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Abstract 18 

Relativistic electrons in the radiation belts can be transported as a result of wave-particle 19 

interactions (WPI) with ultra-low frequency (ULF) waves. Such WPI are often assumed to be 20 

diffusive, parametric models for the radial diffusion coefficient often being used to assess the 21 

rates of radial transport. However, these WPI transition from initially coherent interactions to the 22 

diffusive regime over a finite time, this time depending on the ULF wave power spectral density, 23 

and local resonance conditions. Further, in the real system on the timescales of a single storm, 24 

interactions with finite discrete modes may be more realistic. Here, we use a particle-tracing 25 

model to simulate the dynamics of outer radiation belt electrons in the presence of a finite 26 

number of discrete frequency modes. We characterize the point of the onset of diffusion as a 27 

transition from separate discrete interactions in terms of wave parameters by using the “two-28 

thirds” overlap criterion (Lichtenberg & Lieberman, 1992), a comparison between the distance 29 

between, and the widths of, the electron’s primary resonant islands in phase space. Further, we 30 

find the particle decorrelation time in our model system with typical parameters to be on the 31 

timescale of hours, which only afterwards can the system be modeled by one-dimensional radial 32 

diffusion. Direct comparison of particle transport rates in our model with previous analytic 33 

diffusion coefficient formulations show good agreement at times beyond the decorrelation time. 34 

These results are critical for determining the time periods and conditions under which ULF wave 35 

radial diffusion theory can be applied. 36 

Plain Language Summary 37 

The dynamics of Earth’s outer Van Allen radiation belt electrons have up to now been 38 

almost exclusively modeled using statistical methods. However, such approaches may not be 39 

valid for all scenarios. In this work, we defined a criterion separating the regimes where the 40 

dynamics of the outer radiation belt electrons can and cannot be modeled statistically, and in 41 

particular using a model based around the concepts of diffusion where averaging over many 42 

individual interactions leads to an assessment for the overall behavior of a set, or ensemble, of 43 

electrons. We use a test particle-tracing model to assess the actual dynamics of particle 44 

ensembles when perturbed by a type of plasma waves with ultra-low frequency in space. We 45 

showed that there is a distinctive qualitative and quantitative difference between diffusive and 46 

the more coherent regimes and identified their point of transition. We further verified that once 47 

the system has evolved beyond our derived transition criteria it does indeed match the common 48 

statistical predictions, verifying the applicability of a diffusion model after that time. 49 

Significantly, however, at earlier times the more correlated system behaves differently and may 50 

be characterized by a much faster and coherent transport.  51 

1 Introduction 52 

Relativistic electrons in the outer belt can be transported and energized through the 53 

violation of the third adiabatic invariant under drift-resonant interactions with ultra-low 54 

frequency (ULF) plasma waves (e.g., Fälthammar, 1965, 1968; Elkington et al., 1999). The 55 

storm time enhancements in the flux of these relativistic particles are able to damage the 56 

electronics onboard spacecraft passing through the outer radiation belt region, causing costly 57 

interruptions in the operations of these satellites, and in the worst-case, total loss (e.g., Baker, 58 

2000). By developing accurate radiation belt models to forecast these flux enhancements, and/or 59 

to define worst case radiation environments, many of the impacts of these particles on spacecraft 60 
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operations might be able to be mitigated (Horne et al., 2013; Reeves et al., 2012; Subbotin et al., 61 

2009; Beutier & Boscher, 1995). 62 

Charged particle interactions with a single ULF wave mode can produce signatures of a 63 

coherent resonant process, which transitions towards the diffusive paradigm as the wave 64 

frequency spectra become increasingly broadband (e.g., Fälthammar, 1965, 1968; Birmingham et 65 

al., 1967; Elkington et al., 1999, 2003; Degeling et al., 2008, 2011). While historically the 66 

transport of electrons through interaction with ULF waves is often modeled using the Fokker-67 

Planck equation under the assumption of diffusive dynamics caused by broadband 68 

electromagnetic field perturbations (e.g., Davis Jr & Chang, 1962; Schulz & Lanzerotti, 1974), in 69 

the real system on the timescales of particle transport during a single storm, interactions with a 70 

limited number of discrete modes may be more realistic. This paper attempts to characterize the 71 

onset of diffusive behavior by examining the response of the particle ensemble to discrete 72 

frequency ULF wave perturbations in a dipole model for the Earth’s magnetosphere. Our goal is 73 

to establish the conditions for the transition from coherent to diffusive dynamics, and to thereby 74 

also determine when these statistical, and specifically diffusive, methods can be properly 75 

applied.  76 

Radial diffusion theory first developed by Kellogg (1959), Parker (1960), and 77 

Fälthammar (1965, 1968) provided a macro-scale description of radiation belt particle transport 78 

and energization mechanisms. A number of major assumptions are required to develop the 79 

theory. As a result, disputes occurred arguing the validity of radial diffusion theory, and whether 80 

it is applicable to the radiation belt environment. For example, Riley & Wolf (1992) showed only 81 

moderate correlation between test-particle simulations and radial diffusion theory, while 82 

Ukhorskiy et al. (2006) argued that the theory itself could be ill-posed as the fundamental 83 

physical process is not diffusion. Presently, the mechanisms of radiation belt particle transport 84 

and energization are not completely understood, and a number of efforts have been made to unify 85 

the test-particle results, radial diffusion theories, simulation results, and observational data. In the 86 

work presented here, we return to the question of reconciling results from the single particle 87 

tracing and radial diffusion paradigms. 88 

Important work on particle-tracing models and transport mechanisms completed by 89 

Elkington et al. (1999, 2003) studied the effects on particle ensembles when they resonate with 90 

discrete frequency ULF waves. With reference to the Chirikov resonance overlap criterion 91 

(Chirikov, 1979), and the “two-thirds” resonance overlap rule (Lichtenberg & Lieberman, 1992), 92 

which must be satisfied in order for a resonant dynamical system to transition to show diffusive 93 

behavior, Elkington et al. demonstrated that their simulated ensemble of test particles exhibited 94 

behavior that closely matched estimates of the radial transport rates derived from radial diffusion 95 

theory. We expand on their work by closely examining this stochastic transition as the “two-96 

thirds” overlap rule is satisfied for multiple mode ULF wave-particle interactions in a single-97 

particle tracing model. Specifically, we show that in order to demonstrate diffusive behavior, the 98 

system has to evolve for a sufficiently long timescale for it to go from a correlated to a 99 

decorrelated state (Lichtenberg & Lieberman, 1992). Degeling et al. (2011) found in his test-100 

particle models that the typical correlation decay time is on the order of 10-15 wave periods, 101 

which is comparable to the length of the wavetrains for ULF waves observed in geospace. We 102 

further investigate this phase decorrelation process in conjunction with multiple wave modes 103 

separated in frequency and the “two-thirds” resonance island overlap criterion and derive an 104 

analytic criterion for the timescale for this transition from coherent to diffusive behavior. 105 
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Specifically, we trace particles in a wave model which comprises a number of discrete frequency 106 

ULF modes, and whose frequency separation can be used to assess this transition. Our model is 107 

designed to allow investigation of the combined effects of mode frequency spacing, wave 108 

amplitude, and the importance of the particle decorrelation time. We further analyze the wave-109 

particle dynamics using an analogue dynamical system model, and estimate the time required for 110 

the particle ensemble to become decorrelated. Overall, we show how these criteria correctly 111 

estimate the point of the transition to stochastic behavior and further show therefore how it 112 

defines the timescale only beyond which radial diffusion models can be appropriately applied to 113 

ULF wave-particle interactions in the radiation belts. 114 

2 Model 115 

We take the approach of using a single particle-tracing method to track the guiding center 116 

position of individual electrons in a given ensemble for a period of time 𝑡. We adopt a symmetric 117 

dipole background magnetic field and model the effects of multiple discrete frequency ULF 118 

disturbances on the ensemble electron dynamics. To simplify the approach, we use a 2-119 

dimensional particle-tracing model and focus on equatorial particle dynamics. The ULF waves 120 

are modeled as Alfvénic disturbances, which are further assumed to be fundamental field-aligned 121 

modes, locally standing field line resonances. Finally, we use this model to simulate ensemble 122 

particle dynamics, and compare the results to empirical criteria to be defined in Sections 4 and 5, 123 

which indicates the separation between the initial epoch of coherent behavior, and the later 124 

stochastic and diffusive dynamical behavior.  125 

2.1 Particle Tracing Model 126 

For a single charged particle, the first order guiding center drift equations in spherical 127 

coordinates were originally derived by Northrop (1963), and can be simplified for equatorial 128 

particles to (Degeling et al., 2008): 129 

𝐿̇ =
𝐸𝜙

𝐵𝑅𝐸
−

𝜇

𝑞𝛾𝐿𝐵𝑅𝐸
2

𝜕𝐵

𝜕𝜙
, #(1)  

𝜙̇ = −
𝐸𝑟
𝐿𝑅𝐸𝐵

+
𝜇

𝑞𝛾𝐿𝐵𝑅𝐸
2

𝜕𝐵

𝜕𝐿
. #(2)  

