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Abstract

Fatigue has become a major consideration factor in modern offshore wind farms as optimized

design codes and a lack of lifetime reserve have made continuous fatigue life monitoring become

an operational concern. In this contribution we discuss a data‐driven methodology for farm‐wide

tower‐transition piece fatigue load estimation. We specifically tackle the employment of this

methodology in a real‐world farm‐wide setting and the implications of continuous monitoring.

With reliable nacelle‐installed accelerometer data at all locations, along with the customary ten‐

minute SCADA statistics and three strain gauge‐instrumented ’fleet‐leaders’we discuss the value

of two distinct approaches: use of fleet‐leader or population‐based data for training a physics‐

guided neural network model with a built‐in conservative bias, with the latter taking precedence.

In the context of continuous monitoring, we touch on the importance of data imputation, work‐

ing under the assumption that if data is missing, then its fatigue loads should be modelled as

under idling. With this knowledge at hand, we analyzed the errors of the trained model over a

period of nine months, with monthly accumulated errors always kept below ±5%. A particular

focus was given to performance under high loads, where higher errors were found. The cause

for this error was identified as being inherent to the use of ten‐minute statistics, but mitigation

strategies have been identified. Finally, the farm‐wide results are presented on fatigue load esti‐

mation, which allowed to identify outliers, whose behaviour we correlated with the operational

conditions. Finally, the continuous data‐driven, population‐based approach here presented can

serve as a springboard for further lifetime‐based decision‐making.
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1 INTRODUCTION

1.1 Motivation

Despite the rapid growth seen in recent years with a current estimated
63,2 GW of installed capacity in 20221, wind energy as an industry and
a research field retains several considerable challenges. One key chal‐
lenge faced by the different stakeholders relates to the fatigue lifetime
of offshore wind turbines. Increasingly, a greater focus has been given
to sustainable asset management: if wind energy is to realize its poten‐
tial in supplying sustainable and cheap energy, one is required to know
more precisely the current lifetime consumption of each turbine within
a farm. This is because operation and maintenance (O&M) amounts to

nearly a third of global costs2, making operators keenly look for solu‐
tions that minimize these. An accurate account of the fatigue lifetime
can allow a better scheduling of inspections and suppress unnecessary
actions, further lowering costs and resource usage.
Furthermore, fatigue has remained a key design driver3, with wind tur‐
bine structures being designed for dynamics rather than for bearing
capacity 4. This means that the substructure dimensions have been op‐
timized during design for fatigue life, in order to match the intended
lifetime of a project (typically 20‐25 years) as closely as possible. In
some older offshore wind farms, real‐world observations through the
use of structural health monitoring (SHM) appear to have identified
an additional structural reserve, suggesting that fatigue life consump‐
tion was less than as per design 5. Conversely, this structural reserve
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seems to be absent in more recent projects which employ updated de‐
sign procedures which allow a more accurate description of structural
behaviour (e.g. PISA 6). This has meant that operators of newer farms,
instead of looking for a possible lifetime extension, need to keep tabs
on the fatigue progression of their assets to ensure that the intended
project life can be reached. Particularly, external factors which interfere
with normal operating conditions and potentially affect lifetime con‐
sumption need to be tracked. E.g., if a turbine is shut down/curtailed
to meet market needs or requirements from the transmission system
operator. Looking specifically to standstill, its high impact on lifetime oc‐
curs because, with turbines’ foundations progressively increasing size,
the natural frequencies are closer to the dominant wave frequencies7.
This, combined with a larger surface area for hydrodynamic loading
and deeper locations, has led to a greater impact of wave loads on
fatigue 8, which is feltmore heavilywhen there is no aerodynamic damp‐
ing (i.e., non‐operational conditions as parked and idling). Furthermore,
curtailment introduces additional transitional load cycles which may
impact lifetime consumption9. The farm operator needs therefore to
ensure that the complex interplay of requirements leading to downtime
(e.g. compliance with transmission system operator or energy market
requirements, componentmalfunction, etc.) does not jeopardize achiev‐
ing the expected fatigue life. Thus, in absence of any reserve, continuous
fatigue life monitoring has become an operational concern.

1.2 Fatigue monitoring

The analysis of the fatigue life can broadly be approached from two
distinct avenues 10: (i) the cumulative fatigue damage is used to predict
fatigue life, based on the assumption that failure occurs after a number
of loading cycles for a particular tension/stress range; and (ii) examin‐
ing fracture behaviour of mechanical elements under dynamic loads,
considering that, once cracks have grown to a critical length, failure
will occur. Due to the complexity of crack behaviour models, the first
approach (i) is more commonly applied in practice.
Thus, a process that initially involved physical inspections (which can
be dangerous, time consuming and costly)11 has evolved to include an
increasing use of remote, non‐intrusive health monitoring systems12.
This remote sensing has been principally undertook through strain
gauge instrumentation at the substructures’ interface level with the
turbine 13,14,15, with this sensing being selected16 due to its ability of
capturing the history of long‐term types of damage17. The interface
between turbine and substructure is an interface in design for load
exchanges. At least for a first assessment a comparison between the
measured and as‐designed loads offers insight in the residual life of the
asset.
Based on substructure strain measurements, the fatigue damage
might then be extrapolated into the future and open the doors for
lifetime quantification18,19,20. However, to measure mechanical stress
by instrumenting all turbines of a given wind farm with strain gauges
and maintaining these is not economically viable. The authors have
observed that, as a result, in real‐world scenarios, fewer than 10% of

