References
1. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology 19 , 55-71 (2021).
2. Ursell, L.K., Metcalf, J.L., Parfrey, L.W. & Knight, R. Defining the human microbiome. Nutr. Rev. 70 Suppl 1 , S38-44 (2012).
3. Wrede, C., Dreier, A., Kokoschka, S. & Hoppert, M. Archaea in symbioses. Archaea 2012 , 596846 (2012).
4. Mafra, D., et al. Archaea from the gut microbiota of humans: Could be linked to chronic diseases? Anaerobe 77 , 102629 (2022).
5. Erturk-Hasdemir, D. & Kasper, D.L. Resident commensals shaping immunity. Curr. Opin. Immunol. 25 , 450-455 (2013).
6. Candela, M., et al. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int. J. Food Microbiol. 125 , 286-292 (2008).
7. Fukuda, S., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature469 , 543-547 (2011).
8. Sonnenburg, J.L., et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307 , 1955-1959 (2005).
9. Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol.9 , 313-323 (2009).
10. Khoruts, A., Dicksved, J., Jansson, J.K. & Sadowsky, M.J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44 , 354-360 (2010).
11. Garrett, W.S. The gut microbiota and colon cancer. Science364 , 1133-1135 (2019).
12. Duan, J. & Kasper, D.L. Regulation of T cells by gut commensal microbiota. Curr. Opin. Rheumatol. 23 , 372-376 (2011).
13. Chung, H. & Kasper, D.L. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr. Opin. Immunol. 22 , 455-460 (2010).
14. Kudelka, M.R., Ju, T., Heimburg-Molinaro, J. & Cummings, R.D. Simple sugars to complex disease–mucin-type O-glycans in cancer.Adv. Cancer Res. 126 , 53-135 (2015).
15. Varki, A. Biological roles of glycans. Glycobiology27 , 3-49 (2017).
16. Slavin, J. Fiber and prebiotics: mechanisms and health benefits.Nutrients 5 , 1417-1435 (2013).
17. Koropatkin, N.M., Cameron, E.A. & Martens, E.C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol.10 , 323-335 (2012).
18. O’Hara, A.M. & Shanahan, F. The gut flora as a forgotten organ.EMBO Rep 7 , 688-693 (2006).
19. Sekirov, I., Russell, S.L., Antunes, L.C. & Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 90 , 859-904 (2010).
20. Thursby, E. & Juge, N. Introduction to the human gut microbiota.Biochem. J. 474 , 1823-1836 (2017).
21. Zhang, L., et al. Bacterial Species Associated With Human Inflammatory Bowel Disease and Their Pathogenic Mechanisms. Front. Microbiol. 13 , 801892 (2022).
22. Wagner, C.L., Taylor, S.N. & Johnson, D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin. Rev. Allergy Immunol. 34 , 191-204 (2008).
23. Collado, M.C., Cernada, M., Baüerl, C., Vento, M. & Pérez-Martínez, G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 3 , 352-365 (2012).
24. Dominguez-Bello, M.G., Blaser, M.J., Ley, R.E. & Knight, R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140 , 1713-1719 (2011).
25. Ajslev, T.A., Andersen, C.S., Gamborg, M., Sørensen, T.I. & Jess, T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. (Lond.) 35 , 522-529 (2011).
26. Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A. & Brown, P.O. Development of the human infant intestinal microbiota. PLoS Biol.5 , e177 (2007).
27. Eckburg, P.B., et al. Diversity of the human intestinal microbial flora. Science 308 , 1635-1638 (2005).
28. Rinninella, E., et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 7 (2019).
29. Arumugam, M., et al. Enterotypes of the human gut microbiome.Nature 473 , 174-180 (2011).
30. Sommer, F. & Bäckhed, F. The gut microbiota — masters of host development and physiology. Nature Reviews Microbiology11 , 227-238 (2013).
31. Smith, K., McCoy, K.D. & Macpherson, A.J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19 , 59-69 (2007).
32. Willing, B.P., Vacharaksa, A., Croxen, M., Thanachayanont, T. & Finlay, B.B. Altering Host Resistance to Infections through Microbial Transplantation. PLoS One 6 , e26988 (2011).
33. Biagi, E., et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One5 , e10667 (2010).
34. Yatsunenko, T., et al. Human gut microbiome viewed across age and geography. Nature 486 , 222-227 (2012).
35. Dethlefsen, L. & Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. U. S. A.108 Suppl 1 , 4554-4561 (2011).
36. Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J.K. Long-term impacts of antibiotic exposure on the human intestinal microbiota.Microbiology (Reading) 156 , 3216-3223 (2010).
37. Dethlefsen, L., Huse, S., Sogin, M.L. & Relman, D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6 , e280 (2008).
38. Belkaid, Y. & Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 157 , 121-141 (2014).
39. Wong, C.C. & Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 20 , 429-452 (2023).
40. Le Chatelier, E., et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500 , 541-546 (2013).
41. Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature444 , 1022-1023 (2006).
