
manuscript submitted to Journal of Advances of Modelling Earth Systems (JAMES)

Unsupervised Learning of Sea Surface Height1

Interpolation from Multi-variate Simulated Satellite2

Observations.3
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Abstract18

Satellite-based remote sensing missions have revolutionized our understanding of the Ocean19

state and dynamics. Among them, spaceborne altimetry provides valuable measurements20

of Sea Surface Height (SSH), which is used to estimate surface geostrophic currents. How-21

ever, due to the sensor technology employed, important gaps occur in SSH observations.22

Complete SSH maps are produced by the altimetry community using linear Optimal In-23

terpolations (OI) such as the widely-used Data Unification and Altimeter Combination24

System (DUACS). However, OI is known for producing overly smooth fields and thus25

misses some mesostructures and eddies. On the other hand, Sea Surface Temperature26

(SST) products have much higher data coverage and SST is physically linked to geostrophic27

currents through advection. We design a realistic twin experiment to emulate the satel-28

lite observations of SSH and SST to evaluate interpolation methods. We introduce a deep29

learning network able to use SST information, and a trainable in two settings: one where30

we have no access to ground truth during training and one where it is accessible. Our31

investigation involves a comparative analysis of the aforementioned network when trained32

using either supervised or unsupervised loss functions. We assess the quality of SSH re-33

constructions and further evaluate the network’s performance in terms of eddy detec-34

tion and physical properties. We find that it is possible, even in an unsupervised setting35

to use SST to improve reconstruction performance compared to SST-agnostic interpo-36

lations. We compare our reconstructions to DUACS’s and report a decrease of 41% in37

terms of root mean squared error.38

Plain Language Summary39

The surface of the ocean is observed through various sensors embedded in satel-40

lites. Specifically, the height of the sea surface is a very important variable as it can be41

used to estimate surface currents. It is currently measured through satellite altimeters,42

but the data acquisition process leaves gaps in their observations. Providing fully grid-43

ded maps of the sea surface height is thus an important interpolation problem. The widely44

used interpolated product has some troubles especially when dealing with small and rapidly45

evolving eddies. To enhance the quality of the height map, we propose to use an arti-46

ficial neural network, a trainable method able to estimate complete sea surface height47

images. The flexibility of these methods allows us to use different satellite information,48

such as the sea surface temperature, which is acquired with a much better resolution.49

Usually, neural networks are trained on a dataset upon which they learn the link between50

input and output data. However in a realistic geoscience scenario, the output is never51

known for sure, so we propose a methodology to train these methods using only the in-52

put information. We show the feasibility of these approaches, as well as the improvements53

brought by the temperature information.54

1 Introduction55

Since the first ocean remote sensing missions in the 1970s, satellite observation of56

the ocean has become one of the most determining contributions to understanding ocean57

state and dynamics (S. Martin, 2014). Through the years, satellites have provided a huge58

amount of measures of various physical natures with wide spatial coverage that completed59

in situ datasets. Among these techniques, satellite altimetry is used to retrieve the Sea60

Surface Height (SSH) a determining variable of the ocean circulation. Indeed, SSH spa-61

tial gradient can be used to estimate geostrophic currents, i.e. the currents necessary for62

the Coriolis force to balance the pressure force in the surface layer of the Ocean. SSH63

(also called Absolute Dynamical Topography by the altimetry community) is currently64

measured by nadir-pointing altimeters, meaning that they can only take measurements65

vertically, along their ground tracks, by calculating the return time of a radar pulse. This66

leads to important gaps in the observed SSH, and providing a gap-free product (L4) is67
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a challenging Spatio-Temporal interpolation problem. One of the most widely used L468

products in oceanography applications is the Data Unification and Altimeter Combina-69

tion System (duacs) (Taburet et al., 2019) which performs a linear Optimal Interpo-70

lation (OI) of the nadir along-track measures leveraging a covariance matrix tuned on71

25 years of data. However several studies show that duacs reconstruction misses some72

of the mesoscales structures and eddies (Amores et al., 2018; Stegner et al., 2021). As73

such, improving the reconstruction of a gridded altimetry product is still an open chal-74

lenge.75

In order to enhance the quality of the SSH reconstruction and sea surface current76

estimation, using additional physical information such as the Sea Surface Temperature77