turbines in a farm are equipped with a SHM system that incorporates
strain gauges. Therefore, a number of researchers have suggested
alternatives involving mainly the use of supervisory control and data
acquisition (SCADA), available at every turbine21,22. The farm‐wide
availability of SCADA data allows models trained on it to be employed
for farm‐wide fatigue life estimation23. However, in the context of
offshore wind where wave‐induced loading plays a dominant role, a
SCADA‐only approach leads to poor results for all structural fatigue
loads, as SCADA typically lacks the information regarding waves
and/or structural dynamics24. This has meant that, in order to ac‐
curately capture the complex dynamics of offshore wind turbines,
the coupling of acceleration data with SCADA has proven crucial for
fatigue‐predicting models 24,25,26. 26 in particular, looked at comparing
different sensor setups and their performance for fatigue estimation.
Based on varying quality of SCADA and acceleration data acquisition
systems, it showed how the inclusion of tower accelerations leads to a
sizeable improvement in the ability to estimate fatigue rates. As both
tower accelerations and fatigue cycles follow the same equations of
motion 27, the higher performance attained by including acceleration
data is expected. While high quality accelerometers still cost more
than strain gauges, this is readily compensated through the much re‐
duced installation costs. Moreover, the cost of the hardware has been
dropping for some time, resulting in the technology gaining traction in
recent years 28,29. Moreover, due to accelerometers’ reliability25, costs
and workplace risks are further reduced compared to strain gauges, as
these do not require periodic in‐situ maintenance.
The greater employment of non‐intrusive SHM sensing and the re‐
sulting increased data flow has coincided with the advent of machine
learning (ML) algorithms and other data‐driven techniques which
capitalize on big data. Some examples of the use of data‐driven tech‐
niques on SHM wind turbine data include evidence demonstrating the
dependability of data‐driven fatigue estimators throughout the entire
operational lifespan of the turbine30, assessing the effectiveness of
SCADA‐based artificial neural network (ANN) models in estimating fa‐
tigue load for blade flap‐ and edgewise bending moments under varying
flow conditions 31,32, exploring the applicability of ANNs in predicting
blade root flapwise fatigue loads and their relationship to turbine
failures 33, evaluate the influence so‐called EOPs (Environmental and
Operational Parameters) have on the features of the vibration response
of the wind turbine blades by employing Gaussian process regression
time‐series modelling 34, applying conditional variational auto‐encoders
to infer the probability distribution of accumulated fatigue on the root
cross‐section of a simulated wind turbine blade, enabling the genera‐
tion of long‐term probabilistic degradation predictions using historical
SCADA data 35,36 or of graph neural networks37, estimating the tower
fore‐aft bending moments through onshore wind turbines’ long‐term
SCADA 38, utilizing Gaussian processes for damage detection39 and
leveraging SCADA and acceleration data to forecast fatigue loads at
the tower‐transition piece on a ten‐minute basis, providing insights
into feature selection, evaluation of different sensor configurations,
and tentative implementation across the entire wind farm26.
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The above‐mentioned research has pushed the envelope and suc‐
cessfully added to the body of work that advocates for greater
instrumentation of farms and better use of the available data for life‐
time assessment. However, if this research is to effectively pass from a
proof‐of‐concept phase to industry‐wide acceptance, two fundamental
issues have to be addressed: (i) the vast majority of the research still
concerns itself with ten‐minute level predictive capacity of fatigue
loads/damage, however, fatigue life assessment is not performed
based on a ten‐minute basis. Rather, it is necessary to assess the total
accumulation of the fatigue damages over the project life and quanti‐
fying residual life40. And (ii), due to data availability (or better said, the
lack thereof), specifically accelerometer installation, no farm‐wide em‐
ployment of the methodologies developed for fatigue load estimation
on the substructure on one or a couple of turbines has been presented
for a real‐world case involving a full farm.
(i) has been addressed in 5 (an extension of 26), where there is a rescal‐
ing and accumulation of fatigue loads and damages undertook for two
real‐world turbines over two years. Thereafter, the necessity to accu‐
rately predict fatigue loads on a long‐term level led to the introduction
of a physics‐guided machine learning approach (Φ‐ML) in 41. In Φ‐ML
the models are taught the governing physical laws which provide ’infor‐
mative priors’ in the form of strong theoretical constraints and inductive
biases on top of the observational ones 42 and can thus be considered
hybrids or ’grey‐box’ models, as they are data‐driven models that in‐
clude some underlying physical knowledge of the problem at hand,
halfway in the spectrum between ’white‐box models’ (physics‐based)
and ’black‐box models’ (data‐driven) 43.
As for (ii), this is the goal of the current contribution, i.e., present the
results for a long‐term fatigue load estimation based on SCADA and
dedicated, high‐quality accelerometers on the scale of a farm, using
real‐world data. Within the context of a farm‐wide employment, we at‐
tempt to address the several questions such a employment would pose
in the setting of a continuous monitoring strategy. Firstly, we discuss
at length the problematic nature of missing data and, keeping in line
with the intended conservatism of this work, argue for the modelling
of missing data points as idling cases, providing a guideline for a long‐
term employment. Secondly, we juxtapose two different strategies
for data usage when considering a population of structures, namely
a fleet‐leader strategy and a population‐based approach. Thirdly, we
frame the discussion of the error analysis as being consistent with a
continuous monitoring philosophy, and what this means for model
re‐training. Finally, we present the validation, cross‐validation and
extrapolation of the trained models, long‐term error, farm‐wide results
and confirm the physicality of the results by focusing on the behaviour
of an outlying turbine before drawing conclusions.

1.3 Article outline and main contributions

With previouswork having focused on arguing for the necessity of farm‐
wide reliable accelerometer data26 and presenting long‐term fatigue

accumulation41, the present contribution addresses the actual farm‐
wide implementation by presenting results for a real‐world farm where
all turbines are instrumented with dedicated accelerometers (along with
the customary SCADA statistics). Specifically, we discuss at length two
distinct approaches to data usage for model training: fleet‐leader or
population‐based. Furthermore,we add a section on data imputation, its
motivation and employment and frame the discussion sections within a
continuous monitoring strategy.
In this contribution, section 1 introduces this work by framing in sub‐
section 1.1 the motivation behind it and in subsection 1.2 providing
a comprehensive literature review of data‐driven methods for fatigue
monitoring in offshore wind structures. In section 2 the methodology
is discussed by firstly introducing the instrumentation setup and its use
for fatigue estimation (subsection 2.1). Thereafter, the philosophies be‐
hind data use for model training (fleet‐leader and population‐bases;
subsection 2.2), the model training (subsection 2.3) and data impu‐
tation (subsection 2.4) are discussed. section 3 discusses the results
by dividing these into three main parts: subsection 3.1 compares the
fleet‐leader and population‐based models, subsection 3.3 focuses on
the model errors and delves deeper into high loading cases (subsub‐
section 3.3.1) and finally, subsection 3.4 present farm‐wide results and
analyses outliers subsubsection 3.4.1. At last, section 4 draws some
conclusions on the present work and discusses future work.