Here, 𝐸𝑟 and 𝐸𝜙 are the radial and azimuthal components of the wave electric field respectively. 130 

Further, 𝐵 is the local scalar magnetic field strength, 𝜇 is the particle’s first adiabatic invariant, 𝑞 131 

is its electric charge, and 𝛾 is the relativistic Lorentz factor. 𝐿 is the L-shell parameter describing 132 

a particular set of planetary magnetic field lines (McIlwain, 1961). The first adiabatic invariant 133 

for an electron is defined as 134 

𝜇 =
𝑝⊥
2

2𝑚𝑒𝐵
 , #(3)  

where 𝑝⊥, is the electron’s momentum perpendicular to the background magnetic field and 𝑚𝑒 is 135 

the electron mass. For ULF wave interactions, 𝜇 is assumed to be conserved since the 136 

characteristic time of the field variations are slow compared to the gyration period of the particle 137 

(e.g., Schulz & Lanzerotti, 1974; Ukhorskiy & Sitnov, 2012). 138 

The Lorentz factor for electrons in the equatorial plane can be expressed as 139 
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𝛾(𝐵) = √
2𝜇𝐵

𝑚𝑒𝑐
2
+ 1, #(4)  

where 𝑐 is the speed of light in a vacuum. A 4
th

-order Runge-Kutta routine is used to integrate 140 

equations (1) and (2) to obtain the electron’s guiding center motion in the equatorial plane. While 141 

an asymmetric field model may be more representative of reality, we argue that the underlying 142 

physics of a transition from a regular to stochastic regime will be similar in view of the “two-143 

thirds” overlap criterion. We therefore adopt an axisymmetric dipole for simplicity, and for ease 144 

of deriving the structure of the equatorial electric fields of the ULF waves. The axisymmetric 145 

scalar magnetic field strength is then given by  146 

𝐵(𝐿) =
𝐵0
𝐿3
, #(5)  

where 𝐵0 is the magnetic field measured on Earth’s equatorial surface, 31.2 𝜇T. 147 

2.2 ULF Wave Model 148 

In this work, we analyze the particle ensemble characteristics under the effects of 149 

Alfvénic ULF wave disturbances. We choose an MHD Alfvén wave field corresponding to an 150 

isolated field-aligned standing field line resonance (which does not compress the plasma, such 151 

that the parallel magnetic field perturbation is zero) and which satisfies the condition ∇ × 𝑬 = 0. 152 

We only consider particle motion in the equatorial plane; we consider fundamental field-aligned 153 

modes, such that this mode only has perpendicular electric field perturbations in the equatorial 154 

plane, with a node in the perpendicular magnetic components. Further, this narrows our study to 155 

only one diffusion mechanism due to electric wave perturbations.  156 

Here, we implement ULF modes with a finite width envelope in 𝐿, with a Gaussian 157 

amplitude profile centered on a given 𝐿0, with a half-width 𝜎. Further, a constant phase off-set, 158 

Φ0, is assigned to each individual frequency mode, where this phase off-set is randomly 159 

determined at the initial time between 0 and 2𝜋. Additionally, a constraint is imposed on the 160 

ULF waves dictating that the wave phase must not maintain total coherence and a constancy of 161 

phase across multiple 𝐿s, consistent for example with either phase lags from the propagation of 162 

an assumed driver across 𝐿, or due to the 𝐿-dependent phase which develops in driven field line 163 

resonance solutions (e.g., Southwood, 1974). A valid ansatz is to implement this 𝐿-dependent 164 

phase advance by inserting a 2𝜋𝐿/𝜁 phase factor, where 𝜁 characterizes the rate of change of 165 

oscillation phase in relation to 𝐿. Under these constraints, the radial electric field can be derived 166 

from an assumed analytic form of the azimuthal electric field in accordance with ∇ × 𝑬 = 0. We 167 

further assume azimuthally propagating modes, with an azimuthal phase speed defined by the 168 

ratio of the wave angular frequency, 𝜔, and the azimuthal wavenumber, 𝑚, such that:  169 

 170 

𝐸0(𝐿) = 𝐴 exp [−
(𝐿 − 𝐿0)

2

2𝜎2
] , #(6)  

Δ(𝐿) = tan−1 [
𝜁

2𝜋𝜎2
𝐿(𝐿 − 𝐿0) − 𝜎

2

𝐿
] , #(7)  
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𝐸𝑟 =
𝐸0(𝐿)

𝑚
√(
2𝜋

𝜁
𝐿)

2

+ (𝐿
𝐿 − 𝐿0
𝜎2

− 1)
2

cos [𝑚𝜙 − 𝜔𝑡 + Φ0 +
2𝜋

𝜁
𝐿 + Δ(𝐿)] , #(8)  

𝐸𝜙 = 𝐸0(𝐿) cos [𝑚𝜙 − 𝜔𝑡 + Φ0 +
2𝜋

𝜁
𝐿] , #(9)  

where 𝐸0(𝐿) is the Gaussian amplitude profile, 𝜎 is the Gaussian half width, Δ(𝐿) an additional 171 

𝐿-dependent phase factor resulting from the ∇ × 𝑬 = 0 condition, and 𝐴 is the amplitude 172 

measured at the peak of the Gaussian profile (at 𝐿 = 𝐿0). The azimuthal wavenumber of the ULF 173 

wave, 𝑚, such that positive values correspond to the wave propagating eastwards (e.g., 174 

Southwood et al., 1969). 175 

Equations (8) and (9), in combination, give rise to one discrete frequency mode, 𝑬(𝜔) =176 

𝐸𝑟𝒓̂ + 𝐸𝜙𝝓̂, with components pointing in the radial and azimuthal directions respectively. 177 

Numerous discrete frequency modes are created through the superposition of individual modes. 178 

The model varies 𝐿0, 𝜔, and Φ0 between individual modes, while 𝜎, 𝑚, and 𝜁 are kept constant. 179 

The values of these constants are chosen to be 𝜎 = 0.5, 𝑚 = 20, and 𝜁 = 1, where the value of 180 

𝜁 = 1 dictates that the phase advances at a rate of 2𝜋 per unit 𝐿.  181 

Notably, while 𝜁 does play a role in the effective amplitude of 𝐸𝑟, it does not affect the 182 

net rate of radial transport of the particles. This is because, the rate of change of energy, 𝑑𝑊 𝑑𝑡⁄ , 183 

of a charged particle due to a wave electric field, 𝑬, is given by 184 

𝑑𝑊

𝑑𝑡
= 𝑞𝑬 ⋅ 𝒗𝒅 = 𝑞𝑬𝝓 ⋅ 𝒗𝑮𝑪, 

where 𝒗𝒅 is the particle’s first-order drift velocity vector and 𝒗𝑮𝑪 is the particle’s drift velocity 185 

due to gradient-curvature drift, see equations (1) and (2). Note that for equatorially mirroring 186 

particle trajectories in the equatorial plane, only the gradient drift is active. Moreover, we assume 187 

that there is no background convection electric field. Since 𝑬 ⋅ (𝑬 × 𝑩) is trivially zero, the 188 

particle’s E-cross-B drift will not in any case contribute to the particle’s change in energy. 189 

Consequently, 𝐸𝑟 does not directly affect the particle’s rate of change of energy in the 190 

axisymmetric dipole background magnetic field. For these highly relativistic electrons, the 191 

gradient drift speed is much larger than the E-cross-B speed, such that any resonance island 192 

distortion effects arising from 𝐸𝑟 (e.g., Degeling et al., 2019) are also negligible. This was 193 

further confirmed in simulation, and as a partial test of the particle trajectory integration code 194 

(not shown).  195 

3 Results: ULF Wave-Particle Interactions 196 

In order to examine the characteristics of the ULF wave-particle interactions, we examine 197 

the dynamics of an initial distribution of particles with the same first adiabatic invariant under 198 

the action of the wave electric field. For equatorial charged particles in an axisymmetric 199 

background dipole magnetic field, the drift resonance condition can be expressed as 200 

𝜔 = 𝑚𝜔𝑑 , #(10)  

where 𝜔𝑑 is the particle’s angular drift frequency, with positive chosen to be eastwards by 201 

convention (e.g., Southwood et al., 1969). Equation (10) is used to determine the electron’s 202 



manuscript submitted to JGR: Space Physics 

 

resonant energy, which by equation (3) gives the electron’s resonant location in 𝐿, required for a 203 

given ULF wave mode with angular frequency 𝜔, and wavenumber 𝑚. 204 

 205 
Figure 1. Stroboscopic Poincaré map demonstrating equatorial drift-resonant interactions 206 

between electrons and a single ULF mode on the equatorial plane. Panel (a) demonstrates both 207 

the resonant and non-resonant electrons interacting with the oscillation mode in 𝐿 and panel (b) 208 

shows the same interaction in terms of electron kinetic energy. The red dot represents the center 209 

of the resonant island where the particle’s 𝐿 or energy satisfies equation (10), and the blue 210 

contour corresponds to the phase space separatrix.  211 

Both drift resonant and non-drift resonant wave-particle interactions can be visualized on 212 

a Poincaré map. Figure 1 shows a Poincaré map for the interaction of a single ULF wave mode, 213 

with a frequency of 39 mHz, and 𝑚 = 20, and a collection of 160 electrons which are initially 214 

evenly distributed between 𝐿 = 4.9 and 𝐿 = 6.5, and in azimuth. Resonant particles move 215 

around in phase space in response to the wave electric field, producing a closed (bound) orbit of 216 

the libration type. On the other hand, the non-resonant particles do not exhibit such behavior and 217 
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form unbounded trajectories in phase space of the rotation type (e.g, Goldstein et al., 2002). The 218 

separatrix determines the boundary separating these two types of behavior as shown by the blue 219 

contour in Figure 1. Figure 1 is a special case of a Poincaré map, known as a stroboscopic map 220 