(SST) has been demonstrated to be beneficial (Ciani et al., 2020; Thiria et al., 2023; S. A. Mar-78

tin et al., 2023; Archambault et al., 2023; Fablet et al., 2023). SST motion is linked to79

ocean circulation (Isern-Fontanet et al., 2006), and therefore to SSH, as heat is trans-80

ported by currents in an advection dynamic. SST measurements obtained through pas-81

sive infrared technology offer a remarkably high spatial resolution, ranging from 1.1 to82

4.4 km (Emery et al., 1989), even if intermittent cloud coverage also introduces data gaps.83

Thus, a crucial challenge lies in developing efficient reconstruction methods capable of84

fusing data derived from different remote sensing techniques, each presenting distinct in-85

terpolation challenges, thereby unlocking the full potential of satellite oceanography prod-86

ucts.87

In the last decade, deep learning has emerged as one of the leading methods in com-88

puter vision, particularly to address image inverse problems. Neural networks have demon-89

strated remarkable flexibility in fusing observations from various sources and modalities,90

exhibiting their capacity to learn complex relationships given a sufficient number of train-91

ing samples (McCann et al., 2017; Ongie et al., 2020). Prior work proved that it is pos-92

sible to use SST to enhance SSH reconstruction with a deep-learning network, whether93

from a downscaling perspective (Nardelli et al., 2022; Thiria et al., 2023) or an interpo-94

lation one (Fablet et al., 2023; S. A. Martin et al., 2023) However, training such meth-95

ods often requires the fully gridded ground truth to be trained, which is not possible in96

a realistic geoscientific scenario. To overcome this limitation two solutions were proposed:97

employing loss functions that do not rely on ground truth data or conducting a twin ex-98

periment on a simulation mimicking the inverse problem we try to solve (also called an99

Observing System Simulation Experiment). This last option has the advantage of allow-100

ing supervised training but suffers from the domain gap that might occur between the101

simulation and the real world. Notably, Fablet et al. (2021) performed an efficient su-102

pervised SSH interpolation on one year of OSSE data and extended their study using103

SST showing increased performance (Fablet et al., 2023). On the other hand, Archambault104

et al. (2023); S. A. Martin et al. (2023) trained a neural network using only observations.105

However, as both these studies focused on real-world data, no fully gridded ground106

truth reference was available for an evaluation and interpretation of the results. In this107

work, we design a new OSSE framework including 20 years of SSH and SST simulated108

observations and their associated ground truth. As the previously existing OSSE (CLS/MEOM,109

2020) provided only one year of data and no SST realistic instrumental error, this new110

dataset is closer to a realistic multi-variate observation of the ocean. Moreover, we present111

a novel Attention-Based Encoder-Decoder (ABED) framework to perform spatiotempo-112

ral interpolation of SSH fields. This network leverages along-track SSH measurements113

and, optionally, incorporates SST contextual data. In order to assess the feasibility of114

training ABED in a realistic setting, where no gridded ground truth is accessible, we pro-115

pose to train it using solely along-track measures and compare it with its classically su-116

pervised version.117

This paper is structured as follows, in Section 2 after giving a rationale for the in-118

clusion of SST information in the interpolation method we detail our OSSE. In Section 3119

we present our architecture and the training losses. In Section 4 we evaluate the inter-120
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polation in terms of SSH reconstruction, and oceanic circulation errors. We also perform121

an eddy detection to demonstrate that SST-using methods retrieve more realistic ocean122

structures and we compare ourselves to existing state-of-the-art methods on a different123

