82000 km2. Both the 147 

zonal and temperature-elevation profiles of LSWT demonstrate follow consistent patterns across 148 

each season, with varying rates of change (Fig. 1b, 1c). On average, seasonal LSWT decreases 149 

by 0.29 to 0.38°C per absolute degree latitude and 2.4 to 3.1°C per kilometer, while MAAT 150 

decreases by 0.54 °C per absolute degree latitude and 4.1 °C per kilometer. Based on the 151 

distribution of the data (Supplementary Figure 2), the lakes were subdivided into three latitude 152 

bins and five elevation bins. Seasonal LSWT consistently exceeds MAAT for low (0° to 30°), 153 

mid (30° to 60°), and high (60° to 90°) latitude lakes, as well as for each elevation category (Fig. 154 

2). The largest disparity between seasonal LSWT and MAAT corresponds to high latitude and 155 

highly elevated (> 3000 meters above sea level) lakes, with differences of 10 to 20°C and 9 to 156 

16°C, respectively, consistent with prolonged ice cover. In contrast, tropical lakes exhibit the 157 

smallest temperature differences, 3 to 5°C, which can be attributed to relatively stable and warm 158 

climatic conditions of low latitudes (0° to 30°) resulting in fewer pronounced seasonal changes. 159 

We also note a 7 to 15°C difference in seasonal LSWT and MAAT across different latitude and 160 

elevation categories for each season.  161 



 

 

 

3.2 Identifying important climate variables 162 

 We quantitatively assessed the strength and direction of the relationship between pairwise 163 

combinations of seasonal LSWT and MAAT and possible governing variables (climate and lake 164 

characteristics) by correlation analysis. The heatmap in Fig. 3a shows the correlation structure 165 

between MAAT, seasonal LSWT, latitude, elevation, net solar radiation, wind speed, cloud 166 

cover, and lake area. Hypothesis testing reveals a strong (r = 0.74 to 0.96) statistically significant 167 

relationship between seasonal LSWT, latitude, and net solar radiation, and the target variable, 168 

MAAT (p < 0.05). Additionally, statistically significant relationships were detected among wind 169 

speed, low cloud cover, and elevation, albeit with lower correlation coefficients (ranging from 170 

0.15 to 0.61). The loadings from the principal component analysis (PCA) shown in Fig. 3b reveal 171 

how climate variables influence the first two principal components, which capture the key 172 

patterns of data variability and provide valuable insights into the factors impacting predictions of 173 

MAAT. Principal component 1 (PC 1) shows strong associations with radiation, latitude, and 174 

LSWT (loadings > 0.45), while principal component 2 (PC 2) is primarily influenced by 175 

elevation and wind speed (loadings > 0.5). Considering the high correlation between radiation 176 

and latitude (r = 0.94; Fig. 3a) and the lack of robust proxy constraints, we exclude radiation as a 177 

predictor variable in our models. Similarly, we exclude low cloud cover and wind speed due to 178 

limited proxy constraints and their relatively small influence on PC 1 and PC 2 compared to 179 

seasonal LSWT, latitude, and elevation. Despite the moderately strong indirect relationship 180 

between seasonal LSWT and latitude, variance inflation factors remain low (Figure 3e), and we 181 

retain both variables in our analysis in accordance with the specific limitations of our study. 182 

3.3 Seasonal lake-to-air temperature transfer functions 183 



 

 

 

To investigate the effects of seasonal LSWT and climate on MAAT in more detail, we 184 

developed four distinct regression models varying in complexity. The initial SLR analysis, which 185 

we refer to as transfer function 1, revealed a robust positive correlation between long-term 186 

seasonal LSWT and MAAT (Figure 4). Transfer function 1 aptly captures the variation in the 187 

data across all seasons, with R2 ranging from 0.75 to 0.93, indicating a strong fit. However, we 188 

observe greater variability and a larger spread in the residuals, for the warmest month and 189 

summer seasons (Fig. 4c and 4d), which transfer function 1 does not fully explain. Like Hren and 190 