(Lichtenberg & Lieberman, 1992). In a stroboscopic map such as that shown in Figure 1, each 221 

point is plotted at specific increments in time which are a constant fraction of the wave 222 

oscillation period corresponding to a wave phase increment of 2𝜋. This can be compared to the 223 

standard plot of trajectories in the frame moving with the wave, where locations in phase space 224 

can be plotted at arbitrary time intervals (see e.g., Figure 10 of Loto'Aniu, et al., 2006).  225 

The collection of bound orbits produced by a resonant wave-particle interaction is often 226 

referred to as a resonant island (see e.g., Lichtenberg & Lieberman, 1992; Elkington et al., 227 

2003). The widths of these islands are determined by the local amplitudes of the wave, and larger 228 

amplitudes correspond to an increase in the trapping width of particles in 𝐿 (and also in energy). 229 

The center of these resonant islands is governed by the resonance condition where equation (10) 230 

is satisfied. The resonant island center for each individual wave mode is used in determining 231 

their respective 𝐿0 in equations (6), (7), and (9) to maximize the resonant wave-particle 232 

interactions. In our simulations, all the electron dynamics are examined at 𝜇 = 2000 MeV/G, 233 

which corresponds to 1 to 4.5 MeV electrons between 𝐿 = 7 and 𝐿 = 3. 234 
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 235 
Figure 2. A series of stroboscopic Poincaré map demonstrating the effects of increasing wave 236 

amplitude on a system of two resonant modes, 𝑓 = 39 mHz, and 𝑓 = 45 mHz. Panels (a) and (b) 237 

corresponds to a wave amplitude of 𝐴 = 0.3 mV/m for both resonant modes, producing largely 238 

coherent wave-particle interactions. Panels (c) and (d) are subjected to a wave amplitude of 239 

𝐴 = 1.3 mV/m for both modes and are beginning their transition to diffusion through the 240 

creation of various higher order resonant islands. Lastly, panels (e) and (f) are under the effects 241 

of two resonant modes both with amplitudes 𝐴 = 4.3 mV/m. See text for details.  242 

An important consideration for the transition from coherent to diffusive dynamics is the 243 

separation and potential overlap of the resonant islands in phase space, for example through the 244 

‘two-thirds’ overlap criteria. The advantage of using a stroboscopic map is that it allows for the 245 

visualization of coherent wave-particle interactions in the presence of numerous wave modes 246 

with different discrete frequencies. When multiple resonance conditions are satisfied for an 247 
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ensemble of particles of the same 𝜇 = 2000 MeV/G, one can examine the transition to stochastic 248 

particle transport, which can be characterized as a diffusive process, as a function of the wave 249 

magnitude. Figure 2 demonstrates the particle resonance structures in phase space in response to 250 

two ULF electric field wave modes with frequencies 39 and 45 mHz, with 𝑚 = 20, as a function 251 

of amplitude. Figure 2a and 2b shows well-defined structures which are indicative of two 252 

separate coherent resonant island interactions when 𝐴 = 0.3 mV/m. However, with increasing 253 

electric field amplitude, the primary resonant islands grow in size, causing the birth of secondary 254 

resonant islands, and distortions along the edges of the previously well-defined single resonance 255 

island phase space orbits (cf. Figure 2c and 2d). Furthermore, a stochastic sea forms in the 256 

regions between the primary and secondary islands as the wave amplitudes are increased further 257 

(cf. Figure 2e and 2f). This interference between the adjacent wave mode frequencies is what 258 

causes the transition from a coherent interaction of individual resonant islands, into behavior 259 

indicative of a transition to, or the onset of, diffusion within the system.  260 

4 Defining an Analytic Condition for the Transition to Radial Diffusion 261 

As shown in Section 3, when the wave amplitude is sufficiently large, the phase space of 262 

the electron dynamics transition from being coherent to largely stochastic, a diffusive region in 263 

the phase space being created as a result of the interactions between formerly distinct resonance 264 

islands. In general, there exists a region of stochastic behavior for any near-integrable systems 265 

(integrable systems with small perturbations), and which is most often located exterior to the 266 

primary resonant islands. This region is highly sensitive to initial conditions and grows in size 267 

with increasing perturbation amplitude as shown in Lichtenberg & Lieberman (1992). Once this 268 

stochastic region dominates the phase space of the dynamical system, the system is considered to 269 

have transitioned into global stochasticity. Here, we propose to define an analytic condition 270 

which corresponds to a physical realization of this transition, and which is defined in terms of the 271 

primary resonant island widths and their spatial separations in phase space. In order to define this 272 

transition point, we adopt the “two-thirds” overlap rule commonly referenced in statistical theory 273 

(e.g., Lichtenberg & Lieberman, 1992) such that: 274 

𝜅𝑖𝑗 =
𝛿𝐿𝑖 + 𝛿𝐿𝑗

|𝐿0𝑖 − 𝐿0𝑗|
≥
2

3
, #(11)  

where 𝐿0𝑖 and 𝐿0𝑗 are the center locations of the two primary islands of interest. Further, 𝛿𝐿𝑖 and 275 

𝛿𝐿𝑗 are their respective resonance island half-widths as measured independently and assuming 276 

no influence from the other. These quantities are used to calculate 𝜅𝑖𝑗 which is our transition 277 

criterion, where above the threshold, 𝜅𝑖𝑗 ≈ 2/3, the system transitions into global stochasticity (in 278 

our case radial diffusion) resulting from the merging of adjacent resonant islands. This criterion 279 

only governs the region between the 𝑖-th and 𝑗-th resonant frequencies and the term “global” 280 

refers to the region of 𝐿 between the resonant island centers corresponding to these two resonant 281 

frequencies.  282 

In the example shown in Figure 2, which demonstrates this transition to global 283 

stochasticity, it is clearly seen that further increases of wave amplitude beyond the onset of 284 

diffusion lead to further growth of the size of the stochastic region. At the same time, the size of 285 

the remnant primary resonant islands shrinks. Because the shrinking islands will continue to trap 286 

particles, producing periodic particle motion rather than diffusive transport, this ultimately 287 

causes the particle ensemble behavior to deviate away from that of ideal one-dimensional 288 
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diffusion. The effects of these long-lasting and vestigial islands can be reduced by implementing 289 

additional oscillation modes, introducing more scattering into the dynamical system, or by 290 

further increases in wave amplitudes. This is because, while the independently measured island 291 

half-width increases with perturbation strength, the half-width of an island under interference 292 

contrarily decreases as the system becomes progressively more stochastic (compare, for 293 

example, Figure 2c with 2e). 294 

The primary resonant island for a given resonant wave mode is centered in 𝐿 where the 295 

drift resonance condition is satisfied. This location can be determined by implicitly solving 296 

equation (2) under the constraint of equation (10). Approximately, the solution can be explicitly 297 

expressed as 298 

𝐿0(𝜔) ≈ Λ
1 3⁄ [(1 + √1 + 𝜂𝜔6)

1 3⁄

+ (1 − √1 + 𝜂𝜔6)
1 3⁄

] , #(12)  

where     Λ =
𝜇𝐵0
𝑚𝑒𝑐

2
 , and         𝜂 =

26

39
(
𝐵0𝑅𝐸

3

𝑚𝑒𝑐
2
)

4
𝑞6

𝑚6𝜇2
 , 

where the constants Λ, and 𝜂 are used to bring equation (12) into a condensed form. Equation 299 

(12) is derived utilizing an approximation that equation (4) can be described accurately by its 300 

first order Taylor expansion for relativistic electrons and its full derivation can be found in 301 

Appendix A. Furthermore, the independent resonant island half-width can also be approximated 302 

under the same condition as used to derive equation (12), which also assumes the effect of 303 

gradient drift to dominate E-cross-B drift in the particle’s azimuthal motion, and the additional 304 

requirements that the perturbation strength is assumed to be small and constant across the 305 

domain of the resonant island. Given that 𝐿0 ≫ 𝛿𝐿 and following a similar derivation found in 306 

Degeling et al. (2007), the independent resonant island half-width can be explicitly expressed as: 307 

𝛿𝐿 ≈ √Γ𝐸0(𝐿0)
𝐿0
4.5

1 + 𝑄𝐿0
3 , #(13)  

where    Γ = √
32𝑞2𝑅𝐸

2

9𝐵0𝜇𝑚𝑒𝑐
2𝑚2

,        and        𝑄 =
5𝑚𝑒𝑐

2

4𝜇𝐵0
 , 

where again, the constants Γ and 𝑄 are used to bring equation (13) to a more condensed form. 308 