42. Turnbaugh, P.J., et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 , 1027-1031 (2006).
43. Wiström, J., et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J. Antimicrob. Chemother. 47 , 43-50 (2001).
44. Palleja, A., et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol 3 , 1255-1265 (2018).
45. Kostic, A.D., Xavier, R.J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead.Gastroenterology 146 , 1489-1499 (2014).
46. Carroll, I.M., et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 301 , G799-807 (2011).
47. Chang, J.Y., et al. Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea.J. Infect. Dis. 197 , 435-438 (2008).
48. Young, V.B. & Schmidt, T.M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42 , 1203-1206 (2004).
49. Feng, Q., et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 6 , 6528 (2015).
50. Siegel, R.L., Miller, K.D., Fuchs, H.E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72 , 7-33 (2022).
51. Wu, S., et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses.Nat. Med. 15 , 1016-1022 (2009).
52. Arthur, J.C., et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338 , 120-123 (2012).
53. Andres-Franch, M., et al. Streptococcus gallolyticus infection in colorectal cancer and association with biological and clinical factors. PLoS One 12 , e0174305 (2017).
54. Yachida, S., et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25 , 968-976 (2019).
55. Goto, Y. & Ivanov, I.I. Intestinal epithelial cells as mediators of the commensal–host immune crosstalk. Immunol. Cell Biol.91 , 204-214 (2013).
56. Bergstrom, K.S. & Xia, L. Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology 23 , 1026-1037 (2013).
57. Wang, B.X., Wu, C.M. & Ribbeck, K. Home, sweet home: how mucus accommodates our microbiota. Febs j 288 , 1789-1799 (2021).
58. Peterson, D.A., McNulty, N.P., Guruge, J.L. & Gordon, J.I. IgA response to symbiotic bacteria as a mediator of gut homeostasis.Cell Host Microbe 2 , 328-339 (2007).
59. Vaishnava, S., et al. The Antibacterial Lectin RegIIIγ Promotes the Spatial Segregation of Microbiota and Host in the Intestine. Science 334 , 255-258 (2011).
60. Salzman, N.H., et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol.11 , 76-83 (2010).
61. Schluter, J. & Foster, K.R. The Evolution of Mutualism in Gut Microbiota Via Host Epithelial Selection. PLoS Biol. 10 , e1001424 (2012).
62. Hooper, L.V., Xu, J., Falk, P.G., Midtvedt, T. & Gordon, J.I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. U. S. A. 96 , 9833-9838 (1999).
63. McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A.L. & Foster, K.R. Host Selection of Microbiota via Differential Adhesion.Cell Host Microbe 19 , 550-559 (2016).
64. Eberl, G. & Lochner, M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol.2 , 478-485 (2009).
65. Mörbe, U.M., et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol.14 , 793-802 (2021).
66. Olszak, T., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science336 , 489-493 (2012).
67. Garrett, W.S., Gordon, J.I. & Glimcher, L.H. Homeostasis and inflammation in the intestine. Cell 140 , 859-870 (2010).
68. Hooper, L.V., et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science291 , 881-884 (2001).
69. Hapfelmeier, S., et al. Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses.Science 328 , 1705-1709 (2010).
70. Ivanov, II, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139 , 485-498 (2009).
71. Hooper, L.V., Littman, D.R. & Macpherson, A.J. Interactions between the microbiota and the immune system. Science 336 , 1268-1273 (2012).
72. Shanahan, F. The Colonic Microbiota and Colonic Disease. Curr. Gastroenterol. Rep. 14 , 446-452 (2012).
73. McFall-Ngai, M. Adaptive immunity: care for the community.Nature 445 , 153 (2007).
74. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity34 , 637-650 (2011).
75. Smythies, L.E., et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115 , 66-75 (2005).
76. Franchi, L., et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13 , 449-456 (2012).
77. Diehl, G.E., et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature494 , 116-120 (2013).
78. Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1⁺ macrophages to CD103⁺ dendritic cells. Immunity40 , 248-261 (2014).
79. Gurram, R.K. & Zhu, J. Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cell. Mol. Immunol. 16 , 225-235 (2019).
80. Mazmanian, S.K., Liu, C.H., Tzianabos, A.O. & Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122 , 107-118 (2005).
81. Johansson, M.E., et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. U. S. A. 105 , 15064-15069 (2008).
82. Vaishnava, S., Behrendt, C.L., Ismail, A.S., Eckmann, L. & Hooper, L.V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. U. S. A. 105 , 20858-20863 (2008).
83. Kyd, J.M. & Cripps, A.W. Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine 26 , 6221-6224 (2008).
84. Stappenbeck, T.S. & Miyoshi, H. The role of stromal stem cells in tissue regeneration and wound repair. Science 324 , 1666-1669 (2009).
85. Deguine, J. & Barton, G.M. MyD88: a central player in innate immune signaling. F1000Prime Rep 6 , 97 (2014).
86. Burgueño, J.F. & Abreu, M.T. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nature Reviews Gastroenterology & Hepatology 17 , 263-278 (2020).
87. Beau, I., Cotte-Laffitte, J., Amsellem, R. & Servin, A.L. A protein kinase A-dependent mechanism by which rotavirus affects the distribution and mRNA level of the functional tight junction-associated protein, occludin, in human differentiated intestinal Caco-2 cells. J. Virol. 81 , 8579-8586 (2007).