2 METHODOLOGY

2.1 Instrumentation for fatigue estimation

In the current contribution, data from an ongoing measurement cam‐
paign on a real‐world offshore wind farm located in the North Sea was
utilized. The monitored turbines can be described as sitting on top of
XL monopiles, so‐called because, due to progresses in manufacturing
technologies, these extra‐large monopiles exceed 8 m diameter (capa‐
ble of supporting 7‐10 MW turbines)44. With up to 80% of offshore
wind turbine substructures being monopiles and these getting larger
and larger 45, we can take the farm under study as being fairly represen‐
tative of the current offshore wind farm paradigm.
More specifically, SCADA data and accelerations from a nacelle‐
installed and high quality, tri‐axial, microelectromechanical systems
accelerometers (MEMS) were collected for all locations within the farm,
Figure 1. It has been previously shown that the inclusion of accelera‐
tions is essential to capture all complex dynamics of the turbine26 and,
by doing so, the inclusion of wave data is rendered unnecessary.
Additionally, for three locations (WT11, WT14, WT18) − represen‐
tative of the different seabed‐depth clusters present in the farm −,
axial strain gauges (6) installed along the inner circumference at the
tower‐transition piece interface level allowed to get the fore‐aft (FA)
and side‐to‐side (SS) bending moments (Mtn andMtl, respectively). All
data was collected from third‐parties, specifically the operator (SCADA)
and a specialized monitoring company (monitoring data). Throughout
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Figure 1 Nacelle‐installed tri‐axial MEMS accelerometer with measure‐
ment directions.

the campaign, extensive calibration and quality checks have been per‐
formed. Some periods had no collected data due to power outage; these
will be addressed in a ensuing section. For each of the sensors, the sig‐
nals will have a different sampling frequency. This has meant that all
have been postprocessed into the lowest common denominator: ten‐
minute time instances (a common practice in industry).46 addressed the
shortcomings that a mean ten‐minute SCADA approach might entail.
However, the inclusion in this contribution of additional statistics such
as minima, maxima and standard deviation serves to rectify some of
the shortcomings by increasing the valuable information stored from
SCADA signals. The full dataset description can be found in Table 1.

Sensor Sampling frequency Variable Units

In
pu
t

SCADA 1Hz

Rotational speed rpm
Yaw angle deg
Pitch angle deg
Power kW
Wind speed m.s−1

Wind direction deg

Target statistics (10‐min): mean, minimum, maximum, standard deviation.

Accelerometer 12.5Hz

FA acceleration g
SS acceleration g
Z acceleration g

Target statistics (10‐min): mean, minimum, maximum, root mean square.

Ta
rg
et Strain gauges 30Hz

Normal bending moment (Mtn ) MNm
Lateral bending moment (Mtl ) MNm

Target statistics (10‐min): damage equivalent loads (DELtn and DELtl ).

Table 1 Description of datasets from the measurement campaign. Note
the conflicting sampling frequencies. Each data‐type is processed into
10‐minute target statistics.

In subsection 1.2, it was mentioned how strain gauge installation across
the entirety of a farm was cost‐prohibitive. However, any data‐based
model utilizing SCADA and accelerations as input will still need accurate

reference points (obtained exclusively through strain gauge instrumen‐
tation) at the training locations in order to extrapolate across the entire
farm. Through the ten‐minute average yaw angle from the SCADA the
strain gauges enable the calculation of the bending momentsMtn and
Mtl. Then, by employing a rainflow counting algorithm47,48, holding
the linear damage accumulation hypothesis as true (Palmgren‐Miner’s
rule) 49 and through the employment of the Wöhler exponent (the neg‐
ative inverse slope of the SN curve)50, a damage‐sensitive feature, the
damage equivalent loads (DEL), can be calculated for any ten minute
window 51,52. DELs are widely adopted among load engineers to quan‐
tify fatigue rates (over e.g. damage) and are furthermore used in design
documents, which opens the door to comparisons. Therefore, given the
Wöhler exponent,m, the number of cycles, nj , of a given stress range,
∆σj and the tower‐transition piece outer and inner radii, ro and ri, re‐
spectively at strain gauge locations we can calculate the DEL, as given
by Equation 1 53. For this contribution, and following the design docu‐
mentation, the value of 5 was used form and Neq = 107, a predefined
number of cycles.

DEL =
1

Neq
·

∑
j

nj ·
(
∆σj · π

4
· (r4o − r4i )

ri

)m
1/m

(1)

The DELs are calculated for both the FA (DELtn) and SS (DELtl) di‐
rections. However, as discussed in 41, accuracy on DEL estimation at a
ten‐minute level is not a sufficient condition to determine the success
of the model: one must also be able to accumulate DELs on a longer
time‐frame.
Thus, by Palmgren‐Miner’s rule, we can further combine n equiva‐
lent load ranges that have been derived for the same reference cycle
number andWöhler exponent through them‐root of theweighted sum‐
mation of the m‐power DEL instance54, as seen in Equation 2. Here
DELLT represents the long‐term DEL re‐scaling of j ten‐minute DEL
instances into a ten‐minute DEL representative of the long‐term pe‐
riod in question. The performance over this metric will be a particular
concern of ours, although not the sole contributor for our evaluation of
model performance. In this equation every j ten‐minute time‐instance
DEL represents a damage load with identical occurrence probability of
1/n 55.

DELLT =

 1

n

n∑
j=1

DELm
j

1/m

(2)

In this contribution the accurate prediction of accumulated long‐
term FA and SS DELs is targeted. These two directions represent the
two primary loading directions, respectively in the wind direction and
crosswind. However, these DELs should not be understood as the accu‐
mulated fatigue damage on a physical location on the asset. As the tur‐
bine yaws to follow the wind directions FA and SS loads get distributed
along the entire circumference. In order to get the full cross‐section fa‐
tigue profile, further decomposition of the FA and SS components into
specific heading is required10. While outside of the current scope, part
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of future work is to use the found FA and SSDELs and quantify localized
fatigue loads given the seen environmental conditions.