The full derivation can be found in Appendix B. 309 

The advantage of equations (12) and (13) is that they allow us to express our transition 310 

criterion in terms of only wave properties, such that the criteria 𝜅𝑖𝑗 = 𝜅𝑖𝑗(𝐸0, 𝜔). By knowing 311 

various wave properties such as wave amplitude, frequency, azimuthal wavenumber, and storm 312 

time region, we can infer whether a group of electrons with specific values of 𝜇 are expected to 313 

demonstrate dynamical behavior which can be characterized as radial diffusion. The regions 314 

where the resulting radial diffusion occurs depends on the domain where equation (11) is 315 

satisfied. As an example, for 3 resonant wave modes assigned 𝑖, 𝑗, and 𝑘, and where the primary 316 

resonance island of 𝑗 is situated between those of 𝑖 and 𝑘, if the criteria for 𝜅𝑖𝑗 and 𝜅𝑗𝑘 being 317 

greater than 2/3 are both satisfied, only then can a particle be diffusively transported through the 318 

entire region from 𝐿0(𝜔𝑖) to 𝐿0(𝜔𝑘). Otherwise, if the criterion is satisfied for only one pair of 319 

the two quantities, then particle transport will be limited to, and only occur in regions between, 320 
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the pair of resonant modes that satisfies equation (11). Therefore, the resonant island overlap 321 

quantity 𝜅𝑖𝑗 must not be less than 2/3 between each adjacent wave frequency pair for the electron 322 

dynamics to become diffusive throughout the entire domain where the waves are present. 323 

Furthermore, this can be generalized to a system with an arbitrary number of discrete wave 324 

frequencies, 𝑁, where the two-thirds overlap criterion for each adjacent wave pair can be 325 

computed. 326 

This approach is illustrated in Figure 3. For example, in Figure 3a, the value of 𝜅𝑖𝑗 is 327 

calculated for a system of 𝑁 = 19 wave modes, and which span a frequency range from 37.5 328 

mHz to 46.5 mHz, with a frequency spacing, 𝛥𝑓 =  0.5 mHz. The value of  𝜅𝑖𝑗 is only 329 

calculated for pairs of neighboring frequencies, 𝐿 is determined to be the average between the 330 

pair of resonant island locations, 𝐿0𝑖 and 𝐿0𝑗 Panel (b) illustrates the minimum amplitude 331 

required in order to satisfy the two-thirds overlap criterion in equation (11) as a function of the 332 

frequency separation of adjacent modes, Δ𝑓. 333 

 334 
Figure 3.  (a) Solutions for 𝜅𝑖𝑗 for a system of 19 discrete frequency wave modes all with 335 

amplitude 𝐴 =  0.043 mV/m. (b) Shows the minimum wave amplitude needed to satisfy 336 

equation (11) as the frequency spacing and amplitude is varied, for only a pair of wave modes 337 

where the average of the 2 electron resonant island centers is located at 𝐿 = 5.  The background 338 

color indicates where 𝜅𝑖𝑗 is above (green) or below (red) the criteria of 2/3. See text for details.  339 

Specifically, Figure 3b shows this criterion for two wave modes situated near 𝐿 ≈ 5. 340 

Demonstrated by Figure 2 and 5b, the wave power and the proximity of adjacent mode 341 

frequencies plays a key role for the onset of diffusion, and for the ability of the perturbing waves 342 

to create diffusive transport in these wave-particle interaction systems. This result agrees with 343 

analyses which assess dynamics on terms of the wave perturbations’ power spectral density 344 

(PSD), present in most analytical radial diffusion theories (see e.g., Fälthammar, 1968; Fei et al., 345 

2006; Lejosne, 2019), due to its ability to capture both the wave amplitude and frequency 346 

separation information of the perturbations. 347 
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5 Characteristics of the Transition to Radial Diffusion: Analytical and Numerical 348 

Assessments 349 

In this section we use numerical and analytical approaches to calculate the radial 350 

diffusion coefficients for our wave-particle interaction system. We now examine a system 351 

containing 19 discrete frequency modes to demonstrate the general applicability of the two-thirds 352 

overlap criterion. The radial diffusion coefficients can be characterized by the average ensemble 353 

deviation of the electrons from their initial starting position over a time scale 𝜏 (e.g., Elkington et 354 

al., 2003; Lejosne, 2019), 355 

𝐷𝐿𝐿 ≡
〈Δ𝐿2〉 

2𝜏
, #(14)  

where 𝐷𝐿𝐿 is the radial diffusion coefficient, and 〈Δ𝐿2〉 is the square of the particles’ deviation 356 

from their initial position averaged over the entire ensemble.  357 

As mentioned previously in Section 4, diffusive stochastic behavior can arise from the 358 

interference between only two primary resonant islands (cf. Figure 2). However, in this case the 359 

diffusion only occurs in limited regions of phase space near and between the primary resonance 360 

islands. Further, even following the transition to diffusion electrons trapped close to the remnant 361 

resonant islands radially oscillate about the center of the resonant island and therefore undergo 362 

no net radial transport. As compared to a system where particles are able to freely diffuse over all 363 

regions of phase space, the remnant resonant islands within our model can be expected to impede 364 

the overall growth of 〈Δ𝐿2〉 in time. Because the radial diffusive transport of the particles takes 365 

place only near the vicinity of overlapping resonant islands, there must exist a transport 366 

boundary where no resonant islands are situated on the exterior. Hence, for a narrow band of 367 

discrete frequency waves, the particle transport is confined within the resonant region where the 368 

boundary is determined by the locations of the islands corresponding to the outermost resonant 369 

frequencies.  370 

The domain of our numerical simulation is chosen to range from 𝐿 = 4 to 𝐿 = 6, and 371 

particles drifting beyond this region are removed from the simulation. This narrow domain 372 

allows for the study of local 𝐷𝐿𝐿 characteristics, and in what follows we examine the dynamics at 373 

the center of the domain at 𝐿 ≈ 5. For ULF waves with 𝑚 = 20 to be resonant with 𝜇 = 2000 374 

MeV/G electrons in our domain, equation (10) dictates ULF waves spanning frequencies from 375 

37.5 to 46.5 mHz. A finite number of ULF wave modes with discrete frequencies spanning this 376 

frequency range are chosen, with a narrowly spaced Δ𝑓 = 0.5 mHz corresponding to 𝑁 = 19 377 

discrete modes with a comb-like frequency spectrum. The close frequency separation in 378 

combination with the wide Gaussian wave amplitude width, 𝜎 = 0.5, allows for an 379 

approximately locally constant wave PSD of 𝑃 = 𝐴2/2Δ𝑓 (Elkington et al., 2003). Furthermore, 380 

the PSD can be equally estimated through Fourier methods (see e.g., Welch, 1967), where both 381 

methods have been confirmed to yield very similar results (not shown). Finally, 7200 particles 382 

are distributed randomly in azimuth along a constant ring at 𝐿 = 5, where they are allowed to 383 

interact freely with the prescribed wave field and the time evolution of their positions are 384 

recorded. Since the initial wave phase of each mode, and each particle’s azimuthal position, are 385 

both randomized, several runs of different initial randomizations are averaged to produce final 386 

results where we can be confident that any artifacts that arose from the initial conditions have 387 

been averaged out. 388 
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A system starting in an initial state of order can transition into a disorderly state through 389 

these multiple resonant wave-particle interactions. Under the right conditions, the motion of the 390 

particles in the disordered state can behave stochastically, similar to that for Brownian motion 391 

due to collisions, and their long-term evolution therefore described by statistical methods. 392 

However, unlike these collisional gaseous systems, here the particle interactions are collisionless 393 

with the resonant wave-particle interactions with multiple ULF waves providing the basis 394 

through which the particles within the ensemble interact in a way analogous to random 395 

collisions. This suggests that a disorderly transition requires the existence of a non-negligible 396 

correlation decay time 𝜏𝑐 (CDT) such that only after 𝜏𝑐 can the system behave stochastically.  397 

This suggests that the particles start their dynamics in a correlated state, and through ULF wave-398 

drift resonant interactions, they would initially undergo phase mixing as the particles respond to 399 

the perturbing wave fields. In the case of a kick rotator, the CDT can be estimated by (e.g., 400 

Zaslavsky, 2002; Ukhorskiy & Sitnov, 2012): 401 

𝑇 =
1

Δ𝑓
, #(15)  

𝜏𝑐 =
2𝑇

ln𝐾
, #(16)  

where 𝑇 defines the time interval of these “collisions” experienced through resonant wave-402 

particle interactions, and 𝐾 is a characteristic non-linearity factor of the system. Equation (16) is 403 

valid given that 𝐾 is sufficiently large (𝐾 ≫ 1). The non-linearity factor 𝐾, is often referenced in 404 

statistical theory and is directly related to the phase space structures found in the dynamics such 405 

as those shown in Figure 2 (see e.g., Chirikov, 1979; Lichtenberg & Lieberman, 1992; 406 