Sheldon (2012), we consider the potential for a nonlinear relationship and introduce a second-191 

degree polynomial LSWT term to transfer function 1, to create transfer function 2. This more 192 

complex model yields an 8% average reduction RMSE and a 4% increase in R2 compared to 193 

transfer function 1 for the warmer seasonal regressions, as presented in Table 1. The lower AIC 194 

values favor transfer function 2 as a better model for the data across all seasons and because we 195 

incorporate the same predictor variables (LSWT and LSWT2) into transfer function 2 as Hren 196 

and Sheldon (2012) do into their models, we can directly compare them. For the seasons 197 

modeled by both studies (spring, summer, spring though summer, and annual), transfer function 198 

2 outperforms Hren and Sheldon's (2012) transfer functions indicated by a 10% average increase 199 

in R2 an average RMSE reduction of 0.7°C. 200 

In Section 3.2, we identified that incorporating latitude and elevation as explanatory 201 

variables in the regression analysis may help address underlying patterns in the data. By 202 

integrating latitude into our regressions via multiple linear regression (MLR), we developed 203 

transfer function 3. This led to substantial enhancements in model performance across all 204 

seasons, with an average 6% increase in R² and a reduction of 0.7°C in RMSE compared to 205 



 

 

 

transfer function 2. Subsequently, the addition of elevation in transfer function 4 further fine-206 

tuned our model, resulting in an average RMSE reduction of 0.8°C and a 5% increase in R² 207 

relative to transfer function 2. We employ a rigorous K-fold cross-validation approach to 208 

comprehensively assess the efficacy of our seasonal and mean annual transfer functions. We 209 

illustrate the residual distribution with overlaid boxplots on violin plots for both the newly 210 

developed and existing transfer functions in Fig. 5. In addition, we show how the conventional 211 

metrics of model performance compare across transfer functions as they apply to the k-fold cross 212 

validation procedure (Fig. 6).  213 

3.4 Reconstructing paleo-MAAT 214 

Below, we showcase two paleoclimate applications of transfer functions 1 through 4 (Fig. 215 

7 and 8). The first case comes from Santi et al., (2020), which present hydroclimate (lake 216 

temperature, air temperature, evaporation, and precipitation) reconstructions for the northwestern 217 

Great Basin by measuring (Δ47-LSWT) for lacustrine carbonates from Lake Surprise. The second 218 

case comes from Cheng et al., (2022), which use Pliocene-Pleistocene lacustrine (Δ47-LSWT) to 219 

reconstruct MAAT from the Tibetan Plateau with the goal of constraining past and future 220 

permafrost carbon storage. In the first case, we opt to use the spring through summer transfer 221 

function due to the seasonality of the proxy used, which was tufa. On average, transfer functions 222 

1 through 4 predict a 5.3 ± 3.2°C MAAT anomaly between the LGM and modern, which is 223 

roughly 1.2°C colder than the anomaly predicted using Hren and Sheldon (2012)’s transfer 224 

function (Figure 7). 225 

Next, we examine variations in MAAT in the Tibetan Plateau during different geological 226 



 

 

 

periods (Pliocene, mid-Pliocene warm period, and Northern Hemisphere Pleistocene). Applying 227 

transfer functions 1, 2, and 3 to their data, assuming consistent latitudinal positions of the 228 

samples over time, on average, we predict a -5.5 ± 5.9°C MAAT anomaly for the Pliocene, a -8.3 229 

± 5.8°C MAAT anomaly for the mid-Pliocene warm period, a -13.2 ± 5.1°C MAAT anomaly for 230 

the Northern Hemisphere Pleistocene, and a -12.1 ± 5.3°C MAAT anomaly for the Pleistocene. 231 

These estimates are 1.3°C and 0.7°C cooler and 1°C and 0.8°C warmer than Hren and Sheldon, 232 

respectively. Looking at the lowess regression of our MAAT reconstruction in Fig.8, we note 233 

that post the iNHG, MAAT remained below the conservative temperature limit for permafrost 234 

formation. 235 

4. Discussion 236 

The LSWT-MAAT transfer functions presented in this study are stable, robust, and 237 

general which enable more accurate lake-based assessments of climate change that limnologists, 238 

climate modelers, and paleoclimatologists can use, including to validate proxy reconstructions, 239 

evaluate models, and make decisions regarding freshwater resources. Metrics of transfer function 240 

skill were similar in cross-validation testing, which indicates that our approach appropriately 241 

handles out of sample data (Fig 6). This global-scale analysis has identified latitude and 242 

elevation as important variables that should be considered in calibrations of LSWT to MAAT 243 