2.2 Fleet‐leaders & population‐based

The availability of strain measurements (and therefore, DELs) at three
locations opens the door at two different methodological philosophies
to train the models: fleet‐leader models and population‐based models
(see Figure 2).

(a) Fleet‐leader. (b) Population‐based.

Figure 2 Different training philosophies’ diagrams. (a), fleet‐leader con‐
cept, wherein a neural network model (latent function f for inputs x) is
trained for a single turbine (fleet‐leader) and applied to the remainder
turbines. (b), population‐based concept, where the latent function f ′ is
trained based on data from all instrumented turbines (population).

In the first, a single instrumented wind turbine is used for the training
of a model, cross‐validated on other fleet‐leaders and which then
extrapolates farm‐wide23. This hypothesis is not that far‐fetched,
as the population of structures within a wind farm is homogeneous
(nominally‐identical machines) and the inclusion of accelerations in the
training dataset is believed (and empirically confirmed26) to sufficiently
cover the variability within the farm for most operational cases. As for
the second philosophy, it hinges on data availability on a population
level. Here, we follow the grammar and discussion of56, where models
of a given feature space attempt to capture the form of the object of
interest, i.e., the ’essential’ nature of the object (the baseline behaviour,
shared across the population) and the variations (deviations from this
ideal essential nature) found across any real‐world population, in a
latent space shared by the population. In the specific case of this con‐
tribution, the implementation of a fleet‐leader philosophy would lead
to a latent function, f , trained on a strain gauge‐instrumented turbine.
As for a population‐based approach, it is only possible to have DEL
measurements for three turbines, thus not a full population. However,
one can argue that, as each of the instrumented turbines represents a
design cluster (dependent on the seabed depth, which ought to be the

only variation of note between turbines), a latent function, f ′, of this
sample of the population would be sufficient to accurately represent
the form and variation of the farm through a latent space shared by
all turbines, enforcing the model to recognize the impact of different
structural dynamics in the overall DEL.

2.3 Model training

Given the instrumentation setup described in subsection 2.1 and
subsection 2.2, we can then describe the procedures followed for
training the final DEL‐predicting model. Firstly, both strategies of
subsection 2.2 (population‐based and fleet‐leader) are opposed to one
another; that is to say, the data used for training will either come from
each the fleet‐leaders (individually) or from pooling one third of the
available data of each fleet‐leader (population‐based approach). So, for
both approaches, the same amount of data is pooled and compared for
model training. The data available for training comprises of three full
months (December 2022 − February 2023).
Prior to model training, the neural network model architecture must
be defined. This is achieved two‐fold: (i), by reducing the number of
input features through a recursive feature elimination algorithm with
a random forest regressor and built‐in cross‐validated selection of
the best number of features (RFECV57; lower threshold of 15). By
removing redundant input variables, computational‐, memory‐ and
time costs are reduced58. Moreover, it has been shown that this
may improve the overall performance of neural network models, as
non‐informative variables can add uncertainty to the predictions and
reduce the overall effectiveness of the model59. We can then consider
the application of RFECV as a good practice. And (ii), the network
architecture is achieved by performing Bayesian hyper‐parameter
optimization through the employment of Gaussian processes60 with
a Matérn kernel 61 using keras‐tuner 62. Thus, for a differentiable
loss function L(x), we have x∗ = arg min

x∈X
L(x), with x∗, the set of

hyper‐parameters that yields the lowest value for x ∈ X , trainable
hyper‐parameters. In this case, the hyper‐parameters x ∈ X were
h ∈ H = {1, . . . , 5} hidden layers, n ∈ N = {32, 64, 96, . . . , 512}
neurons, a ∈ A = {ReLU,GELU, SELU} activation func‐
tion types 63, d ∈ D = {0, 0.1, 0.2, 0.3} dropout rate and
o ∈ O = {1 · e−2, 1 · e−3, 1 · e−4} learning rate of the optimizer
(Adam 64). The monitored loss function was the Minkowski logarith‐
mic error (MLE) introduced in65. This function attempts to guide the
neural network learning by including physical knowledge specific to
the problem at hand, in a so‐called physics‐guided machine learning
approach (Φ−ML). It is described by Equation 3, withm = 5, and Y, Ŷ,
the measured and predicted vectors. It is based on the Lp norm and
the logarithm function, and attempts to prioritise long‐term DEL per‐
formance (DELLT ) and conservatism (fatigue load over‐prediction),
whilst maintaining ten‐minute level prediction accuracy.
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Figure 3 Overview of methodology employed, using either i. a population‐based approach (PB), where we randomly pick a third of each turbine’s
data, or ii. a fleet‐leader approach (FL). The model architecture is attained by performing dimensionality reduction through a recursive feature
elimination algorithm with cross‐validation (RFECV) and through Bayesian hyper‐parameter optimization (BHPO). The final model (latent function,
f ) employs physics‐guided machine learning (Φ‐ML) through its loss function (L, the Minkowski logarithmic error) and estimates ten‐minute DELs
(DEL10), further re‐scaled long‐term (DELLT ).

L(Y, Ŷ) =
(

n∑
i=0

| log(yi + 1)− log(ŷi + 1)|m
)1/m

(3)

Thus, given the MLE loss function, the neural network architecture is
trained by employing a 80‐20% train‐test split on the available data.
The final model is then capable of predicting DELs on a ten‐minute
basis given SCADA and MEMS accelerations. These DELs can later,
with Equation 2, be re‐scaled into a DEL representative of any given
timeframe. The full methodology is summarized in Figure 3.