88. Amieva, M. Shigella navigates tight corners. Cell Host Microbe 11 , 319-320 (2012).
89. Nusrat, A., et al. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun.69 , 1329-1336 (2001).
90. Jepson, M.A., Schlecht, H.B. & Collares-Buzato, C.B. Localization of dysfunctional tight junctions in Salmonella enterica serovar typhimurium-infected epithelial layers. Infect. Immun.68 , 7202-7208 (2000).
91. Li, Y., Jin, L. & Chen, T. The Effects of Secretory IgA in the Mucosal Immune System. Biomed Res Int 2020 , 2032057 (2020).
92. Pabst, O. New concepts in the generation and functions of IgA.Nat. Rev. Immunol. 12 , 821-832 (2012).
93. Woof, J.M. & Russell, M.W. Structure and function relationships in IgA. Mucosal Immunol. 4 , 590-597 (2011).
94. Pabst, O. & Izcue, A. Secretory IgA: controlling the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 19 , 149-150 (2022).
95. Ding, L., Chen, X., Cheng, H., Zhang, T. & Li, Z. Advances in IgA glycosylation and its correlation with diseases. Frontiers in Chemistry 10 (2022).
96. Corthésy, B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 4 , 185 (2013).
97. Mantis, N.J., Rol, N. & Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol.4 , 603-611 (2011).
98. Jin, K.T., et al. Recent advances in carbohydrate-based cancer vaccines. Biotechnol. Lett. 41 , 641-650 (2019).
99. Verathamjamras, C., et al. Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer.Glycoconj. J. 38 , 55-65 (2021).
100. Cash, H.L., Whitham, C.V., Behrendt, C.L. & Hooper, L.V. Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin.Science 313 , 1126-1130 (2006).
101. Zhao, D., et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease.J. Clin. Invest. 128 , 4970-4979 (2018).
102. Everard, A., et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity.Isme j 8 , 2116-2130 (2014).
103. Paschall, A.V., Middleton, D.R. & Avci, F.Y. Complex Glycans and Immune Regulation. in Encyclopedia of Cell Biology (Second Edition) (eds. Bradshaw, R.A., Hart, G.W. & Stahl, P.D.) 404-414 (Academic Press, Oxford, 2023).
104. Prado Acosta, M. & Lepenies, B. Bacterial glycans and their interactions with lectins in the innate immune system. Biochem. Soc. Trans. 47 , 1569-1579 (2019).
105. Mayer, S., Raulf, M.-K. & Lepenies, B. C-type lectins: their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 147 , 223-237 (2017).
106. Martínez-López, M., et al. Microbiota Sensing by Mincle-Syk Axis in Dendritic Cells Regulates Interleukin-17 and -22 Production and Promotes Intestinal Barrier Integrity. Immunity 50 , 446-461.e449 (2019).
107. Devi, S., Rajakumara, E. & Ahmed, N. Induction of Mincle by Helicobacter pylori and consequent anti-inflammatory signaling denote a bacterial survival strategy. Sci. Rep. 5 , 15049 (2015).
108. Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M. & Geijtenbeek, T.B. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol. 10 , 1081-1088 (2009).
109. Kang, E.A., et al. Soluble Siglec-9 alleviates intestinal inflammation through inhibition of the NF-κB pathway. Int. Immunopharmacol. 86 , 106695 (2020).
110. Stephenson, H.N., et al. Pseudaminic Acid on Campylobacter jejuni Flagella Modulates Dendritic Cell IL-10 Expression via Siglec-10 Receptor: A Novel Flagellin-Host Interaction. The Journal of Infectious Diseases 210 , 1487-1498 (2014).
111. Vasta, G.R. Roles of galectins in infection. Nature Reviews Microbiology 7 , 424-438 (2009).
112. Rabinovich, G.A., Toscano, M.A., Jackson, S.S. & Vasta, G.R. Functions of cell surface galectin-glycoprotein lattices. Curr. Opin. Struct. Biol. 17 , 513-520 (2007).
113. Rabinovich, G.A. & Toscano, M.A. Turning ’sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation.Nat. Rev. Immunol. 9 , 338-352 (2009).
114. Lo, T.-H., et al. Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. Proceedings of the National Academy of Sciences 118 , e2026246118 (2021).
115. Ferreira, R.G., et al. Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. J. Infect. 77 , 391-397 (2018).
116. Stillman, B.N., et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death.J. Immunol. 176 , 778-789 (2006).
117. Toscano, M.A., et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8 , 825-834 (2007).
118. Sundblad, V., et al. Galectins in Intestinal Inflammation: Galectin-1 Expression Delineates Response to Treatment in Celiac Disease Patients. Front. Immunol. 9 , 379 (2018).
119. Tsai, H.F., et al. Galectin-3 suppresses mucosal inflammation and reduces disease severity in experimental colitis.J. Mol. Med. (Berl.) 94 , 545-556 (2016).
120. Santucci, L., et al. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124 , 1381-1394 (2003).
121. Fowler, M., Thomas, R.J., Atherton, J., Roberts, I.S. & High, N.J. Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell. Microbiol. 8 , 44-54 (2006).