Zaslavsky, 2002). Ukhorskiy & Sitnov (2012) proposes that for similar alternative systems, the 407 

CDT, 𝜏𝑐, should still follow the same functional dependence of equations (15) and (16). We 408 

hypothesize that, for our model, the characteristic “collision” time 𝑇 should still be inversely 409 

proportional to the wave mode frequency spacing, and the non-linearity parameter 𝐾 should 410 

scale with wave amplitude and frequency spacing. Hence, an ansatz is formed of similar form to 411 

equations (15) and (16) containing two proportionality constants, 𝑝1 and 𝑝2: 412 

𝑇 =
𝑝1
Δ𝑓
, #(17)

𝐾 = 𝑝2
𝐴

Δ𝑓2
, #(18)

𝜏𝑐 =
2𝑝1

Δ𝑓 ln (
𝑝2𝐴
Δ𝑓2

)
, #(19)

 

where 𝑝1 and 𝑝2 are determined via best-fit in our model. The derivation of proportionality for 𝐾 413 

in a dynamical system of resonant ULF wave-particle interactions relativistic electrons follows a 414 

similar approach to that in Ukhorskiy & Sitnov (2012) and is detailed in Appendix C. Equation 415 

(19) serves as an important ansatz which can be tested in our simulations to verify its ability to 416 

correctly predict the CDT in our model.  417 

In our model, in the early time period of the wave-particle interactions, the particles are 418 

rapidly dispersed away from their initial position due to the sudden turn-on of the electric field 419 

perturbations. After a period, 𝜏𝑐, the particles have been appropriately phase-mixed such they 420 
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then exhibit the behaviors of a stochastic system characterized by a diffusion coefficient, given 421 

by equation (14), which approaches a constant value (Lichtenberg & Lieberman,1992; Degeling 422 

et al., 2007, 2011). Text and Figure S1 of Supporting Information demonstrates that the onset of 423 

global particle transport is independent of the rate at which the electric field perturbation grows 424 

from 0 mV/m, and within the stochastic regime, particle transport rates are unaffected. However, 425 

the CDT is amplitude dependent. Therefore, in this work, we restrict our study of the CDT to the 426 

case where the electric field is instantaneously turned-on, and the amplitude (𝐴) remains constant 427 

throughout the duration of each simulation.   428 
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 429 

Figure 4. (a) Ensemble 〈𝛥𝐿2〉 as a function of time. Here, a system of 7200 electrons is 430 

simulated for 40 hours; 19 discrete ULF wave modes are evenly spaced in frequency from 37.5 431 

to 46.5 mHz, each mode with a constant amplitude 𝐴 = 0.1 mV/m. The intersection of the two 432 

linear lines fitted onto the initial and later times is what we hypothesize to be the basis for 433 

estimated the CDT, 𝜏𝑐.  (b) and (c) Estimates of the derived 𝜏𝑐  as a function of 𝐴 (with constant 434 

𝛥𝑓 = 0.5 mHz) and 𝛥𝑓 (with constant 𝐴 = 0.1 𝑚𝑉/𝑚), respectively. For the simulations in 435 

panel (c) the same fixed overall frequency range is evenly divided with 14 to 25 modes, each run 436 

therefore being spaced with different 𝛥𝑓. The right region of panel (b) follows the predicted 437 

trend of equation (19) while the left region contains amplitudes that are unable to be resolved 438 
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within the 40 hours of the simulation time window and are therefore excluded from the fit. The 439 

resulting parameterization for the CDT, 𝜏𝑐 , arising from the ansatz and model in equations (19) is 440 

overplotted in panels (b) and (c). 441 

The characteristics of coherent and stochastic dynamical regimes, and the transition 442 

between them, are identifiable by examining the ensemble evolution of 〈Δ𝐿2〉. Figure 4a 443 

demonstrates a gradual transition between the initially coherent motion, which characterizes a 444 

faster rate of transport compared to radial diffusion (as it will become apparent in Section 6), and 445 

the complete stochasticity of the later phase dynamics. The initial rapid dispersion of the particle 446 

ensemble lies in stark contrast to the ensemble transport rates seen at later times. The initial 447 

dynamics are characterized by a larger slope in the ensemble 〈Δ𝐿2〉 as a function of time, and it is 448 

this distinction that will be used to estimate the CDT of our system using the results from 449 

numerical simulations. We hypothesize that the CDT can be estimated in the numerical 450 

simulations as lying in the vicinity of this transition between these two states. Further, we take 451 

the approach that the CDT can be estimated as the time of intersection between two 452 

approximately linear regimes defining the early coherent and latter stochastic regimes in plots of 453 

ensemble 〈Δ𝐿2〉 in time. This approach is illustrated in Figure 4a, and where lines fitted onto the 454 

early and later stages of evolution intersect to provide an estimate of the CDT of the system. 455 

Although this approach to estimating 𝜏𝑐 requires extrapolation into the transition region from the 456 

coherent (early) and stochastic (later) regimes, it provides an approach to quantify an estimate 457 

for CDT, and through which the ansatz for this dynamical system presented above can be 458 

assessed. For example, Figures 6b and 6c demonstrate that the 𝜏𝑐 estimated using this method 459 

does in fact follow the expected proportionality to 𝐴 and Δ𝑓 as predicted by equation (19). 460 

Therefore, for our intents and purposes, we consider 𝜏𝑐 derived in this way to represent a viable 461 

method for its estimation.  462 

 The range of simulation time intervals for the two linear fits used to calculate 𝜏𝑐 are in 463 

the range of 1 to 3 hours, and 25 to 40 hours, for the initial (correlated) and latter (diffusive) 464 

regions. The first hour of simulation time was excluded from the estimate of the initial 〈Δ𝐿2〉 465 

time evolution to allow for all particles to interact with all wave modes for the initial few wave 466 

periods. Also note that for most of the simulation runs, the transition to diffusion occurs well-467 

within 25 hours. This becomes important later in Figure 6 as it dictates the wave mode 468 

amplitudes needed in order to be able to observe the system transition into the diffusive regime 469 

in a 40-hour simulation.  470 

The numerical results shown in Figure 4b can be used to determine the values 𝑝1 and 𝑝2 471 

in equation (19). The results indicate values of approximately 11.11 and 8.45 × 10−3 m
1
 Hz

2 
V

-1
, 472 

for 𝑝1 and 𝑝2, respectively, for a model of 19 discrete frequency modes. This corresponds to 473 

𝜏𝑐 = 25 hours for a system with 19 modes each with a wave mode amplitude of 𝐴 = 49 μV m−1, 474 

and implies a value of 𝜏𝑐 < 25 hours for larger wave amplitudes. The values shown for 𝑝1 and 475 

𝑝2 in Figure 4c are not used further in the analysis presented here since we only consider systems 476 

with 19 wave modes.  477 
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 478 

Figure 5. 〈𝛥𝐿2/2〉 as a function of time, for a range of wave mode amplitudes 𝐴. This plot 479 

illustrates the fitting of the ensemble linear function of 〈𝛥𝐿2/2〉 as a function of time for a range 480 

of simulation runs and demonstrates the method for estimating the diffusion coefficient 𝐷𝐿𝐿 for a 481 

given wave amplitude 𝐴. The fitting region is determined by the CDT 𝜏𝑐, with the numerical 482 

results suggesting that 𝜏𝑐 ≤ 25 hours for 𝐴 ≥ 0.049 mV/m. 483 

 Finally, the radial diffusion coefficient which characterizes the later time stochastic 484 

evolution in our model is calculated through equation (14) by applying a linear fit on the later 485 

times of 〈Δ𝐿2〉 as a function of time, and where the slope corresponds directly to 2 × 𝐷𝐿𝐿 (see 486 

Figure 5). Furthermore, by simulating multiple simulation runs using different wave amplitudes, 487 

the 𝐷𝐿𝐿 can be parameterized in terms of 𝐴, and consequentially, wave PSD.  488 

6 Rates of Radial Diffusion: Results 489 

Here the results obtained from our wave-particle simulation model are tested against the 490 

analytical 𝐷𝐿𝐿 equation for electric field disturbances in a symmetric background dipole field 491 

defined by (e.g., Fei et a., 2006; Lejosne, 2019)): 492 

𝐷𝐿𝐿
𝐸 =

𝐿6

8𝑅𝐸
2𝐵𝐸𝑞

2 ∑𝑃𝑚
𝐸(𝑚𝜔𝑑)

𝑚

, #(20)  

where the summation over 𝑚 in 𝑃𝑚
𝐸 is used to take account of the wave electric field PSD at the 493 

drift resonance frequencies where wave angular frequency 𝜔 = 𝑚𝜔𝑑. Given our model only 494 

contains wave modes with a single value of 𝑚 = 20, the summation is reduced to only one 495 

azimuthal harmonic of the azimuthal electric field power spectral density given by 𝑃20
𝐸 . 496 
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 497 
Figure 6. 𝐷𝐿𝐿 as a function of PSD. Panel (a) The blue line shows 𝐷𝐿𝐿 as a function of wave 498 