2.4 Data imputation

The methodology ascribed in subsection 3.1 produces a model, f(x),
capable of predicting tower‐transition piece interface DELs given the
availability of SCADA and acceleration data. However, if this data is not
available, the model is not capable of estimating any value. The alterna‐
tive would be either to ignore missing data and reduce their analysis to
intervals of complete time‐series, under the assumption these are repre‐
sentative 66, or to linearly interpolate the mean DELs from the available
data.
Meanwhile, the most likely cause of the lack of SCADA and/or accelera‐
tion data is a non‐operational turbine.. As discussed in the introduction,
for the 7+MW generation of turbines 67, non‐operating conditions are
often result in greater fatigue loading due to the waves exciting unim‐
peded the structure (lack of aerodynamic damping). Therefore, if these
missing timestamps are not included, or imputed from operational data,
significant contributors to fatigue damage will be ignored in the global
analysis of the structural health and subsequent underestimation of
consumed fatigue life.
As explained with the use of the MLE loss function, the present work

attempts to retain a certain degree of conservatism (a ’safety‐factor’).
Figure 4.
Hence, we devise a missing data imputation strategy that works un‐

Figure 4Diverging missing data handling strategies: linear interpolation
between known points or data imputation (based on the assumption of
idling operation).

der the conservative assumption that when data is not available, then
the turbine is experiencing loads as under a idling period of operation.
Our data imputation approach hinges on the use of wind, wave and tidal
data from an external source. In this case the public Flemish maritime
database (Meetnet Vlaamse Banken68), with a measuring station (mea‐
suring pile and buoy) in the North Sea at theWesthinder site. Its original
data sampling frequency is of 30 minutes, but resampled using linear
interpolation to the target ten minutes. The data set description is pre‐
sented in Table 2.
One could also have relied on wind‐farm data itself, so long as not com‐
ing from the turbine with missing data, however the strategy adopted
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allows for greater flexibility, as weather data is collected very reliably.
The public database data is used to train an ’imputation’ model, fI(x),

Sampling frequency Variable Units

5.6 × 10−4 Hz

Wave height cm
10% highest waves %
Average wave period s
Height waves with period > 10 s cm
High frequent wave direction deg
Low frequent wave direction deg
Sea water temperature ◦C
Max 3s wind gust (at 10m height) m.s−1

Average wind direction deg
Average wind speed m.s−1

Tide TAW cm
Air pressure hPa
Air temperature ◦C

Target statistics (10‐min): damage equivalent loads (DELtn and DELtl ) for idling turbines.

Table 2Measuring pile and buoy data set description for the imputation
model. Sampling frequency of 30 minutes.

which is trained on a dataset of idling loads during the training pe‐
riod (we define idling as RPM < 2 & pitch > 77 or Power < 0;see also
Table 4), pooling data from all three turbines to increase the dataset
size. During idling, loads are predominantly wave‐ and tidal‐driven, and
therefore, the use of the public database can provide an accurate and
flexible assessment of weather conditions. The model trained is an ex‐
treme gradient tree boosting algorithm (XGBoost69). For our main DEL
model, the use of neural networks enhanced by physical‐guided learn‐
ing is a powerful tool, as the largeness and complexity of the dataset
is best captured by the non‐linear smoothing that the neural network
activation functions allow. However, for a smaller dataset consisting of
a single, well‐defined operational case, the use of the fast‐trained XG‐
Boost algorithm is more appropriate, as it has been seen that for easy to
moderate tasks with low amounts of data it may over‐perform regular
neural networks 70. We can visualize the data imputation methodology
in Figure 5.

3 RESULTS AND DISCUSSION

3.1 Model comparison and selection

Following the discussion in subsection 2.2 and the methodology intro‐
duced in subsection 2.3, four different models were compared: three
models using the individual fleet‐leader wind turbines data (WT11,
WT14, WT18) and a population‐based model combining data from
the fleet‐leaders. Five runs were used to train each model, with the
only change being the random seed value used for a 80‐20 train‐test
split to ensure variability. As discussed above, the focal point for model
performance evaluation is the error on the long‐term ten‐minute DELs,
based on Equation 2. In Figure 6a we present the long‐term fore‐aft
DEL error (δLT = 100 × ((DELreal − DELpred)/DELreal)) for each of

Figure 5Data imputationmethodology: depending on the data availabil‐
ity, ten‐minute DEL predictions are performed. Missing data points are
estimated by an imputation model fI(x), trained to predict idling DELs
using XGBoost and based on weather data (see Table 2), taken from a
public database.

the instrumented turbines (and the average error) based on the train‐
ing dataset (fleet‐leader/population). The data used for computing
DELLT comprised of the full three training months for each turbine.
In this figure, notable differences can be observed among the models
trained on different datasets. Firstly, when examining the fleet‐leader
models (WT11, WT14, WT18), it is evident that some outperform
others. For instance, models trained on WT11 exhibit errors centered
around zerowith a spread of approximately±10%,whileWT18 shows a
considerably higher average error for all turbines, centered at+10±5%.
WT14 falls somewhere in between these two extremes. These results
suggest that WT11 experiences greater variability in loading during its
operation, enabling it to better account for the cases encountered at
other locations. Additionally, the models trained using a population‐
based approach, which combines a third of the data from each turbine,
demonstrate the best performance. They exhibit errors centered
around zero, with a smaller spread between different runs compared
to WT11, as well as the lowest average δLT . This outcome is expected
since the population‐based approach incorporates data from all three
instrumented turbines, providing a broader coverage of the operational
conditions faced by the turbines. However, it is important to note that
relying solely on the average δLT may not provide a comprehensive
assessment of performance. It was also seen that the ten‐minute level
performance, in the form of the coefficient of determination (R2), was
also seen to be stronger for the population‐based models. These had
the best R2 (above 0.9; rather positive), followed by WT11. This seems
to indicate that a population‐based approach enables a more accurate
and consistent performance both on long‐term and ten‐minute level.
As for Figure 6a, we plot the side‐to‐side δLT as for the fore‐aft.
Once again, we can reiterate the main findings in general terms. WT11
consistently produces superior models compared to the other fleet‐
leader turbines. However, the distinction between WT11 and the
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(a)

(b)

Figure 6 Box plot of long‐term DEL relative error (δLT , [%]) over three
months based on the training turbine models (five runs) for (a) fore‐aft
and (b) side‐to‐side.

population‐based models is not as definitive in this case. Both types
of models demonstrate relatively good performance, although WT11
exhibits a slight positive error bias (i.e., tending to under‐predict), while
the population‐based (PB) models show the opposite trend (which was
intended by our Φ‐ML guided learning strategy). Both types of models
have a spread of approximately ±5%. There are two possible expla‐
nations for the similarity between these models. Firstly, the dynamics
encountered by the instrumented turbines are already quite similar as
the considered farm is quite homogeneous. Secondly, the population‐
based approach, which samples one third of the data from each turbine,
may result in the loss of some relevant information. However, in gen‐
eral, it can be concluded that the population‐based approach better
captures the overall characteristics of the farm in terms of fore‐aft
and side‐to‐side variations. Nevertheless, it is important to note that
there is a clear trade‐off with the population‐based strategy, as it does
not allow for cross‐validation in the strictest sense with a previously
unseen turbine. Although it is not possible to cross‐validate the model
for an unseen turbine, PB models can be tested using the remaining

two‐thirds of unseen data from the three instrumented turbines. In
this study, the decision is made to proceed with the best‐performing
PB model, as it is believed to provide better generalization across the
entire farm.

