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Key Points: 11 

• Marked changes in global ocean coccolithophore bloom distribution over the past 40 12 
years. 13 

• Overall global decrease in bloom area of 1.15 million km2. 14 

• Increased occurrence in Barents Sea, Antarctic Ocean and East Africa coastal province 15 
driven primarily by changes in sea-surface temperature. 16 

• Decreased occurrence elsewhere, driven by multiple factors in different provinces, 17 
elucidated using Machine Learning. 18 
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Abstract 20 

The global distribution of high Remote-sensing reflectance (Rrs) waters visible from satellite, 21 
likely associated with coccolithophore blooms, has changed markedly over the past 40 years.  22 
Over that period there has globally been an overall decrease in bloom area of 1.15 million km2 23 
but with notable Rrs increases in the Barents Sea and the Antarctic Ocean. The primary drivers 24 
of these fundamental changes to ocean biogeochemistry have been investigated using Machine 25 
Learning techniques together with contemporaneous global multi-decadal time-series of sea-26 
surface temperature (SST); wind speed and stress; sea level anomaly (SLA); photosynthetically 27 
available radiation (PAR) and; mixed layer depth (MLD).  When split into ocean provinces 28 
different drivers of positive and negative trends in Rrs were found to dominate in different 29 
regions, but generally increases were found to coincide with changes to SST, PAR and 30 
reductions to wind-speed. 31 

Plain Language Summary 32 

Coccolithophore blooms are sensitive to changes in ocean climate and we show a global 33 
reduction in their occurrence over the past 40 years. However, more intense blooms are likely 34 
happening in high latitude regions such as the Barents Sea and Antarctic Ocean, driven by 35 
changes in sea temperature, levels of sunlight and reductions in ocean wind-mixing. 36 

1 Introduction 37 

Coccolithophores are a group of marine phytoplankton that synthesise external calcium 38 
carbonate platelets (coccoliths) and play a critical role in the global carbon cycle [Rost and 39 
Riebesell, 2004] and marine biogeochemistry [Balch, 2018].  During the latter stages of a bloom 40 
the coccoliths are shed in large numbers giving the water a turquoise-white appearance which is 41 
readily detectable  at the surface [Smyth et al., 2002; Tyrrell et al., 1999] and from space 42 
[Gordon et al., 2001].  It is this unique satellite visibility, which is not available for any other 43 
phytoplankton species, which enables examination of temporal changes in their global 44 
distribution [Brown and Yoder, 1994; Iglesias-Rodriguez et al., 2002; Loveday and Smyth, 2018; 45 
Winter et al., 2013] and any associated large scale drivers.  Previous regionally focused work has 46 
shown coccolithophores to be advancing into some sub-polar seas (Barents - [Smyth et al., 2004]; 47 
Bering - [Merico et al., 2003]; Southern Ocean - Balch et al. [2016]) while perhaps becoming 48 
more scarce in some (Gulf of Maine - [Balch et al., 1991]), but not all (Bay of Biscay - [Morozov 49 
et al., 2013]), parts of their mid-latitude distribution. Coccolithophores may therefore be 50 
sensitive to, and important indicators of, environmental change.  51 

In this paper, the changes in global coccolithophore bloom distribution are examined over a 40 52 
year time period using the consistently calibrated Remote-sensing reflectance (Rrs) dataset 53 
[Loveday and Smyth, 2018] derived from the visible-channel Advanced Very-High Resolution 54 
Radiometer (AVHRR) PATMOS-x [Heidinger et al., 2010] climate data record.  Despite lower 55 
technical specifications rendering AVHRR only 11 % as sensitive to variations in 56 
coccolithophore visible reflectance compared with ocean colour channels [Groom and Holligan, 57 
1987] higher Rrs associated with coccolithophore blooms and corroborated by independent 58 
sources [Loveday and Smyth, 2018] are clearly apparent in the dataset.  Long-term multi-decadal, 59 
fine-scale (< 1°)  global datasets are used together with the primary Rrs dataset, within a 60 
Machine Learning framework, to determine the drivers of coccolithophore bloom shifts in 61 
occurrence.  By integrating these different data sources within such a framework, covering a 62 
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sufficiently long (40 year) time-period [Henson et al., 2009], this study sheds new light on the 63 
drivers of global coccolithophore bloom distribution which in turn may have consequences for 64 
the Earth system carbon cycle. 65 