122. Li, F.-Y., Wang, S.-F., Bernardes, E.S. & Liu, F.-T. Galectins in Host Defense Against Microbial Infections. in Lectin in Host Defense Against Microbial Infections (ed. Hsieh, S.-L.) 141-167 (Springer Singapore, Singapore, 2020).
123. Li, C.-S., et al. Cytosolic galectin-4 enchains bacteria, restricts their motility, and promotes inflammasome activation in intestinal epithelial cells. Proceedings of the National Academy of Sciences 120 , e2207091120 (2023).
124. Jansen, S.A., et al. Chemotherapy-induced intestinal injury promotes Galectin-9-driven modulation of T cell function. bioRxiv(2023).
125. Sharba, S., et al. Interleukin 4 induces rapid mucin transport, increases mucus thickness and quality and decreases colitis and Citrobacter rodentium in contact with epithelial cells.Virulence 10 , 97-117 (2019).
126. Turner, J.-E., Stockinger, B. & Helmby, H. IL-22 Mediates Goblet Cell Hyperplasia and Worm Expulsion in Intestinal Helminth Infection.PLoS Pathog. 9 , e1003698 (2013).
127. Mussarat, A., et al. Intestinal overexpression of interleukin (IL)-15 promotes tissue eosinophilia and goblet cell hyperplasia. Immunol. Cell Biol. 96 , 273-283 (2018).
128. Hasnain, S.Z., et al. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology 144 , 357-368.e359 (2013).
129. Giron, L.B., et al. Sialylation and fucosylation modulate inflammasome-activating eIF2 Signaling and microbial translocation during HIV infection. Mucosal Immunol. 13 , 753-766 (2020).
130. Sun, X., Ju, T. & Cummings, R.D. Differential expression of Cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer 18 , 827 (2018).
131. Hart, G.W. & Copeland, R.J. Glycomics hits the big time.Cell 143 , 672-676 (2010).
132. van Kooyk, Y. & Rabinovich, G.A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9 , 593-601 (2008).
133. Ouwerkerk, J.P., de Vos, W.M. & Belzer, C. Glycobiome: Bacteria and mucus at the epithelial interface. Best Practice & Research Clinical Gastroenterology 27 , 25-38 (2013).
134. Arike, L., Holmén-Larsson, J. & Hansson, G.C. Intestinal Muc2 mucin O-glycosylation is affected by microbiota and regulated by differential expression of glycosyltranferases. Glycobiology27 , 318-328 (2017).
135. Bansil, R. & Turner, B.S. The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews124 , 3-15 (2018).
136. Dekker, J., Rossen, J.W.A., Büller, H.A. & Einerhand, A.W.C. The MUC family: an obituary. Trends Biochem. Sci. 27 , 126-131 (2002).
137. Linden, S.K., Sutton, P., Karlsson, N.G., Korolik, V. & McGuckin, M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol.1 , 183-197 (2008).
138. Larsson, J.M.H., et al. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17 , 2299-2307 (2011).
139. Bergstrom, K., et al. Proximal colon-derived O-glycosylated mucus encapsulates and modulates the microbiota. Science370 , 467-472 (2020).
140. Cummings, R.D., et al. Principles of Glycan Recognition. inEssentials of Glycobiology (eds. Varki, A., et al. ) 387-402 (Cold Spring Harbor Laboratory Press
Copyright © 2022 The Consortium of Glycobiology Editors, La Jolla, California; published by Cold Spring Harbor Laboratory Press; doi:10.1101/glycobiology.4e.29. All rights reserved., Cold Spring Harbor (NY), 2022).
141. Grondin, J.A., Kwon, Y.H., Far, P.M., Haq, S. & Khan, W.I. Mucins in Intestinal Mucosal Defense and Inflammation: Learning From Clinical and Experimental Studies. Front. Immunol. 11 , 2054 (2020).
142. Tran, D.T. & Ten Hagen, K.G. Mucin-type O-glycosylation during development. J. Biol. Chem. 288 , 6921-6929 (2013).
143. Tailford, L.E., Crost, E.H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front Genet 6 , 81 (2015).
144. Moran, A.P., Gupta, A. & Joshi, L. Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract.Gut 60 , 1412-1425 (2011).
145. Eloe-Fadrosh, E.A. & Rasko, D.A. The Human Microbiome: From Symbiosis to Pathogenesis. Annu. Rev. Med. 64 , 145-163 (2013).
146. Bell, A. & Juge, N. Mucosal glycan degradation of the host by the gut microbiota. Glycobiology 31 , 691-696 (2021).
147. Juge, N. Microbial adhesins to gastrointestinal mucus. Trends Microbiol. 20 , 30-39 (2012).
148. Weingarden, A.R. & Vaughn, B.P. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 8 , 238-252 (2017).
149. Johansson, M.E., et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63 , 281-291 (2014).
150. Naughton, J.A., et al. Divergent mechanisms of interaction of Helicobacter pylori and Campylobacter jejuni with mucus and mucins.Infect. Immun. 81 , 2838-2850 (2013).