OSSE. In Section 5, we discuss the limitations and perspectives of this work.124

2 Multi-variate data simulation125

In the following, we provide a rationale for the SSH and SST connection, outline126

the reference data source we utilized (Global Ocean physics Reanalysis (CMEMS, 2020)),127

and detail our OSSE’s SSH and SST observations.128

2.1 Physical relationship between SSH and SST129

One of the most important uses of SSH data is to recover oceanic currents through130

surface quasi-geostrophic approximation. It consists of supposing a static equilibrium131

between the surface projection of the Coriolis force and the resultant pressure forces. Far132

from the Equator, where Coriolis force projection is null, it is a good estimation of the133

circulation. The surface geostrophic currents can be computed from the SSH h follow-134

ing:135

wgeo =

(
ugeo

vgeo

)
=


− g

f

∂h

∂y

g

f

∂h

∂x

 (1)

where ugeo and vgeo are the eastward and northward geostrophic currents, x and y the136

eastward and northward coordinates and where f = 2Ωr sin(ϕ) is the Coriolis factor,137

Ωr being the rotation period of the earth, ϕ the latitude and g the gravitational accel-138

eration.139

In a first approximation, the surface temperature T can be considered as a passive140

tracker transported by surface currents. The evolution of a scalar in a static velocity field141

can be described by the linear advection equation.142

∂T

∂t
+w.∇T = 0 (2)

Combining the geostrophic and the advection Equations (1,2), we see why a time series143

of SST observations should provide pertinent information for constraining the SSH re-144

construction. However, the actual physical link between temperature and sea-surface height145

is more complex, as other phenomena must be considered, such as diffusion, convection,146

circulation between water depths, and viscosity. The satellite observations of both tem-147

perature and sea surface height also suffer from instrumental errors and are by nature148

limited to observing the surface of the ocean. This is why neural network architectures,149

thanks to their flexibility, seem appropriate to learn the complex underlying link between150

the data.151

2.2 Observing System Simulation Experiment152

In order to effectively replicate the relationship between the two variables, we pro-153

pose an Observing System Simulation Experiment (OSSE), meaning a twin experiment154

that accurately models the satellite observations of the Ocean. This approach is widely155

used in the geosciences community as it provides ways to test reconstruction methods156

and errors (Amores et al., 2018; Stegner et al., 2021; Gaultier et al., 2016). With this157

mindset, SSH and SST variables of a high-resolution simulation are considered as the158

ground truth ocean state upon which we simulate satellite measures. The coherence of159
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the relation between SSH and SST is ensured by the physical model, while with our OSSE160

we produce enough pairs of ground truth/observation to train a neural network. In this161

paper, we denote Xssh and Xsst the ground truth fields of the SSH and SST and Yssh
162

and Ysst, the simulated observations. We detail hereafter the reference dataset of our163

OSSE and the observation operators of the two variables.164

2.2.1 Base simulation165

We conduct our experiences on the Global Ocean physics Reanalysis product (GLO-166

RYS12) (CMEMS, 2020). It provides various physical data such as SSH, SST and oceanic167

currents with a spatial resolution of 1/12◦ (around 8 km). GLORYS12 is based on the168

NEMO 3.6 model (Madec et al., 2017) and assimilates observations from satellites (SSH169

along-track observations and SST full domain observations) through a reduced-order Kalman170

filter. It is updated annually by the Copernicus European Marine Service, making it im-171

possible to use in near real-time applications. We select a temporal subset of this sim-172

ulation from Mars 20, 2000 to December 29, 2019, for a total of 7194 days.173

We select a portion of the Golf stream, between 33◦ to 43◦ North and -65◦ to -55◦174

East. This area is known for its intense circulation, its water mass of very different tem-175

peratures, and is far enough from the equator that the geostrophic approximation can176

be applied. Comparing the surface circulation of the model with its geostrophic approx-177

imation, we find that an RMSE of 6.6 cm/s for ugeo and 6.1 6.1 cm/s for vgeo. Consider-178

ing the high intensity and variations of the currents in the Golf stream (with 37.1 and179