3.2 Imputation model

In subsection 2.4 a data imputation strategy was discussed at length
— its reason of being and necessity, as well as its implementation. As
previously mentioned, we assume that the missing data points are best
modelled conservatively as under idling. Therefore, we must first train
and validate a model capable of predicting idling DEL in the current
section. Its employment for missing data points ( which, naturally, can
not be further validated) will be presented in subsection 3.4. In our data
set we use almost 3000 data points labelled as idling from the three
fleet‐leaders — due to the rarity of such cases, we will not make a by‐
turbine distinction of the loads both during training and validation of
themodel thusmerging the data of all fleet‐leaders into a PB ’idling’ data
set.We perform a 80—20 train—test split on the idling data set and train
an XGBoost with 1000 estimators and a maximum depth of 7. We can
see a timeseries of WT11 of the imputation model in Figure 7, where
the predicted fatigue loads are juxtaposed to the actual values for idling
cases over a background of all loads.
As we can see in this figure, the predicted loads closely follow the true

Figure 7 Timeseries of imputation model for WT11 — real idling loads
(orange cross) and imputed load (blue) on a backdrop of all fore‐aft fa‐
tigue loads (grey).

values. This can be furthermore seen in the actual error over the en‐
tire idling dataset by observing the FA and SS errors in the box plots in
Figure 8.
In this figure we can see how the errors are distributed around zero
±30%. In Table 3 additional error metrics are provide.
Here we can also see that the mean error δ̄ and long‐term error δLt are
close to zero. If we take a look at δ̄, we can see that it is negative (overall
over‐prediction), which can also be observed in the slight negative skew
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Figure 8 Boxplots of idling imputation model errors for FA and SS.

Direction FA SS

mean error, δ̄ [%] ‐2.35% ‐1.97%
long term error, δLT [%] 1.47% 1.77%
R2 0.94 0.92

Table 3 Error Metrics of the imputation model for FA and SS.

of the box plots. The overall errors, specially δLt, are very positive, with
R2 > 0.9 further confirming the soundness of this model. Similarly to
FA, the SS long term error is kept below 2%.

3.3 Error analysis

Having selected the best‐performing PB model, we can proceed by
analysing its long‐term performance. To this end, we combine all
DELs of a given month by re‐scaling them with Equation 2, giving a
ten‐minute DEL representative of the month. Then, we multiply this
representative DEL by the number of time instances on the month,
and we are left with the DEL accumulated for that month (here, as we
are comparing errors, we abstain from including imputed timestamps
for which there is no measured value). This procedure is extended to
subsequent months by again re‐scaling DELs to represent the period
in question (two months, three, . . .) and multiplying it by the number
of ten‐minute instances. In our analysis we use 9 months of data (Oc‐
tober 2022—June 2023) of a turbine instrumented with strain gauges
(WT11). We can observe these results in Figure 9.

In this figure we can observe the progression of the accumulated
damage equivalent loads, slowly building up from October through
June (including). We can observe that, for both FA (Figure 9a) and SS
(Figure 9b), there is a steady increase on the fatigue loads registered at
the structure, with the predicted accumulated DEL closely following
the true values both at hindcasting (before the training period) and
forecasting (after the training period). We can also observe how for
FA the long‐term error (in green) is kept below ±5%, hovering around

(a)

(b)

Figure 9Monthly accumulation of true (blue) and predicted (orange)DEL
from October—June for (a) fore‐aft and (b) side‐to‐side on WT11. The
training period in highlighted in grey. Error onmonthly accumulatedDEL
in green.

0. However, this error appears to be progressing steadily with each
month. Literature suggests that a minimum of 9—12 months is required
for models to accurately capture the seasonality of fatigue loads51.
Here, we hypothesize that, because the model has been trained during
winter, is error grows over the summer months. In SS the error hovers
around 0% very closely. Both results are similarly confirmed for the
remaining strain gauge instrumented turbines (WT14 and WT18).
In this work we focused, given the hitherto collected data, on showing
the model in hind‐ and forecasting scenarios, limiting the training pe‐
riod to just three months. In an actual real‐world implementation, this
time‐window has naturally to be extended to at least 9–12 months.
The current approach should also be understood in the context of
continuous monitoring: with data being continuously collected, it is es‐
sential to continuously monitor the progression of the long‐term errors
at the fleet leaders. In case of a growing error (e.g. beyond 5%) one can
decide to retrain the model at any stage of the project.
In some cases model re‐training might be even required due to exter‐
nal reasons, e.g. changes in the controller strategy, previously unseen
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environmental conditions or changes in the turbine e.g. a rotor re‐
placement or scour development. These will invariably change the
underlying dynamics affecting fatigue damage in the substructure and
render previously trained models unsuitable. The first two reasons for
dynamics change have the possibility of becoming rather prevalent as,
(i) changes in controller action programming have become more com‐
mon, as for (ii), with environmental conditions changing progressively
(e.g. drawn‐out variations on wind and wave speed and direction), the
structure’s physics may radically change. Keeping track of the validity
of the models as time progresses is thus an intrinsic part of the pro‐
posed methodology.
We can perform a further test on the model (WT11; FA) by analysing
the performance of the predictive model vs. wind speed. For this, we
plot the real and predicted representative re‐scaled DELs for each wind
speed bin (with a step of 2 m.s−1), along with the absolute difference
between both (over‐predictions in green, under‐predictions in red).