(Fig. 3). Accounting for the variations introduced by latitude and elevation helped reduce 244 

prediction errors, likely due to their influence on climate conditions, which impact energy 245 

exchange at the lake-atmosphere boundary. Variation in net radiation flux is largely determined 246 

by latitude, therefore different latitudes exhibit varying LSWT patterns and seasonal temperature 247 

cycles (Straskraba, 1980). Altitude can influence air-water temperature relationships via 248 



 

 

 

differential lapse rates (Livingstone et al., 1999), temperature gradients, seasonal variations in 249 

temperature, and atmospheric stability (Rueda et al., 2007), further impacting calibrations of lake 250 

water temperature to air temperature.  251 

Nevertheless, our calibrations are based on three key assumptions: (1) seasonal LSWT 252 

along with absolute latitude and elevation can reliably predict changes in near surface mean 253 

annual air temperature; (2) the relationship between LSWT and MAAT is uniform through time; 254 

(3) modern data are sufficient to interpret paleoclimate proxy derived LSWT data. Therefore, 255 

transfer functions 1 through 4 will perform best for a given proxy derived LSWT in the range of 256 

sampled temperatures. However, MAAT can also be predicted for lakes with LSWTs outside this 257 

range through extrapolation, but predictions will be more prone to uncertainties. To address these 258 

uncertainties and further enhance the accuracy of paleoclimate reconstructions, future research 259 

should explore additional variables, including lake depth, and quantify the impact of their 260 

inclusion or exclusion in cases where paleoclimate records lack this information.  261 

4.1 Applications: Paleolimnology 262 

We specifically focused on how our lake-air temperature transfer functions can be used 263 

as tools for assessing the efficacy of global climate models and validating proxy-based 264 

reconstructions by transforming proxy-derived LSWT into MAAT, which we show in Figures 7 265 

and 8. To constrain MAAT using lacustrine LSWT proxies, first the seasonal timescale of 266 

carbonate formation must be known or assumed. This allows the application of the appropriate 267 

seasonal transfer function for interpreting lacustrine Δ47 and or TEX86 data. We recommend 268 

using transfer function 4 when paleolatitude and paleoelevation are known, and transfer function 269 



 

 

 

3 when paleoelevation is unknown since these demonstrate the best performance. However, if 270 

both paleolatitude and paleoelevation inputs are unknown, transfer function 2 should be used. 271 

4.1.1 LGM hydroclimate in the northwestern Great Basin 272 

Variations in air temperature predictions have consequential implications for 273 

hydroclimate predictions for lake-based evaporation and precipitation. Notably, cooler air 274 

temperatures (by ~ 1.2°C) and a consequently larger temperature anomaly of ~5°C (Figure 7) 275 

would support a more pronounced reduction in lake evaporation, which Santi et al. (2020) 276 

concluded played a critical role in growing and maintaining Lake Surprise during the LGM and 277 

deglacial period. However, with a reduction in lake evaporation rate, lake precipitation would 278 

also experience a decrease given the dependence on lake evaporation rate in the isotope mass 279 

balance model used to estimate precipitation. The overall effect on lake size will depend on the 280 

extent of changes in lake evaporation and precipitation reductions during the LGM.  281 

4.1.1 Pliocene-Pleistocene temperatures in the Tibetan Plateau  282 

Permafrost formation and destabilization is also sensitive to changes to the climate that 283 

are not well constrained. Cheng et al., (2022) used transfer functions from Hren and Sheldon 284 

(2012) to reconstruct Pliocene-Pleistocene MAAT from the Tibetan Plateau, the largest alpine 285 

permafrost region on the Earth. This approach allowed them to constrain historical and projected 286 

changes in alpine permafrost distributions, permafrost carbon storage, and compare their findings 287 

with climate models. Although the magnitude of our estimates using transfer function 3 differ 288 

from Cheng et al., (2022)’s estimates by roughly 2°C on average post the start of the iNHG and 289 

roughly 0.5°C prior to the start of the iNHG, Figure 8 highlights that our reconstructions still 290 