34.3 cm/s of standard deviation for u and v respectively), geostrophy seems to be an ad-180

equate estimation. Thus, we expect a significant synergy between SSH and SST which181

can be learned by a neural network. For computational reasons, we resample the data182

to images of size 128×128 with a bilinear interpolation, corresponding to a resolution183

of 0.078◦ by pixel (approximately 8.7 km). Doing so, the perceptive field of the network184

covers the entire 10◦ by 10◦ area.185

2.2.2 SSH observations186

The nadir-pointing altimetry satellites take approximately a measurement per sec-187

ond, along their ground tracks. Their observations are a series of values with precise spa-188

tiotemporal coordinates that we aim to simulate. To do so, we retrieve the support of189

real-world satellite observations denoted Ω = {Ωi = (ti, lati, loni) , i ∈ [0 : N ]} from the190

Copernicus sea level product (CMEMS, 2021). Using Ω and the ground truth data Xssh
191

we simulate SSH observations Yssh as the trilinear interpolation of the simulated field192

on each point of the support. We add an instrumental error ε ∼ N (0, σ) with σ = 1.9 cm,193

which is the distribution used in the Ocean data challenge 2020 (CLS/MEOM, 2020).194

The SSH observations Yssh is defined as following:195

Yssh = Hssh
(
Xssh,Ω

)
+ ε (3)

where Hssh is the trilinear interpolation operator of the ground truth Xssh on the sup-196

port Ω. An example of these simulated along-track measurements is presented on the197

first row of Figure 1. For the neural network input observations, we regrid these data198

to a daily 128×128 image. We set the pixel value with no simulated satellite observa-199

tion to zero and we average the daily measures of SSH inside each pixel so that it rep-200

resents the mean of the daily measures from the different satellites (if any). As the GLO-201

RYS12 simulation assimilates SSH alongracks measurements, we introduce a delay be-202

tween the L3 satellite observations and the simulation. Doing so, we ensure that sim-203

ulated along-tracks are taken randomly and not specifically where the model assimilated204

real world observations.205
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Figure 1. Images of the Ground Truth variables from GLORYS and the simulated satel-

lite observations. The first row is the SSH variable, where the second row is the SST. The first

column is the ground truth from GLORYS simulation, the second column is their associated

satellite observation and the last is the difference.

2.2.3 SST observations206

SST remote sensing is based on direct infrared measurements, leading to wider mea-207

surement swaths but making the measurement sensible to cloud cover. The so-called L3208

satellite products have much higher data coverage, but no observation is possible when209

the cloud is too thick. To fill the gaps, the L3 products from several satellites are merged210

and interpolated to form the fully gridded image. This results in various resolutions in211

the same product, where high-resolution structures are artificially smoothed when the212

cloud coverage is too thick. To simulate this process, we use the mask of NRT L3 prod-213

uct (CMEMS, 2023) to retrieve a realistic cloud cover mask C (between 0 and 1) which214

we grid to the target resolution. The SST observation operator Hsst can then be writ-215

ten as:216

Ysst = Hsst
(
Xsst, C

)
= (1− C)⊙

(
Xsst + ε

)
+ C ⊙ Gσ ⋆

(
Xsst + ε

)
(4)

where ⊙ is the element-wise product, ⋆ the convolution product, ε is a white Gaussian217

noise image of size 32×32 linearly upsampled to a 128×128 image. We also use a spa-218

tial Gaussian filter (G0,σ) with σ = 16(km)) to simulate the smoothing of the interpo-219

lation performed by satellite products. Our SST observations thus present a spatially220

and temporally correlated noise, with different resolutions depending on cloud coverage.221

In the end, Hsst adds a noise with a standard deviation of 0.5 ◦C where the SST stan-222

dard deviation of the ground truth is 4.96 ◦C. This observation operator is different from223

real-world degradations but produces an image with an in-equal noise resolution simi-224

lar to the errors present in the L4 SST products.225

3 Proposed interpolation method226

3.1 Learning the interpolation227

The observation operator Hssh previously described can be seen as a forward op-228

erator that we aim to inverse. In the past years, deep neural networks, and especially229

convolutional neural networks, have proven their ability to solve ill-posed image inverse230
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problems (McCann et al., 2017) and more specifically inpainting problems (Jam et al.,231

2021; Qin et al., 2021). A neural network fθ is trained on a database to estimate the true232

state from observations fθ(y) = x̂. Learning this inversion operator thus requires (y, x)233

pairs (supervised) or only y (unsupervised) (Ongie et al., 2020).234

We chose to perform the interpolation on a time window of 21 days, the input is235

thus a tensor of 21 images of SSH, with or without SST images, and the output is the236