PSD, derived from linear fits of 〈𝛥𝐿2〉 in time from 25 to 40 hours. The red shaded region 499 

represents the range of wave PSDs for which the dynamical system requires more than 25 hours 500 

to reach the CDT, 𝜏𝑐, therefore introducing errors into the 𝐷𝐿𝐿 estimates in that region. Panel (b) 501 

is identical to panel (a), except that the fits of 〈𝛥𝐿2〉 in time are taken from 18 to 33 hours. This 502 

increases the range of PSD magnitudes for which 𝜏𝑐 lies within this time interval, and where the 503 

fits can be expected to have errors, indicated by the expanded red shaded region of PSD where 504 

this occurs. In both panels the dashed orange line shows the results from the analytic expression 505 

for 𝐷𝐿𝐿 from equation (20) and calculated at 𝐿 = 5.158. This value of 𝐿 was chosen since our 506 

simulation domain spans from 𝐿 = 4 to 𝐿 = 6 with an average value 𝐿6 = 5.1586 (since 507 
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equation (20) is proportional to 𝐿6). Finally, the vertical dashed line shows the location of the 508 

transition to diffusive behavior based on the two-thirds overlap criteria satisfied by all adjacent 509 

resonance islands where the discrete frequency wave modes pairs are separated by 𝛥𝑓.  510 

Figure 6 shows the evolution of 𝐷𝐿𝐿 measured in our model by using fits of 〈𝛥𝐿2〉 as a 511 

function of time from simulation runs (blue curves) and parametrized in terms of wave PSD. By 512 

running simulations with a range of wave amplitudes, we are able to study the particle ensemble 513 

dynamics before and after the two-thirds criterion during a finite duration of simulation time. 514 

This criterion is picked at the lowest amplitude required for the entire simulation domain to 515 

satisfy equation (11), as shown in Figure 3a. As shown in both Figures 6a and 6b, the regions 516 

before and after the two-thirds criterion are satisfied demonstrate clear differences in the particle 517 

ensembles’ behavior. When in the former region and close to the origin, it is evident that the 518 

wave-particle dynamics are localized and produce very little net transport within the particle 519 

ensemble (𝐷𝐿𝐿 ≈ 0). However, as the PSDs approach the values required to exceed the two-520 

thirds overlap criterion, the sudden growth of 𝐷𝐿𝐿 is indicative of the onset of net particle 521 

transport in the entire system (see Figure S1 of Supporting Information). 522 

As the wave amplitude increases, the adjacent resonant islands begin to merge, and 523 

through the satisfaction of the two-thirds criterion for a set of discrete frequency modes with a 524 

spectrum of a comb of uniform spacing Δ𝑓, the entire resonant domain (with exception of very 525 

small regions of phase space near the center of the resonant islands) established by the frequency 526 

spectrum becomes accessible to the particles and where they can undergo stochastic, diffusive, 527 

transport.  Since the particles need to evolve beyond the CDT to become decorrelated, we can 528 

conclude that the wave-particle dynamics can only become stochastic on timescales 𝑡 >529 

𝜏𝑐(𝐴, Δ𝑓).  However, it is also important to note that these small remnant and persisting resonant 530 

islands prevent the entire phase space from behaving diffusively. Hence the overall rates of 531 

diffusive particle transport induced through resonant wave-particle interaction of the entire 532 

ensemble within our simulations should be slightly less than the rates of 𝐷𝐿𝐿
𝐸  predicted by 533 

analytic radial diffusion theory such as that shown in equation (20). In both Figure 6a and 6b, 534 

where the 𝐷𝐿𝐿 is calculated over the entire ensemble from the particle simulations (blue lines), 535 

the periodic dynamics caused by particles within the resonant islands can explain which the 536 

model-derived 𝐷𝐿𝐿 (blue line) is typically slightly less than the theoretical prediction (yellow 537 

line). This effect is more prominently in Figure 6a, when the system is analyzed on timescales 538 

𝑡 > 𝜏𝑐, and where the 𝐷𝐿𝐿 estimate obtained from our particle-tracing model simulation runs 539 

(blue line) lies immediately below the estimate from equation (20) (yellow line). 540 

In addition, it is also clear in Figure 6 that the onset of net particle transports within the 541 

entire domain does not immediately imply full stochasticity. In both Figure 6a and 6b, near but 542 

after the two-thirds overlap criterion is satisfied (vertical dashed line), the estimate of 𝐷𝐿𝐿 543 

derived from our simulation runs is higher than that predicted by the analytic model in equation 544 

(20). Given that the method used to determine 𝐷𝐿𝐿 assumes stochasticity a priori, we may suspect 545 

that the system in this narrow region may not yet be completely stochastic. Further, for the range 546 

of PSDs where the CDT is satisfied (PSD > 2.4 mV
2 

m
-2 

Hz
-1

 for Figure 6a, and PSD > 3.5 mV
2 

547 

m
-2 

Hz
-1

 for 6b), the simulation results are consistent with the analytic estimate from equation 548 

(20).  Only when the system has evolved for long enough for decorrelation to occur, as well as 549 

being set up such the resonant islands are sufficiently close that they satisfy the two-thirds 550 

overlap criteria, is it reasonable to assert that the system is behaving stochastically.  551 
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In both Figure 6a and 6b, the ensemble dynamics appear to display a faster transport than 552 

predicted by radial diffusion theory in the region where the CDT is not satisfied during the 553 

duration of simulation time used in the model runs. This result is artificial since the linear fit 554 

mechanism being used to assess 𝐷𝐿𝐿 is not applicable in such region, but the transport rate in any 555 

case, is faster than that of stochastic diffusion. With our wave model, the two-thirds resonance 556 

island criterion is satisfied at 𝐴 ≈ 41μV m⁄  or PSD ≈ 1.68 mV2m−2Hz−1 for Δ𝑓 = 0.5 mHz. 557 

This means the CDT needed to solve the transition to diffusion requires a minimum time of 558 

𝜏𝑐 ≈ 40 hours given the parameters used in Figure 4b (and further additional hours needed in 559 

order to assess the stochastic transport rate). Due to many computational and modeling 560 

constraints (e.g., computational resources, too many particles removed from the system etc.), we 561 

were not able to produce any results where the two-thirds resonance island overlap criterion was 562 

always satisfied after the CDT. Nonetheless, careful considerations for the CDT are needed when 563 

analyzing the results using statistical models. Lastly, these results also suggest the importance of 564 

the small regions of regular dynamics within small remnant resonant islands that may remain in 565 

the phase space, even if the majority of the phase space now lies within a stochastic regime. 566 

During the transition, the fraction of the phase space occupied by such regions becomes smaller 567 

as the system continues its transition towards more stochasticity – as shown clearly in Figure 2. 568 

For radial diffusion, a theory foundationally based on the effects of resonant wave-particle 569 

interactions, and especially for parameters which place the system close to the transition region, 570 

some fraction of the phase space may still lie within small regions of remnant resonant islands 571 

that still undergo no net particle transport over long timescales.  572 

7 Conclusions 573 

In this work, we used a particle-tracing simulation model to examine the dynamics of 574 

ultra-low frequency (ULF) wave-particle interactions with an ensemble of relativistic outer 575 

radiation belt electrons. We used a simplified model appropriate for examining the dynamics of 576 

equatorially mirroring electrons in a dipole magnetic field, and where the waves are assumed to 577 

the Alfvenic and in the fundamental field-guided harmonic mode such that the equatorially 578 

mirroring electron dynamics are only under the influence of electric field perturbations. We 579 

further examined the ensemble electron dynamics as a result of resonant interactions with 580 

multiple discrete frequency wave modes, with a spectrum with a comb of uniformly separated 581 

frequencies spanning a fixed frequency range and a single azimuthal mode number. The resulting 582 

electron dynamics in response to these multiple discrete frequency modes are simulated in 583 

narrow range of L-shells, and the results analyzed in the time domain including: assessing the 584 

time for the temporal dynamics to become stochastic, beyond a correlation decay time 𝜏𝑐 (CDT); 585 

deriving an expression for the (CDT) for this system, including through comparison to the 586 

dynamics of a kicked rotator system; assessing the rates of radial diffusion, and comparing then 587 

to analytical expressions for the radial diffusion coefficient 𝐷𝐿𝐿; and defining and validating an 588 

expression for the timescale for the transition to stochastic radial diffusion through an application 589 

of a generalization of the two-thirds resonance island overlap condition. The major results arising 590 

from this analysis can be summarized by the following points: 591 

1. The degree of coherence in the resonant interactions of simulated electrons subjected to 592 

multiple discrete frequency wave perturbations demonstrates a dependence on both the 593 

wave frequency separation and the amplitude of the perturbing electric field strength. 594 

These effects can be combined into expressions for the primary resonant island separation 595 

and island width in the electron’s phase space. Further, the utilization of stroboscopic 596 
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maps visualized these underlying phase space structures and verified the principles of the 597 

two-thirds resonant island overlap criterion as a predictor of the transition to stochastic 598 

dynamics and which is commonly referenced in statistical theory (e.g., Lichtenberg & 599 