151. Derrien, M., et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1 , 254-268 (2010).
152. Kudelka, M.R., Stowell, S.R., Cummings, R.D. & Neish, A.S. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat. Rev. Gastroenterol. Hepatol.17 , 597-617 (2020).
153. McGovern, D.P.B., et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum. Mol. Genet. 19 , 3468-3476 (2010).
154. Wang, Y., et al. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma. Gastroenterology 152 , 193-205.e110 (2017).
155. Rausch, P., et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl. Acad. Sci. U. S. A. 108 , 19030-19035 (2011).
156. Brazil, J.C. & Parkos, C.A. Finding the sweet spot: glycosylation mediated regulation of intestinal inflammation. Mucosal Immunol.15 , 211-222 (2022).
157. Pacheco, A.R., et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492 , 113-117 (2012).
158. Goto, Y., et al. IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut. Sci. Rep.5 , 15918 (2015).
159. Dias, A.M., et al. Glycans as critical regulators of gut immunity in homeostasis and disease. Cell. Immunol. 333 , 9-18 (2018).
160. Miyoshi, J., et al. Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn’s disease. J. Gastroenterol. 46 , 1056-1063 (2011).
161. Fang, J., et al. Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis. Exp. Mol. Med. 53 , 772-787 (2021).
162. Werlang, C., Cárcarmo-Oyarce, G. & Ribbeck, K. Engineering mucus to study and influence the microbiome. Nature Reviews Materials4 , 134-145 (2019).
163. Huang, J.Y., Lee, S.M. & Mazmanian, S.K. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe17 , 137-141 (2011).
164. Glowacki, R.W.P. & Martens, E.C. If You Eat It or Secrete It, They Will Grow: the Expanding List of Nutrients Utilized by Human Gut Bacteria. J. Bacteriol. 203 , e00481-00420 (2021).
165. Lee, S., et al. Glycan-mediated molecular interactions in bacterial pathogenesis. Trends Microbiol. 30 , 254-267 (2022).
166. Tiralongo, J., et al. YesU from Bacillus subtilis preferentially binds fucosylated glycans. Sci. Rep. 8 , 13139 (2018).
167. Suwandi, A., et al. Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization. PLoS Pathog. 15 , e1007915 (2019).
168. Sicard, J.F., Le Bihan, G., Vogeleer, P., Jacques, M. & Harel, J. Interactions of Intestinal Bacteria with Components of the Intestinal Mucus. Front Cell Infect Microbiol 7 , 387 (2017).
169. Antoni, L., Nuding, S., Wehkamp, J. & Stange, E.F. Intestinal barrier in inflammatory bowel disease. World J. Gastroenterol.20 , 1165-1179 (2014).
170. Pullan, R.D., et al. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut35 , 353-359 (1994).
171. Dorofeyev, A.E., Vasilenko, I.V., Rassokhina, O.A. & Kondratiuk, R.B. Mucosal barrier in ulcerative colitis and Crohn’s disease.Gastroenterol. Res. Pract. 2013 , 431231 (2013).
172. Fu, J., et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Invest.121 , 1657-1666 (2011).
173. An , G., et al. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3–derived O-glycans. J. Exp. Med. 204 , 1417-1429 (2007).
174. Wlodarska, M., et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 79 , 1536-1545 (2011).
175. Godl, K., et al. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment.J. Biol. Chem. 277 , 47248-47256 (2002).
176. Johansson, M.E.V. & Hansson, G.C. Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology16 , 639-649 (2016).
177. Consortium, T.U. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51 , D523-D531 (2022).
178. Kudelka, M.R., et al. Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proc. Natl. Acad. Sci. U. S. A.113 , 14787-14792 (2016).
179. Van der Sluis, M., et al. Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection. Gastroenterology 131 , 117-129 (2006).
180. Swidsinski, A., Loening-Baucke, V. & Herber, A. Mucosal flora in Crohn’s disease and ulcerative colitis - an overview. J. Physiol. Pharmacol. 60 Suppl 6 , 61-71 (2009).
181. Heazlewood, C.K., et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5 , e54 (2008).
182. Dharmani, P., Srivastava, V., Kissoon-Singh, V. & Chadee, K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J. Innate Immun. 1 , 123-135 (2009).
183. Hayashi, F., et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410 , 1099-1103 (2001).
184. Birchenough, G.M., Nyström, E.E., Johansson, M.E. & Hansson, G.C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352 , 1535-1542 (2016).
185. Johansson, Malin E.V., et al. Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization.Cell Host Microbe 18 , 582-592 (2015).
186. Deplancke, B. & Gaskins, H.R. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 73 , 1131s-1141s (2001).
187. Smirnova, M.G., Guo, L., Birchall, J.P. & Pearson, J.P. LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell. Immunol. 221 , 42-49 (2003).
188. Mack, D.R., Ahrne, S., Hyde, L., Wei, S. & Hollingsworth, M.A. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52 , 827-833 (2003).
189. Mack, D.R., Michail, S., Wei, S., McDougall, L. & Hollingsworth, M.A. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol.276 , G941-950 (1999).
190. Alemka, A., et al. Probiotic colonization of the adherent mucus layer of HT29MTXE12 cells attenuates Campylobacter jejuni virulence properties. Infect. Immun. 78 , 2812-2822 (2010).