21 corresponding days of SSH only. An overview of the inputs and outputs of our method237

is provided in Figure 3. The neural network estimates the true state from observations,238

X̂ssh = fθ (Y), where Y = Yssh for a SSH-only interpolation, and Y =
(
Yssh,Ysst

)
239

if the network uses SST. The length of the time window will be discussed in Section 4.1,240

and training losses of the network in Section 3.3.241

3.2 Architecture242

We propose an attention-based encoder-decoder (abed) presented in Figure 2 to243

perform the interpolation over the time window. The attention mechanism allows to em-244

phasize important features while neglecting irrelevant ones which makes it well-suited245

to extract information from contextual variables. It is widely used in many computer246

vision tasks (Guo et al., 2021) and can be transposed to geoscience applications. The247

overall structure of our neural network is inspired by the one used by Che et al. (2022)248

that introduced a residual Unet with attention layers for rain nowcasting.249
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Figure 2. The architecture of the proposed Attention-Based Encoder Decoder (abed) neural

network. It is designed to take a time series of 21 images of SSH, with or without a time series

of SST. The encoder divides the spatial dimensions of the images by 4 through 2 “down-block”.

Then the decoder uses an attention block to highlight relevant information in the images and

progressively upscales it.

The encoder starts with a batch normalization and a 3D convolution (in time and250

in the two spatial dimensions) followed by two downsampling blocks that divide spatial251

dimensions by 2 (see Figure 2). The decoder is composed of residual attention blocks fol-252

lowed by upsampling blocks.253

–7–



manuscript submitted to Journal of Advances of Modelling Earth Systems (JAMES)

We describe hereafter our attention block which consists of two essential steps: tem-254

poral attention and spatial attention. Our approach builds upon the Convolutional Block255

Attention Module (CBAM) principle introduced by Woo et al. (2018), which successively256

performs channel and spatial attention. We extend this idea by incorporating tempo-257

ral information in the channel attention mechanism. To do so, we first compute the spa-258

tial average of each channel and instant, resulting in a tensor of size C×T where C is259

the channel number and T is the time series length. Subsequently, we apply two one-260

dimensional convolutional layers with a kernel of size 1, followed by a sigmoid activation261

function to estimate the attention weights. This corresponds to a 2-layer perceptron shared262

by every time step, which is different from the CBAM, as it includes the temporal in-263

formation in the channel attention. These weights are then multiplied to each timestep264

of every channel, enabling the network to highlight salient features and suppress irrel-265

evant information. After performing temporal attention, we proceed with spatial atten-266

tion. This step involves utilizing a 3-dimensional convolutional operation, where the tem-267

poral length of the kernel size matches the length of the time series. As a result, the en-268

tire time series is aggregated into a single 2D image, which serves as the basis for deriv-269

ing spatial attention. A residual skip connection is then applied, and the described block270

is repeated 4, 2, and 1 time for the first, second, and last block respectively. For further271

details about our implementation, we provide the PyTorch implementation of our net-272

work in https://gitlab.lip6.fr/archambault/james 2023.273

3.3 Loss and regularization274

We propose to compare two main strategies to train the neural network. Thanks275

to the OSSE previously described, we have access to the ground truth which we can use276

to learn the interpolation in a classic supervised fashion. However, it is also possible to277

train directly on observations, by applying the observation operator Hssh on the gen-278

erated map X̂ssh before computing the loss (see Equations 5,6,7). Filoche et al. (2022)279

performed the interpolation with SSH observations only, and, using the same principle,280

Archambault et al. (2023) showed that it was possible to overfit SSH images starting from281

SST only and constraining on SSH observations. Both these methods are fitted on one282