 

 

 

supports permafrost formation post the iNHG to 0.85 Ma into the Pleistocene and permafrost 291 

destabilization prior to the start of the iNGH, during the Pliocene assuming a 0°C conservative 292 

temperature limit for permafrost formation.  293 

5. Conclusions 294 

This study establishes robust and generalized transfer functions linking LSWT to MAAT. 295 

Combining global observational datasets with machine learning and theory, we are able to 296 

introduce a powerful tool relating paleoclimate proxies to environmental variables. Our study 297 

overcomes several limitations of prior work, including the incorporation of a more diverse and 298 

extensive dataset of 965 lakes that spans a wide range of latitudes and elevations, which was 299 

previously underrepresented. Incorporation of latitude and elevation as predictor variables in the 300 

regressions, allows for the variance in the data to be better explained by our transfer functions. 301 

These variables, previously not considered in similar models, are revealed to have a substantial 302 

impact on LSWT-MAAT relationships, reflecting their influence on climate conditions and 303 

energy exchange between lakes and the atmosphere, enhancing the interpretation of historical 304 

and geological climate conditions and improving climate prediction. Revisiting previous MAAT 305 

paleo-reconstructions for southwestern North America during the Last Glacial Maximum and the 306 

Tibetan Plateau in the Pliocene-Pleistocene, highlight how past estimates and can change or 307 

remain the same and those changes can have implications on interpretations and evaluation of 308 

hydroclimate parameters or permafrost persistence. 309 
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Figures 425 

 426 

Figure 1: Geographic distribution of lake localities, seasonal lake surface water temperature 427 

(LSWT), and mean annual air temperature (MAAT). (a) Map of 965 modern lakes, characterized 428 

by elevation relative to sea level. (b) Temperature versus latitude lapse rate presented as the 429 

zonal mean across 10° latitude bands, where φ refers to absolute latitude in degrees. (c) 430 

Temperature versus elevation lapse rate across 410 m elevation bins. 431 



 

 

 

 432 

Figure 2: Average temperature differences in seasonal lake surface water temperature (LSWT) 433 

and mean annual air temperature (MAAT) for each latitude and elevation category. Latitude bins 434 

are defined into three categories: low (0° to 30°), mid (30° to 60°), and high (60° to 90°). 435 

Elevations bins are subdivided into five categories:  -410 to 100 meters, 100 to 500 meters, 500 436 

to 1000 meters, 1000 to 3000 meters, and 3000 to 5400 meters. 437 



 

 

 

 438 

Figure 3: Lake and climate variables (a) The absolute loadings derived from the principal 439 

component analysis (PCA) depict the individual contributions of each variable to principal 440 

component 1 (PC 1) and principal component 2 (PC 2). (b) Pearson correlation heatmap matrix 441 

with significance level expressed by asterisk (*p-value ≤ 0.05). The variables include: A = 442 

Spring through summer lake surface water temperature, B = absolute latitude, C = lake elevation, 443 

D = annual net solar radiation, E = annual low cloud cover, F = annual 10m horizontal 444 

component of wind, G = lake surface area, H = mean annual air temperature.  445 



 

 

 

 446 

Figure 4: Comparative analysis of transfer function 1 and 2. Plots (a) through (e) illustrate the 447 

fitted curves and 95% prediction intervals for each model across different temporal segments: (a) 448 

Spring, (b) Summer, (c) Warmest Month, (d) Spring through Summer, and (e) Mean Annual. 449 

The efficacy of the models is evaluated through R-squared (R2) and root mean square error 450 

(RMSE) metrics. 451 



 

 

 

 452 

Figure 5: Assessment of cross validated out of sample residual disparities between observed and 453 

transfer function predicted mean annual air temperature (MAAT).  Panels (a) through (e) 454 

showcase the distribution of residuals, for each season: (a) mean annual, (b) spring, (c) summer, 455 

(d) warmest month, and (e) spring through summer using transfer function 1 through 4.  456 