2 Data and Methods 66 

The primary dataset used was the consistently calibrated 40-year timeseries of visible channel 67 
Rrs from the AVHRR satellite sensor [Loveday and Smyth, 2018].  Initial investigations showed 68 
high Rrs in the Southern Ocean to be strongly correlated with sea ice fraction. To minimize 69 
signal contamination, Rrs was masked by the European Space Agency (ESA) Climate Change 70 
Initiative (CCI) Sea Surface Temperature (SST) daily sea ice extent product [Merchant et al., 71 
2014]. This daily product was averaged to monthly and remapped using bilinear interpolation 72 
from 0.05° to 0.1° in order to match the Rrs dataset spatio-temporal resolution.  The resulting 73 
refined version of the global Rrs dataset [Loveday and Smyth, 2018] is shown in Figure 1.      74 

75 
To enable investigation of the key drivers of coccolithophore bloom distribution, temporal 76 
overlap of potentially relevant global meteorological and oceanographic timeseries and the 77 
primary Rrs dataset were maximized (Table 1).  The altimeter satellite gridded sea level anomaly 78 
(SLA) is pre-computed with respect to a 20-year mean (1993-2012).  The wind speed and stress 79 
were obtained at a 6h time resolution in order to compute monthly mean and standard deviation 80 
thereby providing a measure of variability.  For the data products which have a lower spatial 81 
resolution than the Rrs dataset (Wind, SLA, PAR, MLD), a nearest neighbour approach was used 82 
to remap to a 0.1° grid.   83 

Table 1. Input global datasets and their provenance used in this study showing timespan, temporal and spatial resolution. 84 

Figure 1. Decadal mean Rrs with associated ice mask shown in white: a) 1980 - 1989; b) 1990 - 1999; c) 2000 - 2009; d) 
2010 – 2017. 
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Variable Dataset 
Spatial 
resolution 
(degrees) 

Native 
temporal 
resolution 

Start date 
–  

End date 
Source reference 

Remote Sensing 
Reflectance (Rrs) AVHRR 0.10° × 

0.10° Monthly 
01/01/1979 
– 
01/01/2018 

10.1594/PANGAEA.892175 

Sea ice extent ESA SST_cci 0.05° × 
0.05° Daily 

01/09/1981 
- 
01/12/2016 

10.48670/moi-00185 

Sea surface 
temperature (SST) ESA SST_cci 0.05° × 

0.05° Daily 
01/09/1981 
- 
01/12/2016 

10.48670/moi-00185 

Sea level anomaly 
(SLA) SEALEVEL_GLO 0.25° × 

0.25° Monthly 
01/01/1993 
- 
01/12/2016 

10.48670/moi-00148 

Wind speed and 
stress11 IFREMER 

CERSAT 
0.25° × 
0.25° 6 hourly 

01/01/1992 
- 
01/01/2020 

10.48670/moi-00185 

Photosynthetically 
Available 
Radiation (PAR) 

ECMWF ERA-
Interim 

0.85° × 
0.85° 

Monthly 
mean of 
daily 
accumulation 

01/01/1982 
- Present 

Simmons et al. [2006] 
10.21957/pocnex23c6 

Mixed layer depth 
(MLD) 