(or a small number) of examples and must therefore be refitted in order to be applied283

to unseen data. Using a larger real-world satellite dataset, S. A. Martin et al. (2023) trained284

a neural network directly from observations, by constraining it on independent satellite285

observations that were not given in the input. However, the lack of ground truth refer-286

ence makes it harder to compare the different reconstructions, especially regarding de-287

tected eddies and structures. We propose to train neural networks using the 3 follow-288

ing losses:289

• The MSE using ground truth :290

L(Xssh, X̂ssh) =
1

T ×H ×W

∑
t,x,y

(
Xssh

t,x,y − X̂ssh
t,x,y

)2
(5)

• The MSE using only observations:291

Ltrili(Y
ssh, X̂ssh) =

1

N

∑
i

(
Yssh

i −Hssh(X̂ssh)i

)2
(6)

• The MSE using only observations and the regularization introduced by S. A. Mar-292

tin et al. (2023):293

Ltrili reg(Y
ssh, X̂ssh) =Ltrili(Y

ssh, X̂ssh) + λ1
1

N1

∑
i

(
∂

∂s
Yssh

i − ∂

∂s
Hssh(X̂ssh)i

)2

+ λ2
1

N2

∑
i

(
∂2

∂s2
Yssh

i − ∂2

∂s2
Hssh(X̂ssh)i

)2
(7)
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where ∂
∂s is the along-track derivation of the SSH approximated by its rate of change (see294

Appendix 6.1). T is the temporal length of the time series (here 21), H and W the spa-295

tial dimensions of the images (here both equals 128), and N , N1, N2, the number of satel-296

lite measures of SSH, and SSH first and second along-track spatial derivative respectively.297

We take λ1 = λ2 = 0.05 the regularization coefficients, the same values used by S. A. Mar-298

tin et al. (2023).299
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Figure 3. Computational graph of the proposed unsupervised interpolation method. The

input of the neural network is a 21-day time series of SSH satellite observations, excluding data

from a single satellite, and optionally includes SST measurements. The network estimates a time

series of SSH fields states, upon which the observation operator is subsequently applied in order

to deduce Ŷssh. Finally the Mean Squared Error between the Ŷssh and Yssh is used to control

the network.

The losses Ltrili and Ltrili reg apply the observation operator Hssh, before com-300

puting the MSE, which allows the training in a framework where only observations are301

available. Thus, from an interpolation point of view, the inversion methods that use these302

losses are unsupervised as they can be trained without any ground truth image. How-303

ever, if we constrain the network on the same observations that were given in input, an304

over-fitting of along tracks will occur with no guarantee of generalization. To avoid this305

problem, we remove the measure from one satellite from the input of the network but306

calculate the loss function on all satellite observations. Doing so, the network must gen-307

eralize outside the along-track measure that was given as input. In Figure 3 we call Yssh
i308

the input observations and present an unsupervised inversion computational graph.309

3.4 Training details310

Train, validation, test split. We partitioned the dataset into three subsets: training,311

validation, and test data. We used the year 2017 exclusively for testing our reconstruc-312

tions (every analysis conducted in the following was performed on this data). We val-313

idate our methods on three distinct time intervals: (1) from July 14, 2002, to July 28,314

2003, (2) from January 5, 2008, to January 18, 2009, and (3) from June 28, 2013, to July315

13, 2014. The remaining data was used for training, with the exception of a 15-day pe-316

riod set aside to prevent data leakage.317

Normalization. We normalize both the input and output of the artificial network. This318

involves subtracting the mean and dividing by the standard deviation, which are both319

computed on the entire training dataset. Specifically, for images related to SSH measure-320

ments along tracks, we first perform this normalization and subsequently replace any miss-321

ing values with zeros. We normalize the neural network SSH outputs with the statistics322

computed on the input observations (in order that the method remains applicable in an323

unsupervised setting).324
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Training hyperparameters. We train every method using an ADAM optimizer (Kingma325

& Ba, 2017) with a learning rate starting at 5.10−5 and a decay of 0.99. We perform an326

early stopping with a patience of 8 epochs. For the supervised training the stopping cri-327

teria is the RMSE of the reconstruction on the fully gridded domain on the validation328

data, but in the unsupervised setting, we compute this RMSE on left-aside along-track329

measures. Doing so, the stopping strategy is still compliant with a situation where no330

ground truth is accessible.331

Ensemble. As neural network optimization is sensible to its weight initialization, we332

train 3 networks for every setting. The so-called “Ensemble” estimation is the average333