 

 

 

 457 

Figure 6: K-Fold cross-validated performance metrics comparison. (a) Root mean square error 458 

(RMSE) and (b) coefficient of determination (R2) among transfer functions 1 through 4, and 459 

Hren and Sheldon (2012) across five proxy seasons: spring, summer, warmest month, spring 460 

through summer, and annual. The error bars depicted in the figures represent the variability in 461 

the performance metric at one standard deviation (1σ) level, derived from a comprehensive 462 

analysis spanning ten different folds in the K-Fold cross-validation procedure.  463 



 

 

 

 464 

Figure 7: Reconstruction of Late Pleistocene hydroclimate in the Northwestern Great Basin 465 

(Lake Surprise). Calculations use published Δ47 lake temperatures (Santi et al., 2020) and 466 

transfer functions from this study and Hren and Sheldon (2012). Results shown are Last Glacial 467 

Maximum (LGM) mean annual air temperatures (MAAT), modern MAAT, and LGM to modern 468 

MAAT anomalies. (a) MAAT reconstruction against sample age. The reconstructions are based 469 

on transfer functions 1 (blue), 2 (red), 3 (red), and 4 (green) utilizing Δ47 proxy-derived lake 470 

surface water temperature (LSWT). The dashed line represents the locally weighted scatterplot 471 

smoothing (lowess) regression, which captures the underlying MAAT trends in the data by 472 

smoothing out local fluctuations. (b) LGM MAAT anomaly (LGM minus modern MAAT). The 473 

modern MAAT used is 9.1 ± 1°C (Santi et al., 2020). 1σ errors are calculated in quadrature.  474 



 

 

 

 475 

Figure 8: Reconstruction of Pliocene-Pleistocene climate for the Tibetan Plateau (Kunlun Pass) 476 

place. Calculations use published Δ47 lake temperatures (Cheng et al. 2022) and transfer 477 

functions from this study or Hren and Sheldon (2012). Results shown are mean annual air 478 

temperatures (MAAT), modern temperatures, and anomalies defined relative to modern MAAT 479 

(data source). Intervals examined are the Pliocene, Pleistocene, mid-Pliocene warm period 480 

(mPWP), and the intensification of the NHG (iNHG). (a) MAAT reconstruction against sample 481 

age. The reconstructions are based on transfer functions 1 (blue), 2 (orange), and 3 (red), and 482 

utilize Δ47 proxy-derived lake surface water temperature (LSWT). The dashed line represents the 483 

locally weighted scatterplot smoothing (lowess) regression, which captures the underlying 484 

MAAT trends by smoothing out local fluctuations. Diamonds indicate temperatures extrapolated 485 

outside of calibration range.  (b) Anomalies calculated using reconstructed temperatures relative 486 

to modern MAAT. Modern temperature is 6.5±1°C. 1σ errors are calculated in quadrature. 487 

488 



 

 

 

Tables 489 

490 

Table 1: Evaluation of modeling approaches. Transfer function 1 and 2 are single variable 491 

regressions dependent on seasonal LSWT. Transfer function 3 is a multiple linear regression 492 

with seasonal LSWT, and latitude (φ) as predictors. Transfer function 4, is a multiple linear 493 

regression with seasonal LSWT, latitude, and elevation (z) as predictors. Transfer functions are 494 

evaluated with these performance metrics, coefficient of determination (R2), root-mean-square 495 

error (RMSE), mean error (ME), and Akaike information criterion (AIC). Model evaluation 496 

refers to the population of all lakes, while model cross validation metrics apply only to k-fold 497 

validation procedures. 498 



 

 

 

 499 

Table 2: Reconstructed mean annual air temperature predictions and anomalies utilizing transfer 500 

functions from this study (transfer functions 1,  2, 3, and 4) and proxy-derived lake surface water 501 

temperature (LSWT) reconstructions from Lake Surprise (northwestern Great Basin; Santi et al., 502 

2020) and Kunlun Basin (Tibetan Plateau; Cheng et al., 2022). Estimates derived using the 503 

transfer functions developed in Hren and Sheldon (2012) are also shown for comparison.  504 
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