191. Lau, S.K., Weiss, L.M. & Chu, P.G. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am. J. Clin. Pathol. 122 , 61-69 (2004).
192. Limburg, P.J., et al. Immunodiscrimination of colorectal neoplasia using MUC1 antibodies: discrepant findings in tissue versus stool. Dig. Dis. Sci. 45 , 494-499 (2000).
193. Xu, F., Liu, F., Zhao, H., An, G. & Feng, G. Prognostic Significance of Mucin Antigen MUC1 in Various Human Epithelial Cancers: A Meta-Analysis. Medicine 94 , e2286 (2015).
194. Wang, H., et al. Expression of survivin, MUC2 and MUC5 in colorectal cancer and their association with clinicopathological characteristics. Oncol. Lett. 14 , 1011-1016 (2017).
195. Rico, S.D., et al. Elevated MUC5AC expression is associated with mismatch repair deficiency and proximal tumor location but not with cancer progression in colon cancer. Med. Mol. Morphol.54 , 156-165 (2021).
196. Robbe, C., et al. Evidence of Regio-specific Glycosylation in Human Intestinal Mucins: PRESENCE OF AN ACIDIC GRADIENT ALONG THE INTESTINAL TRACT*. J. Biol. Chem. 278 , 46337-46348 (2003).
197. Bell, A., Severi, E., Owen, C.D., Latousakis, D. & Juge, N. Biochemical and structural basis of sialic acid utilization by gut microbes. J. Biol. Chem. 299 , 102989 (2023).
198. Yao, Y., et al. Mucus sialylation determines intestinal host-commensal homeostasis. Cell 185 , 1172-1188.e1128 (2022).
199. Juge, N., Tailford, L. & Owen, C.D. Sialidases from gut bacteria: a mini-review. Biochem. Soc. Trans. 44 , 166-175 (2016).
200. Šimurina, M., et al. Glycosylation of Immunoglobulin G Associates With Clinical Features of Inflammatory Bowel Diseases.Gastroenterology 154 , 1320-1333.e1310 (2018).
201. Martens, E.C., Chiang, H.C. & Gordon, J.I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4 , 447-457 (2008).
202. Lozupone, C.A., et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl. Acad. Sci. U. S. A. 105 , 15076-15081 (2008).
203. Pereira, F.C. & Berry, D. Microbial nutrient niches in the gut.Environ. Microbiol. 19 , 1366-1378 (2017).
204. Bhattacharya, T., Ghosh, T.S. & Mande, S.S. Global Profiling of Carbohydrate Active Enzymes in Human Gut Microbiome. PLoS One10 , e0142038 (2015).
205. Martens, E.C., Koropatkin, N.M., Smith, T.J. & Gordon, J.I. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284 , 24673-24677 (2009).
206. Png, C.W., et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105 , 2420-2428 (2010).
207. Bry, L., Falk, P.G., Midtvedt, T. & Gordon, J.I. A model of host-microbial interactions in an open mammalian ecosystem.Science 273 , 1380-1383 (1996).
208. Wrzosek, L., et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11 , 61 (2013).
209. Kang, Y., Park, H., Choe, B.H. & Kang, B. The Role and Function of Mucins and Its Relationship to Inflammatory Bowel Disease. Front Med (Lausanne) 9 , 848344 (2022).
210. Özcan, E. & Sela, D.A. Inefficient Metabolism of the Human Milk Oligosaccharides Lacto-N-tetraose and Lacto-N-neotetraose Shifts Bifidobacterium longum subsp. infantis Physiology. Front Nutr5 , 46 (2018).
211. Bondue, P., et al. Cell-Free Spent Media Obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis Grown in Media Supplemented with 3’-Sialyllactose Modulate Virulence Gene Expression in Escherichia coli O157:H7 and Salmonella Typhimurium. Front. Microbiol. 7 , 1460 (2016).
212. Lawson, M.A.E., et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. Isme j 14 , 635-648 (2020).
213. Kulinich, A. & Liu, L. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr. Res.432 , 62-70 (2016).
214. Chleilat, F., et al. Human Milk Oligosaccharide Supplementation Affects Intestinal Barrier Function and Microbial Composition in the Gastrointestinal Tract of Young Sprague Dawley Rats.Nutrients 12 , 1532 (2020).
215. Eiwegger, T., et al. Prebiotic oligosaccharides: In vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr. Allergy Immunol. 21 , 1179-1188 (2010).
216. den Besten, G., et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54 , 2325-2340 (2013).
217. Morrison, D.J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7 , 189-200 (2016).
218. Litvak, Y., Byndloss, M.X. & Bäumler, A.J. Colonocyte metabolism shapes the gut microbiota. Science 362 (2018).
219. Beaumont, M., et al. Gut microbiota derived metabolites contribute to intestinal barrier maturation at the suckling-to-weaning transition. Gut Microbes 11 , 1268-1286 (2020).
220. Lupton, J.R. Microbial degradation products influence colon cancer risk: the butyrate controversy. J. Nutr. 134 , 479-482 (2004).