ECMWF ERA-
Interim 

0.85° × 
0.85° Monthly 

01/01/1980 
- 
01/01/2014 

Simmons et al. [2006] 
10.21957/pocnex23c6 

2.1 Trend analysis  85 

In order to capture identify key global trends and drivers of coccolithophore blooms, the datasets 86 
(Table 1) were partitioned into the ecological provinces defined in Longhurst [1998]. In this 87 
approach we assume homogeneity regarding the drivers and trends in Rrs across each province, 88 
with the exception of the Atlantic subarctic province.  Here an initial analysis per Rrs grid point 89 
demonstrated the Norwegian Sea to have very strong negative trend, and the Barents Sea a very 90 
positive trend. Therefore, this province was split in two for analysis.  91 

                                                           
1 WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006 product replaced by WIND_GLO_PHY_L4_MY_012_006 in 
March 2023, E.U Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS). 
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The trend analysis was conducted on the 12-month rolling mean (to de-seasonalise) of the Rrs 92 
timeseries. A Mann-Kendal [Kendall, 1975; Mann, 1945] test was conducted on the de-93 
seasonalised Rrs to identify significant (99% confidence level) increasing or decreasing trends 94 
and a linear regression fitted to estimate the magnitude of the trend.  95 

2.2 Classification models and analysis tools 96 

A bloom threshold of high Rrs was required in order to build classification models for each 97 
Longhurst [1998] province. The mean Rrs and associated standard deviation (σ) was calculated 98 
for each province and the following classes defined: (1) pixels (Rrs > 1σ) classified as 1 (bloom 99 
presence); (2) pixels (Rrs=0) classified as 0 (bloom absence); (3) pixels (0 < Rrs ≤ 1σ) were 100 
discarded. This resulted in significant class imbalance: in order to build a classifier model, a 101 
balanced random forest classifier [e.g., Khoshgoftaar et al., 2007] was used2 which subsampled 102 
from both classes during training. An optimal combination of 500 trees and maximum tree depth 103 
of 10 was selected after hyperparameter tuning and testing on a sample of provinces. These 104 
hyperparameters were tested on imbalanced and subsample-balanced test sets. Results showed 105 
that a low maximum tree depth threshold was necessary to prevent overfitting and improve the 106 
prediction of the minority class in the random forest. 107 

A variant of Shapeley Additive exPlanations (SHAP) analysis [Lundberg and Lee, 2017], 108 
TreeSHAP [Lundberg et al., 2020], was used to explain the contribution of each variable (Table 109 
1 - SST, PAR, MLD, wind speed and stress) to the prediction of Rrs in each Longhurst [1998] 110 
province.  TreeShap utilises the model structure to explicitly model the conditional expected 111 
prediction, avoiding breaking the dependencies between correlated variables, as dictated by the 112 
rules of causal inference [Janzing et al., 2020]. SHAP values were calculated using the 113 
probability of predicting a bloom (from the balanced random forest classifier output) for a 114 
sample of 2000 test dataset values, thus balancing computational efficiency with a sufficient 115 
sample size.  The entire test dataset was used where an individual province contained less than 116 
2000 samples.  Finally, to obtain a metric of the relative (ranked) variable importance on 117 
determining Rrs from the SHAP values the absolute mean was taken over the sample of 118 
explanations for each variable.  119 

3 Results and Discussion 120 

                                                           
2 https://imbalanced-learn.org/stable/references/generated/imblearn.ensemble.BalancedRandomForestClassifier.html 
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impact on Rrs (positive SHAP value) whereas higher wind speeds, wind stress and greater MLDs 147 
are associated with a negative impact on Rrs.  This implies that conditions conducive to 148 
coccolithophore bloom formation in the Norwegian Sea are dominated by calmer conditions, 149 
greater insolation (PAR), a shallower MLD and warmer SSTs.  Therefore, reductions in Rrs 150 
intensity in the Norwegian Sea (Figure 2) are likely to have been driven by a reduction in PAR, 151 
and increases in wind-speed and as a consequence stress and a deepening of the MLD. 152 

For the Barents Sea (Figure 3 (c), (d)), warmer SSTs are the dominant driver of increased Rrs, 153 
which is consistent with the local climatic conditions being strongly influenced by the 154 
temperature of the inflowing Atlantic water which in turn has a profound effect on ice cover 155 
extent, the biology, and coccolithophore succession [Kogeler and Rey, 1999].  Intriguingly, 156 
increases in PAR are associated with a negative impact on Rrs which is in contrast to the 157 