Lieberman, 1992). Qualitatively, there is a distinct difference between coherent and 600 

diffusive systems (see Figure 2). We used the two-thirds resonance island overlap 601 

criterion to quantify the transition to diffusion, and along with it, derived the relevant 602 

parameters required for equation (11) which presents an analytic expression for the 603 

criteria for the transition to diffusion.  604 

2. A comparison between the analytical formulation of 𝐷𝐿𝐿 (equation (20)) and the 605 

ensemble particle transport validated that the model produced the expected rates of 606 

diffusion transport during later times, and that the transition to this transport can be 607 

predicted using the two-thirds resonance island overlap condition. Further, close to the 608 

point of resonance island overlap (e.g., because the wave amplitude becomes sufficiently 609 

large for a given resonance island separation), the simulations often showed some 610 

modulations in the ensemble rates of radial transport as a function of wave PSD which 611 

were superimposed on top of a smooth transition from near-zero net rates of transport at 612 

early times to those characteristics of diffusion at later times. We showed that, whilst the 613 

two-thirds criterion led to an accurate prediction of time of the onset of net ensemble 614 

particle transport, it is additionally only after the system had become sufficiently 615 

decorrelated, beyond the system’s inherent CDT, that the particle transport process 616 

become stochastic. It is only beyond this time that transport rates can be described using 617 

analytic radial diffusion coefficients. This is illustrated in Figures 6a and 6b, where the 618 

ensemble dynamics can locally undergo rates of transport which are faster than radial 619 

diffusion when only the two-thirds overlap criterion is satisfied. However, at even later 620 

times (for fixed wave amplitudes), the transport rates then behave in line with the 621 

expected stochastic rates of radial diffusion when both conditions are met. Additionally, 622 

through the use of a particle-tracing model, we showed (as expected) that even in the 623 

stochastic regime, there can still be small and contracted regions in the phase space, 624 

which are the remnants of the resonance islands, where particle motion remains periodic 625 

and produce no net particle transport. These dynamics are due to the fact that some 626 

particles remain trapped within these small remnant resonant islands of a given resonant 627 

wave mode. Although small, they can introduce small corrections to the overall ensemble 628 

rates of radial diffusion as compared to analytic expressions for transport rates which 629 

exclude such effects.  630 

3. The distinct transition in the ensemble transport rates from early to later times, for 631 

example as revealed in the behavior of 〈Δ𝐿2〉 as a function of time shown in Figure 4a, 632 

are clearly indicative of the importance of a finite system correlation decay time in the 633 

transition to stochastic behavior. This can be attributed to the timescale required for a 634 

dynamical system to undergo sufficient phase mixing to achieve this decorrelation. This 635 

effect is often ignored in assessments of the radial diffusion of relativistic electrons in the 636 

radiation belts, However, its impacts are significant and for realistic values of wave 637 

parameters the timescale for this transition to stochasticity can be quite long. For 638 

example, in the particle-tracing simulations (see Figure 4), using parameters 639 

representative of the ULF waves in the magnetosphere, and for modes which are 640 

relatively closely spaced in frequency, this decorrelation timescale can be several hours. 641 

That would mean that if such a situation was repeated in the magnetosphere, the waves 642 
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and the wave-particle interactions would need to persist for hours before the transport 643 

rates can be estimated using a radial diffusion paradigm. This is important since it 644 

suggests that early time dynamics might not be able to be described diffusively (see also, 645 

for example, the discussion in Mann et al., 2012; see also Ukhorskiy & Sitnov, 2012). 646 

The duration of the correlation decay process revealed here is a fundamentally important 647 

caveat for using the radial diffusion paradigm for radiation belt modeling and assessing 648 

the rates of radial transport in the radiation belts. In systems where the particle’s guiding 649 

center drift equations are governed by first order coupled differential equations (e.g., this 650 

model), the difference between an ordered and de-correlated state is purely determined by 651 

the ensemble characteristics of the particles’ position. Moreover, these positions are 652 

uniquely determined by the ULF wave power spectra and other pertaining characteristics, 653 

and only after the motion of the particles has transformed the system into a de-correlated 654 

state, can the entire ensemble behave diffusively. Significantly, it is only after this CDT 655 

can the radiation belt electrons be characterized using a radial diffusion coefficient. 656 

Additionally, the wave fields themselves must also be such to additionally satisfy the 657 

two-thirds resonance island overlap criterion in order for the ensemble particle motion to 658 

be able to behave diffusively and to be transported through the entire phase space, rather 659 

than either being trapped inside individual resonance islands or experience periodic 660 

advection in the regions outside the resonance islands. Similarly, as discussed by 661 

Ukhorskiy et al., (2006) and Ukhorskiy & Sitnov, 2012, if the structure of the background 662 

magnetosphere is also being changed on the timescales of the ensemble correlation decay 663 

time, this may also affect the ability of the system to attain the required decorrelated state 664 

in order to transition to stochastic radial diffusion.  665 

Our results have fundamental implications for understanding radiation belt electron 666 

dynamics. Not least because when the CDT is long, radiation belt transport on the timescales of 667 

the perturbing ULF wave packets observed in the magnetosphere may not be diffusive. In such 668 

cases, transport rates should not be estimated using the diffusive paradigm. As we show, the 669 

CDT for the simulation model presented here depends strongly on the mode frequency spacing 670 

Δ𝑓 as well as wave amplitude – shorter CDTs for larger wave amplitudes and closer frequency 671 

spacing. However, if fast transport occurs due to short-lived bursts of short wavetrain ULF wave 672 

modes with a small number of discrete frequencies, then even if they have large amplitude the 673 

overall radial transport may be more likely to be coherent than diffusive (cf. Mann et al., 2012). 674 

The model we examined here presents a mechanism for assessing whether the wave amplitudes 675 

are large enough and the Δ𝑓 small enough for the transport to be described as diffusive, and the 676 

timescales of interaction which are required in order for the system to decorrelate and transition 677 

to stochastic diffusion.  678 

Similarly, in the presence of electron phase space densities which increase with L-shell, 679 

non-diffusive resonance island dynamics can result in the coherent inward transport of regions of 680 

large electron phase space density. As shown by Degeling et al. (2008), if the waves decay on the 681 

timescales of the transport around discrete resonance islands, those regions of phase space with 682 

enhanced electron phase space density at higher L can be coherently transported into the inner 683 

magnetosphere and will remain there leaving regions of large electron flux in the inner 684 

magnetosphere once the ULF waves have decayed. Such transport is coherent and not diffusive. 685 

Conversely, many modes, with sufficiently close frequency spacing, Δ𝑓, even if they are of small 686 

amplitude, can result in diffusive transport on sufficiently long timescales. 687 
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Overall, the relative contributions arising from coherent and diffusive transport for 688 

electron dynamics in the radiation belts remains relatively poorly understood. The model 689 

framework which we present here presents a series of tools which can be used to assess this, 690 

depending on wave amplitude and the characteristics of the wave spectra. This includes not only 691 

an assessment of whether the resonant islands are sufficiently close for their overlap to lead to a 692 

transition which enables long distance transport in phase space, but also an assessment of the 693 

timescales required in order for the system to transition to stochasticity. It is only after such 694 

times that the transport rates can be accurately estimated using a radial diffusion paradigm.     695 

Appendix A: Resonant Island Center Derivation 696 

 The primary resonant island is centered on a 𝐿-value where the resonance condition is 697 

satisfied. Using equations (2) and (4) and for electric fields with no DC component so that its 698 

contribution is zero over the average of 1 wave cycle, we can neglect the first term in equation 699 

(2): 700 

𝜙̇2 ≈
9𝜇𝑚𝑒𝑐

2

2𝑞2𝑅𝐸
4𝐵0𝐿

[1 +
𝑚𝑒𝑐

2𝐿3

2𝜇𝐵0
]

−1

. #(A1)  

Further, we can invoke the resonance condition, equation (10):  701 

(
𝜔

𝑚
)
2

≈
9𝜇𝑚𝑒𝑐

2

2𝑞2𝑅𝐸
4𝐵0𝐿

[1 +
𝐿3𝑚𝑒𝑐

2

2𝜇𝐵0
]

−1

. #(A2)  

The right-hand side of equation (A2) is of the form (1 + 𝑥)−1. For high energies where 𝛾 can be 702 

approximated by its first order Taylor expansion, 𝑥 ≪ 1, the right-hand side term can be 703 

expanded. Rewriting, we obtain a cubic polynomial: 704 

𝐿3 + (
𝜔

𝑚
)
2

(
2𝑞𝑅𝐸

2𝐵0
3𝑚𝑒𝑐

2
)

2

𝐿 −
2𝜇𝐵0
𝑚𝑒𝑐

2
≈ 0 . #(A3)  

Equation (A3) is in the form of a depressed cubic. In such a case, we can invoke Cardano’s 705 

formula, giving us the solution of only 1 real root, which approximates the resonant island 706 

center, equation (12). 707 

Appendix B: Resonant Island Half-Width Derivation 708 

Following a similar derivation found in Degeling et al. (2007), the primary resonant 709 

island half-width can be estimated for particle dynamics in a symmetric dipole field subjected to 710 

a resonant monochromatic wave oscillation mode. The center of the primary resonant island is 711 

dictated by the resonance condition. Again, under the approximation for high energies, the 712 