221. Roediger, W.E. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 2 , 712-715 (1980).
222. De Filippis, F., et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65 , 1812-1821 (2016).
223. Fehlbaum, S., et al. In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota. Int. J. Mol. Sci. 19 (2018).
224. Sonnenburg, E.D., et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529 , 212-215 (2016).
225. Wu, G.D., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334 , 105-108 (2011).
226. Marcobal, A., Southwick, A.M., Earle, K.A. & Sonnenburg, J.L. A refined palate: bacterial consumption of host glycans in the gut.Glycobiology 23 , 1038-1046 (2013).
227. Ndeh, D. & Gilbert, H.J. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol. Rev. 42 , 146-164 (2018).
228. Shin, J., et al. Elucidation of Akkermansia muciniphila Probiotic Traits Driven by Mucin Depletion. Front. Microbiol.10 , 1137 (2019).
229. Paone, P. & Cani, P.D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69 , 2232-2243 (2020).
230. Yoshihara, T., et al. The protective effect of Bifidobacterium bifidum G9-1 against mucus degradation by Akkermansia muciniphila following small intestine injury caused by a proton pump inhibitor and aspirin. Gut Microbes 11 , 1385-1404 (2020).
231. Breugelmans, T., et al. The role of mucins in gastrointestinal barrier function during health and disease.Lancet Gastroenterol Hepatol 7 , 455-471 (2022).
232. Burger-van Paassen, N., et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420 , 211-219 (2009).
233. Tan, F.Y.Y., Tang, C.M. & Exley, R.M. Sugar coating: bacterial protein glycosylation and host–microbe interactions.Trends Biochem. Sci. 40 , 342-350 (2015).
234. Castric, P. pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141 , 1247-1254 (1995).
235. Ku, S.C., Schulz, B.L., Power, P.M. & Jennings, M.P. The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. Biochem. Biophys. Res. Commun. 378 , 84-89 (2009).
236. Latousakis, D. & Juge, N. How Sweet Are Our Gut Beneficial Bacteria? A Focus on Protein Glycosylation in Lactobacillus. Int. J. Mol. Sci. 19 , 136 (2018).
237. Linton, D., et al. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol. Microbiol.55 , 1695-1703 (2005).
238. Abouelhadid, S., et al. Quantitative Analyses Reveal Novel Roles for <i>N-</i>Glycosylation in a Major Enteric Bacterial Pathogen. mBio 10 , 10.1128/mbio.00297-00219 (2019).
239. Adibekian, A., et al. Comparative bioinformatics analysis of the mammalian and bacterial glycomes. Chemical Science2 , 337-344 (2011).
240. Kerrigan, A.M. & Brown, G.D. C-type lectins and phagocytosis.Immunobiology 214 , 562-575 (2009).
241. Rabinovich, Gabriel A. & Croci, Diego O. Regulatory Circuits Mediated by Lectin-Glycan Interactions in Autoimmunity and Cancer.Immunity 36 , 322-335 (2012).
242. Avci, F.Y. & Kasper, D.L. How Bacterial Carbohydrates Influence the Adaptive Immune System. Annu. Rev. Immunol. 28 , 107-130 (2010).
243. Round, J.L. & Mazmanian, S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota.Proc. Natl. Acad. Sci. U. S. A. 107 , 12204-12209 (2010).
244. Geijtenbeek, T.B.H. & Gringhuis, S.I. Signalling through C-type lectin receptors: shaping immune responses. Nature Reviews Immunology 9 , 465-479 (2009).
245. Coyne, M.J., Reinap, B., Lee, M.M. & Comstock, L.E. Human symbionts use a host-like pathway for surface fucosylation.Science 307 , 1778-1781 (2005).
246. Naegeli, A., et al. Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J. Exp. Med.216 , 1615-1629 (2019).
247. Walker, M.J., et al. Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus. Clin. Microbiol. Rev.27 , 264-301 (2014).
248. Wong, S.H., et al. Gavage of Fecal Samples From Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology 153 , 1621-1633.e1626 (2017).
249. Cheng, Y., Ling, Z. & Li, L. The Intestinal Microbiota and Colorectal Cancer. Front. Immunol. 11 , 615056 (2020).
250. Tjalsma, H., Boleij, A., Marchesi, J.R. & Dutilh, B.E. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects.Nat. Rev. Microbiol. 10 , 575-582 (2012).
251. Campbell, B.J., Finnie, I.A., Hounsell, E.F. & Rhodes, J.M. Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J. Clin. Invest. 95 , 571-576 (1995).
252. Abed, J., et al. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe 20 , 215-225 (2016).
253. Khalili, H., et al. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 15 , 525-535 (2018).
254. Wolters, M., et al. Dietary fat, the gut microbiota, and metabolic health - A systematic review conducted within the MyNewGut project. Clin. Nutr. 38 , 2504-2520 (2019).
255. Coker, J.K., Moyne, O., Rodionov, D.A. & Zengler, K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 13 , 1-18 (2021).
256. Chloe, A.A., et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants.Gut 67 , 1064 (2018).
257. Caballero-Franco, C., Keller, K., De Simone, C. & Chadee, K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 292 , G315-322 (2007).