158 
Norweigan Sea.  As expected a negative impact on Rrs is caused by a deeper MLD (rank 4) and 159 
stronger (rank 3, 7) but more variable (rank 5, 6) windspeed and stress.   Figure 4 (a) shows that 160 
all three provinces (Barents Sea, East Africa coastal, Antarctic, numbered as 2b, 23, 52 161 
respectively) where there are positive trends in Rrs (Figure 2) are primarily driven by changes in 162 
SST and secondarily PAR (Figure 4 (b)).  However closer inspection reveals fundamental 163 

Figure 3. (a) Example bloom conditions of Rrs in the Norwegian Sea (August 2008); (b) SHAP analysis for entire time-
series for Norwegian Sea; (c) Example bloom conditions of Rrs in the Barents Sea (August 2008); (d) SHAP analysis for 
entire time-series for Barents Sea. 
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differences between these provinces: warmer SSTs drive an increase in Rrs in the Barents Sea 164 
(2b: Figure 3(d)) but a reduction in Rrs in the East Africa coastal (23: Figure S3(p)) and 165 
Antarctic (52: Figure S4(l)) provinces.  Intuitively increases in short-wave (PAR) heat flux 166 
[Smyth et al., 2014] will tend to warm the surface ocean thereby increasing water column 167 
stability, conditions which favour (increasing Rrs) the development of coccolithophore blooms 168 
[Smyth et al., 2002; Tyrrell et al., 1999] and vice versa (reducing Rrs).  For the three provinces 169 
where Rrs has been increasing, this intuition only holds true in the Antarctic province (52: Figure 170 
S4(l)).  In the Barents Sea (2b: Figure 3(d)) and East Africa coastal (23: Figure S3(p)) higher 171 
PAR is associated with lower Rrs (absence of blooms).  Globally PAR is highly ranked as a 172 
driver of reduction in Rrs, being either the primary (Figure 4 (a)) or secondary (Figure 4 (b)) for 173 
the majority of provinces.   174 
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In the western Atlantic (provinces 4, 5, 14), the dominant drivers (of a reduction in Rrs) appear 175 
to be more large-scale dynamical in nature with changes in SLA (province 4, 14), which would 176 
point to changes in circulation patterns, and variability in the wind speed (province 5) which 177 
could be attributable to an increase in fluctuations between extremes (calm to storm).  The 178 
supplementary materials contain analyses of the ranked SHAP analyses (Figures S3, S4) in each 179 
province together with the associated decadal trends for each of the drivers, (Figures S5, S6). 180 

Figure 1 and Figure S1 show that there has been an overall decrease in bloom area of around 181 
1.15 million km2 over the past 40 years which is consistent with Uz et al. [2013] who attributed 182 
this to warmer SST and increasing MLDs.  Figure 3 and Figure 4 clearly show that, although 183 
SST may be implicated in the poleward movement of coccolithophores in some provinces (even 184 
individual seas e.g., Barents Sea), the global picture is more nuanced with multiple drivers acting 185 
simultaneously to reduce or increase the likelihood of bloom occurrence (Figures S3, S4).   186 

Figure 4. Drivers of Rrs trend by Longhurst [1998] province: (a) Primary driver; (b) Secondary driver. 
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4 Conclusions 187 

Using a 40-year long, consistently calibrated global dataset of Rrs we have shown an overall 188 
decrease in the occurrence of coccolithophores in the global ocean, but marked increases in some 189 
high latitude provinces, such as the Barents Sea and the Antarctic Ocean.  By using other large 190 
datasets of meteorological and oceangraphic parameters over a similar time-period, within a 191 
Machine Learning framework, we have shown that those high latitude increases are driven 192 
primarily by changes in SST.  Decreases elsewhere in the global ocean are driven by other 193 
external factors which are specific to individual provinces. 194 
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