Lorentz factor can be approximated by its first order expansion 713 

1

𝛾
≈ √

𝐿3𝑚𝑒𝑐
2

2𝜇𝐵0
[1 −

𝐿3𝑚𝑒𝑐
2

4𝜇𝐵0
] . #(B1)  

At these energies, the electron’s azimuthal motion is primarily driven by gradient drift, and the 714 

radial motion is solely driven by E-cross-B drift. For small amplitude perturbations, the resonant 715 

island spans a small range in 𝐿, and 𝐸0(𝐿0) can be regarded as approximately constant across the 716 
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entire width of the island. By defining the wave phase as 𝜓 = 𝑚𝜙 − 𝜔𝑡, the electrons’ equations 717 

of motions can be then approximated: 718 

{
 
 

 
 𝐿̇ =

𝐸0(𝐿0)

𝑅𝐸𝐵0
𝐿3 cos(𝜓)

 𝜙̇ ≈ −
1

𝑞
√
9𝜇𝑚𝑒𝑐

2

2𝑅𝐸
4𝐵0

[𝐿−
1
2 −

𝑚𝑒𝑐
2

4𝜇𝐵0
𝐿
5
2]

 . #(B2)  

Here, we drop the 𝜁 factor from equation (9) for simplicity since the variations in 𝐿 is small 719 

given small perturbations. Furthermore, 𝐿̇ can be expanded using the chain rule, and 𝜓̇ can be 720 

expanded in 𝐿 near the resonance 𝐿0: 721 

𝐿̇ =
𝜕𝐿

𝜕𝜓
𝜓̇;          𝜓̇ ≈ 𝜓̇(𝐿0) + (𝐿 − 𝐿0)

𝜕𝜓̇

𝜕𝐿
|
𝐿=𝐿0

, #(B3)   

where 𝜓̇(𝐿0) = 0 is given by the resonance condition. One can see that 𝜓̇ ≈ (𝐿 − 𝐿0)𝑚
𝜕𝜙̇

𝜕𝐿
|
𝐿=𝐿0

 722 

which gives: 723 

𝜕𝐿

𝜕𝜓
=
𝐸0(𝐿0)𝐿

3

𝑅𝐸𝐵0
cos(𝜓)

1

(𝐿 − 𝐿0)𝑚
𝜕𝜙̇
𝜕𝐿
|
𝐿0

. #(B4)
  

Equation (B4) is separable and can be integrated over the outermost island shell. 724 

However, for small perturbation amplitudes, we can assume the resonant island half-width is 725 

symmetric, allowing us to only evaluate the half-width on one side: 726 

∫
(𝐿 − 𝐿0)

𝐿3
𝑑𝐿

𝐿0+𝛿𝐿

𝐿0

=
𝐸0(𝐿0)

𝑅𝐸𝐵0𝑚
𝜕𝜙̇
𝜕𝐿
|
𝐿0

∫ cos(𝜓)𝑑𝜓

𝜋
2

0

. #(B5)
 

Finally, small wave amplitudes allow for the approximation: 𝐿0 ≫ 𝛿𝐿, and evaluating 727 

𝜕𝜙̇

𝜕𝐿
|
𝐿0

, we can approximate the primary resonant island half-width: 728 

𝛿𝐿 ≈ (
32𝑞2𝑅𝐸

2

9𝐵0𝜇𝑚𝑒𝑐
2
)

1
4

√
𝐸0(𝐿0)

𝑚

𝐿0
4.5

1 +
5𝑚𝑒𝑐

2

4𝜇𝐵0
𝐿0
3
 . #(B6)  

Appendix C: 𝑲 Proportionality Derivation 729 

 Following from equation (1) and (2) which describes the equatorial motion of a charged 730 

particle under the influence of electromagnetic fields, and assuming that the azimuthal motion is 731 

purely driven by gradient drift, we can express 𝜙̇ by its approximation found in equation (A1). 732 

The charged particle’s equations of motion in our near-integrable system of 19 modes can be 733 

expressed as:  734 
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{
 
 

 
 𝐿̇ =

𝐴

𝑅𝐸𝐵0
𝐿3 ∑ cos(𝑚𝜙 − 𝑛Δ𝜔𝑡)

93

𝑛=75

𝜙̇ = 𝜔𝑑(𝐿) ≈ −
1

𝑞
√
9𝜇𝑚𝑒𝑐

2

2𝑅𝐸
4𝐵0𝐿

[1 +
𝑚𝑒𝑐

2𝐿3

2𝜇𝐵0
]

−1 2⁄
, #(C1)  

Where Δ𝜔 is determined by the frequency separation of our perturbations, Δ𝜔 = 2𝜋Δ𝑓, and the 735 

index from 75 to 93 corresponds to our frequency range from 37.5 mHz and 46.5 mHz. In 736 

equation (C1), for simplicity, we used a flat amplitude profile in 𝐿, 𝐸0(𝐿) = 𝐴,  and electric 737 

wave disturbance with no extra phase factors. Additionally, we use a change of variables given 738 

by 𝐼 = 𝐿−2, and further break down the azimuthal motion by its first-order Taylor expansion in 739 

𝐼 near the vicinity of our simulation domain, giving us: 740 

{
 

 Δ𝐼̇ = −2
𝐴

𝑅𝐸𝐵0
∑ cos(𝑚𝜙 − 𝑛𝛥𝜔𝑡)

93

𝑛=75 
𝜙̇ ≈ 𝜔𝑑(𝐼0) + 𝜔𝑑

′ (𝐼0)Δ𝐼

. #(C2)  

Following a series of substitutions, as similarly done in Ukhorskiy & Sitnov (2012):  741 

Δ𝜔𝑡 → 𝑚𝑡′ ,         
𝑚2

Δ𝜔
𝜔𝑑
′ (𝐼0)Δ𝐼 → 𝐼,          and           𝜃 = 𝑚𝜙 −𝑚𝜔𝑑(𝐼0)𝑡, #(C3)  

and removing the prime notation on time, 𝑡′ → 𝑡, we can describe our dynamical system with the 742 

new equations of motion: 743 

{
𝐼̇ = −2

𝐴

𝑅𝐸𝐵0

𝑚3

(Δ𝜔)2
𝜔𝑑
′ (𝐼0) ∑ cos (𝜃 − [𝑛𝑚 −

𝑚2𝜔𝑑(𝐼0)

Δω
] 𝑡)

93

𝑛=75

𝜃̇ = 𝐼

. #(C5)  

The argument of cosine can be further decomposed using the resonance condition, 𝜔 = 𝑚𝜔𝑑, 744 

where 𝜔 is the resonant frequency for a particle situated on 𝐼0 = 𝐿0
−2. Since we expanded 𝜙̇ near 745 

the vicinity of a resonance in our simulation domain, the resonant frequency at 𝐼0 is given by 746 

𝑚𝜔𝑑(𝐼0) which is contained in 1 of the terms found in the summation. That is, we can rewrite as 747 

𝜔 = 𝑛𝑅Δ𝜔, where 𝑛𝑅 is the index of the summation that corresponds to the resonant frequency 748 

of the particle at 𝐼0, and 75 ≤ 𝑛𝑅 ≤ 93. We can now rewrite our index such that: 749 

𝑚(75 − 𝑛𝑅) = 𝑖,          and          𝑚(93 − 𝑛𝑟) = 𝑘, 

where the azimuthal wavenumber 𝑚 and 𝑛𝑅 are integers, and 𝑖 and 𝑘 are now our new indices 750 

for the summation increasing in increments of 𝑚. Rewriting our equations of motion: 751 

{
 
 

 
 
𝐼̇ = −2

𝐴

𝑅𝐸𝐵0

𝑚3

(Δ𝜔)2
𝜔𝑑
′ (𝐼0) ∑ cos(𝜃 − 𝑛𝑡)

𝑘

𝑛=𝑖,𝑖+𝑚,
𝑖+2𝑚,…

𝜃̇ = 𝐼

, #(C6)  

equation (C6) becomes reminiscent of a kicked-rotator system which is given by: 752 
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{
𝐼̇ =

𝐾

4𝜋2
∑ cos(𝜃 − 𝑛𝑡)

∞

𝑛=−∞

𝜃̇ = 𝐼

. #(C7)  

Here, 𝐾 in equation (C7) is indeed the non-linearity parameter we are after, and by direct 753 

comparison with equation (C6), we can deduce that 𝐾 = 8𝜋2𝐴𝑚3𝜔𝑑
′ (𝐼0) 𝑅𝐸𝐵0⁄ (Δ𝜔)2 is the 754 

non-linearity parameter for our simplified dynamical system. It follows that the approximate 755 

proportionality of the non-linearity parameter our system and similar systems is given by: 𝐾 ∝756 

𝐴/Δ𝑓2. This approach provides us with an ansatz which we can test using the numerical results 757 

from the wave-particle interaction simulations presented here. 758 
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