Figure 10 Above, probability density function or PDF (p̂n(y;H); blue
distribution) of wind speed and cumulative density function or CDF
(Pn(y) =

∫ x
−∞ p̂n(y;H)dy, purple curve). Below, real (y) and predicted

(ŷ) representative re‐scaled DELs for each wind speed bin (with a step
of 2 m.s−1), along with the absolute difference between both (y − ŷ;
over‐predictions in green, under‐predictions in red).

In Figure 10 we can see a familiar curve: the steady increase of fatigue
loads with the wind speed until the rated power (wind‐driven fatigue),
after which there is a sudden drop and subsequent slow increase in
fatigue loads. As it can be seen, for the most frequent wind speeds the

loads (and consequently, the absolute error) are rather small. We can
also see that, for the majority of wind speeds (see the PDF), the model
is over‐predicting (green differential). However, for some wind speeds,
namely between 8 and 14 m.s−1, the model’s under‐predicting (posi‐
tive error, red differential).

3.3.1 High loads
The findings of the previous section pose us the question: why is it
that the model is under‐predicting (also globally, as seen by the posi‐
tive accumulated error on Figure 9a) when we explicitly included the
logarithm in Equation 3 to force over‐predictions? In order to discern
the reason, as well as see the impact small, frequent loads and big, rarer
loads have on the global DEL, we can take a look at the DEL accumu‐
lated based on the magnitude of the loads (i.e., for every successive DEL
quantile, q̂i, we progressively accumulate through Equation 2, such that
DEL =

∫
q̂i dq̂) in Figure 11.

Figure 11 Accumulated FA DEL (WT11) per fatigue load magnitude
quantile q̂, such that DEL =

∫
q̂i dq̂). Full data set is used. N.b. the in‐

version on the curves for the highest loads, identified in red.

Here we can see how the predicted curve (orange) is generally above
the real DEL curve (blue), which means the model is over‐predicting as
intended. E.g. for the 80% smallest fatigue loads (or, excluding the 20
% highest loads) the predicted re‐scalled DEL is greater than the real.
However, we can observe that for the highest loads this trend is in‐
verted, and the model under‐predicts (highest 3%). The observed errors
on a ten‐minute level on the top 1% DELs for all strain gauge instru‐
mented turbines produced a severe under‐prediction of around +25%.
This mean that, because of severely under‐predicting the highest loads,
has a big impact on long‐termDELs given the effect of theWöhler expo‐
nent in Equation 2. These higher loads almost invariably are linked with
so‐called events (i.e. rotor‐stops). Although the model is — correctly —
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inferring higher damages for events, these cases remain very difficult to
accurately capture by anymodel because, (i), they are infrequent, mean‐
ing that there is not a lot of data points available for training; and (ii),
DELs are estimated on a ten‐minute basis, but e.g. a rotor‐stop is a sin‐
gle instance in that ten‐minute window. This means that the position
of the event (if the rotor‐stop happens early or late on the ten‐minutes)
becomes relevant as having a rotor‐stop followed by idling (which also
introduces higher fatigue loads) in a ten‐minute window is not the same
thing as have normal operating conditions followed by an event in a sin‐
gle ten‐minute window. Because we are dealing with ten‐minute data,
it is very difficult (if not impossible) to retrieve the position of the event
within the time window. The alternative would consist in full timeseries
reconstruction but this has been seen to produce higher errors further
along the line 71. One possible way to circumvent this issue with ten‐
minute signals would be to increase the statistical information of the
signal, by including metrics sensitive to peak position, such as skewness
and kurtosis (spectral moments). However, it must be reiterated that the
global accumulated DEL errors are well within ±5%.

3.4 Farm‐wide

As stated throughout this contribution, the goal of this work does not
lie with accumulating long‐term DELs for a given instrumented turbine,
rather to assess fatigue loads across the entire offshore wind farm. As
such, after having thoroughly investigated the physicality, feasibility and
expected error of the model in subsection 3.3, we concluded that it
compared favourably to current industry standards and that its farm‐
wide application is sensible. Therefore, we can plot in Figure 12 the FA
DEL (ten‐minutes) representative for eachmonth for which data is avail‐
able farm‐wide (December 2022— June 2023). All results in this section
include the use of imputed data.

Figure 12 Farm‐wide monthly representative FA DEL for December
2022 — June 2023 period.

Figure 12 allows us to effectively compare the fatigue loads experienced
by each turbinewithin the farmover amonth. This is precisely the sort of
outcome which can enable operators taking informed decisions regard‐
ing the structural life management of their assets. Here, we can easily
identify outliers (turbineswith above average damage) and take the nec‐
essary actions: (i) figure out why a specific turbine is experiencing higher
damage by delving into operational conditions and SCADA data and (ii)
act accordingly and intervene if necessary. This figure underlines how
this methodology can successfully be used for identifying ’problematic’
turbines, and react in the shortest amount of time, if deemed necessary.
For example, we can see in the months of December and January how
WT9 has a higher‐than‐average DEL.
Naturally, the month‐representative DELs can be progressively updated
with each new value to a long‐term DEL, representative of the entire
period. This value can then be multiplied by the number of ten‐minute
time‐instances of said period, providing an accumulated long‐term DEL
(see Figure 9). However, one does not need to restrict oneself to a
monthly accumulation. In Figure 13 we present the daily DEL accumu‐
lation for all turbines of the farm.

Figure 13Daily FA DEL accumulation (December 2022 — July 2023) for
all turbines. WT9 labeled in green.

This figure can be seen as the culmination of this contribution, as it
shows the accumulated damage equivalent loads on a daily basis for all
turbines within a real‐world farm based on SCADA and reliable acceler‐
ation measurements. Interestingly, we can still identify an outlier: WT9.
It is visible how in the end of December / beginning of January the accu‐
mulated fatigue damage rapidly increases above the rest of the turbines
(as seen in Figure 12). This effect is still felt several months after, with
WT9 being clearly the turbine with the most accumulated damage at
the period in question. We can delve deeper, and identify the causes
behind this behaviour.
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3.4.1 Outlier analysis
In order to identify why WT9 sees a greater fatigue damage in Decem‐
ber and January we can take a look at how each operational condition
influences the monthly representative DEL, as seen in Figure 14.