258. Finnie, I.A., Dwarakanath, A.D., Taylor, B.A. & Rhodes, J.M. Colonic mucin synthesis is increased by sodium butyrate. Gut36 , 93-99 (1995).
259. Bron, P.A., van Baarlen, P. & Kleerebezem, M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nature Reviews Microbiology 10 , 66-78 (2012).
260. Kristensen, N.B., et al. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 8 , 52 (2016).
261. Borody, T.J. & Khoruts, A. Fecal microbiota transplantation and emerging applications. Nature Reviews Gastroenterology & Hepatology 9 , 88-96 (2012).
262. Basson, A.R., Zhou, Y., Seo, B., Rodriguez-Palacios, A. & Cominelli, F. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl. Res.226 , 1-11 (2020).
263. Brandt, L.J. & Reddy, S.S. Fecal microbiota transplantation for recurrent clostridium difficile infection. J. Clin. Gastroenterol. 45 Suppl , S159-167 (2011).
264. Mellow, M.H. & Kanatzar, A. Colonoscopic fecal bacteriotherapy in the treatment of recurrent Clostridium difficile infection–results and follow-up. J. Okla. State Med. Assoc. 104 , 89-91 (2011).
265. Silverman, M.S., Davis, I. & Pillai, D.R. Success of self-administered home fecal transplantation for chronic Clostridium difficile infection. Clin. Gastroenterol. Hepatol. 8 , 471-473 (2010).
266. Matsuoka, K. Fecal microbiota transplantation for ulcerative colitis. Immunol Med 44 , 30-34 (2021).
267. Colman, R.J. & Rubin, D.T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis. Journal of Crohn’s and Colitis 8 , 1569-1581 (2014).
268. Dailey, F.E., Turse, E.P., Daglilar, E. & Tahan, V. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr. Opin. Pharmacol. 49 , 29-33 (2019).
269. Merrick, B., et al. Regulation, risk and safety of Faecal Microbiota Transplant. Infect Prev Pract 2 , 100069 (2020).
270. Vich Vila, A., et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10 (2018).
271. Lloyd-Price, J., et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569 , 655-662 (2019).
272. Pittayanon, R., et al. Differences in Gut Microbiota in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology 158 , 930-946.e931 (2020).
273. Bankole, E., Read, E., Curtis, M.A., Neves, J.F. & Garnett, J.A. The Relationship between Mucins and Ulcerative Colitis: A Systematic Review. J Clin Med 10 (2021).
274. Yamamoto-Furusho, J.K., Mendivil, E.J. & Fonseca-Camarillo, G. Reduced expression of mucin 9 (MUC9) in patients with ulcerative colitis. Inflamm. Bowel Dis. 18 , E601 (2012).
275. Yamamoto-Furusho, J.K., Ascaño-Gutiérrez, I., Furuzawa-Carballeda, J. & Fonseca-Camarillo, G. Differential Expression of MUC12, MUC16, and MUC20 in Patients with Active and Remission Ulcerative Colitis.Mediators Inflamm. 2015 , 659018 (2015).
276. Gersemann, M., et al. Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis.Differentiation 77 , 84-94 (2009).
277. Hashash, J.G., et al. Altered Expression of the Epithelial Mucin MUC1 Accompanies Endoscopic Recurrence of Postoperative Crohn’s Disease. J. Clin. Gastroenterol. 55 , 127-133 (2021).
278. Battat, R., et al. Fucosyltransferase 2 Mutations Are Associated With a Favorable Clinical Course in Crohn’s Disease. J. Clin. Gastroenterol. 56 , e166-e170 (2022).
279. Wang, T., et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. Isme j6 , 320-329 (2012).
280. Veziant, J., et al. Association of colorectal cancer with pathogenic Escherichia coli: Focus on mechanisms using optical imaging.World J. Clin. Oncol. 7 , 293-301 (2016).
281. Mima, K., et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65 , 1973-1980 (2016).
282. Gupta, A., Madani, R. & Mukhtar, H. Streptococcus bovis endocarditis, a silent sign for colonic tumour. Colorectal Dis.12 , 164-171 (2010).
283. Kumar, R., et al. Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog.13 , e1006440 (2017).
284. Zhao, L., et al. Parvimonas micra promotes colorectal tumorigenesis and is associated with prognosis of colorectal cancer patients. Oncogene 41 , 4200-4210 (2022).
285. Li, C., et al. Prognostic and clinicopathological value of MUC1 expression in colorectal cancer: A meta-analysis. Medicine (Baltimore) 98 , e14659 (2019).
286. Cecchini, M.J., et al. CDX2 and Muc2 immunohistochemistry as prognostic markers in stage II colon cancer. Hum. Pathol.90 , 70-79 (2019).
287. Pothuraju, R., et al. Mechanistic and Functional Shades of Mucins and Associated Glycans in Colon Cancer. Cancers (Basel)12 (2020).
288. Jumper, J., et al. Highly accurate protein structure prediction with AlphaFold. Nature 596 , 583-589 (2021).
289. Tunyasuvunakool, K., et al. Highly accurate protein structure prediction for the human proteome. Nature 596 , 590-596 (2021).