Figure 14 Impact of operational case on monthly DEL. In different
shades of blue: idling (including shut‐down), nominal and events (also in‐
cludes other unlabelled data). In grey, imputed DELs (e.g., same as idling).

In this figure, we can see the contribution each operational condition
(along with the imputed data, that is to say, estimated as idling fa‐
tigue loads; grey) has on the monthly DEL. The operational conditions
present are idling (light blue; includes shut‐downs), nominal operating
condition (middle blue) and events (dark blue). The respective case
definitions can be consulted in Table 4.
A caveat has to be made regarding the crude labelling of an operational

Case Definition

Idling RPM < 2 & pitch > 77 or Power < 0

Operational 0 < RPM < 10.5 ; 1 < pitch < 66

Events Cases not included in the other categories

Table 4 Operational cases definition. ’Events’ category consists of all
timestamps not included in other case definitions.

conditions as an ’event’: the definition of each operational condition is

based on SCADA thresholds, and the events category is composed of
data‐points which fall off the idling and nominal categories. The event
label might therefor not catch every single event, or might mislabel
nominal data. However, when the events category becomes more
sizeable it still means that actual events are occurring. This is what hap‐
pens for WT9 in December, where the events are the biggest fatigue
contributor. It must also be said that this does not mean that WT9
operates the majority of time under events: they represent a minority
of cases (below 10%) but, due to their magnitude, they have an over‐
sized impact on lifetime. We can verify that it is indeed events which
cause the higher fatigue loads experienced by WT9 in late December
by inspecting Figure 15.

Figure 15 Bottom: estimated FA ten‐minute DEL for WT9 (light green)
and a reference turbine from the same string (dark green) with times‐
tamps categorized as ’event’ superimposed (purple). On top, difference
on pitch angle standard deviation between WT9 and reference (δβ ).

In this figure, we can observe the estimated DELs for WT9 (light green)
and a reference turbine from the same string (grey) with WT9’s times‐
tamps categorized as ’event’ superimposed (purple). Here, we can see
how the fatigue loads for WT9 are much bigger than the reference
after the 30th of December, with the peaks corresponding well to the
timestamps categorized as events. We can affirm that the hypothesis
that WT9 experiences higher fatigue in December due to events is
physically coherent, specially when we consider that, for this period
at the end of December, WT9 had over 200% more labelled events
than the reference turbine. We can also observe that after this period
of events, loads for WT9 remain high, indicating that the turbine was
idling. This behaviour is carried through to January, where WT9 faces
higher idling fatigue loads, see Figure 14. We can confirm this by
analysing Figure 16.
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Figure 16 Estimated FA ten‐minute DEL for WT9 (light green) and a
reference turbine from the same string (dark green) and the rpm corre‐
sponding to each turbine (dotted lines).

In Figure 16 we present a zoomed instance of four days were one can
see the reason behind the higher loads faced by WT9: in the period
running up to January 6th WT9 DELs are higher than the reference
turbine and this maps clearly with the RPM. This is, WT9 loads are
higher because the rpm is zero (or close to it), thus indicating that the
turbine is idling. As discussed in the introduction, for bigger monopiles,
idling represents an increased consumption of lifetime as the lack of
aerodynamic damping leads to unimpeded wave‐excitation. Notewor‐
thy is the apparent periodicity in the estimated FA DELs during idling
conditions. The two full cycles in DEL correspond to the variations in
tidal level, resulting in higher fatigue loads during at high tide. This is
behaviour that is also observed on instrumented turbines and now is
correctly predicted by the model.

4 CONCLUSIONS AND FUTUREWORK

In this contribution we have presented a data‐driven methodology for
farm‐wide tower‐transition piece fatigue load estimation. Based on ten‐
minute SCADA and dedicated MEMS acceleration data, we attempted
to ensure model performance beyond ten‐minute estimations by phys‐
ically guiding a neural network, making it focus both on long‐term
accuracy and conservatism.We specifically discussed what a real‐world
farm‐wide employment of such a methodology means when taking
place under continuous monitoring. This relates with the appropriate
strategy to deal with missing data points, which we argue should consist
in training a model (XGBoost) to estimate missing data as under idling,
therefore ensuring an underlying conservatism. Additionally, based on
the strain gauge instrumentation availability over the farm (on three
turbines representative of the design clusters), we also discussed two
competing approaches for data usage in model training: fleet‐leader or

population‐based.
In the results section we began by verifying the better performance of
population‐based (lowest long‐term error) models and we posited that
this was due to their greater ability to better model the overall form
of the turbines. Thereafter we focused in analysing the errors of the
trained model over a long‐term period of seven months, with monthly
accumulated errors always kept well below ±5%. Furthermore, we dis‐
cussed how this error ought to be framed in relation to a continuous
monitoring strategy, which enables model re‐training and the minimal
amount of data required for capturing the dynamics’ seasonality (9—12
months). We additionally focused on the relative worse performance
on high load estimation and hypothesized this error is due to the ten‐
minute resolution which does not enable the localization of an event
within the timeseries, inducing errors. One mitigation strategy sug‐
gested to address this issue was to also compute spectral moments as
a statistic for each ten‐minute signal. Finally, we presented farm‐wide
results on DEL estimation, which allowed to identify outliers, whose be‐
haviour we correlated with their operational conditions.
Lastly, this contribution has successfully present a real‐world farm‐wide
estimation of fatigue loads based on SCADA and acceleration data,
providing continuous fatigue monitoring. As discussed throughout this
work, this ability has a considerable value on its own, opening the door
to cost‐effective structural health decisions: better scheduled preven‐
tive maintenance, with greater margins for turbines where a sufficient
structural reserve is found, and tighter control for turbines which see
more damage. Finally, this methodology can also serve as a springboard
for further lifetime‐based decision‐making: which turbines requiremore
or less maintenance, farm‐wide curtailment impact quantification and
DEL‐based anomaly detection. This future use of the current method‐
ology ought to be furthermore coupled with the improvement of the
actual methodology, namely through evolving into uncertainty quan‐
tification (with a special focus to epistemic uncertainty) and by testing
other architectures.
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