SSH map of the 3 networks. Performing an ensemble estimation helps to stabilize per-334

formances, and even enhance the reconstruction (Hinton & Dean, 2015). In the follow-335

ing, we call “Ensemble score” the score of the previously mentioned ensemble estima-336

tion, and “Mean score” the average of the score of each network taken independently.337

4 Results338

In the following, we present the scores of the different reconstruction methods on339

the test set. In contrast to the training and validation method, we assess the quality of340

the reconstruction on the gridded ground truth. We compare the fields estimated by the341

3 losses L, Ltri and Ltri reg on 3 different sets of input data: one with only SSH tracks,342

one with SSH and the noised SST denoted nSST, and one with the noise-free SST of the343

GLORYS assimilation. We train interpolation methods on noise-free SST to provide an344

upper-bound performance of the neural network in the case of a perfect physical link be-345

tween SSH and SST.346

4.1 SSH reconstruction and quality of derived geostrophic currents347

We give the RMSE of the SSH estimates fields in Table 1, and the RMSE on the348

velocity fields in Table 2. As expected, the supervised loss function outperforms the un-349

supervised framework in every data scenario. Specifically, in the SSH+SST scenario, the350

supervised loss decreases the RMSE of Ltri by 24%, and 8% without SST. Also, adding351

SST as an additional input to the network generally leads to improved performance com-352

pared to using SSH alone. This improvement is observed across all three loss functions,353

as the error values decrease for SSH+nSST compared to SSH. For instance, the SSH-354

only RMSE is decreased by 30% and 23% for SST and nSST respectively with L. The355

regularization introduced by (S. A. Martin et al., 2023) slightly increases reconstruction356

but is still close to the unregularized inversion.357

We estimate the surface currents from the reconstructed SSH from Equation 1, and358

we compare it to the surface circulation of the model. The errors on velocity in Table 2359

follow the same patterns as the RMSE on the SSH fields but with lesser differences be-360

tween methods. The RMSE is not too far from the minimal error achievable through geostro-361

phy, which is 6.57 cm/s for u and 6.14 for v on this data.362

In Figure 4, we show the daily errors of the different methods on the test year. We363

notice a strong temporal variability of the RMSE with a notable increase over late Sum-364

mer. Specifically, in August and September, all methods are performing worse than in365

Winter which can be explained by the high energy of the Ocean at this period.366

An important challenge of ocean satellite products is providing real-time estima-367

tions, as many applications cannot use products available with too much time delay. In368

an operational framework, products that are immediately available are called Near Real369

Time (NRT) whereas those that require a time delay before release are called Delayed370

Time (DT). While in Table 1 we presented the results obtained on the central image of371

the time window, we can also display their scores along the 21-days temporal window372
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Loss SSH SSH+nSST SSH+SST

L (supervised) 4.18 — 3.85 3.23 — 2.93 2.92 — 2.59
Ltri 4.52 — 4.16 3.86 — 3.51 3.62 — 3.24
Ltri reg 4.38 — 4.13 3.73 — 3.48 3.48 — 3.20

Table 1. SSH reconstruction RMSE in centimeters (mean score on the left and ensemble score

on the right) of 3 ABED networks. The interpolation is trained using the 3 different losses de-

scribed in Section 3.3 with the following settings: SSH-only interpolation, SSH and noised SST,

and SSH and noise-free SST. All metrics are given on the central image of a 21-day time window.

Loss SSH SSH+nSST SSH+SST

u v u v u v

L∗ 13.0 14.1 10.9 11.7 10.1 10.6
Ltri 13.3 15.7 12.1 14.2 11.3 13.4
Ltri reg 12.9 14.3 11.8 12.9 11.1 12.1

*supervised
Table 2. Eastward (u) and northward (v) surface currents in cm/s. The currents were esti-

mated by applying the geostrophy approximation (see Equation1) on the SSH ensemble estima-

tion of the 3 ABED networks.
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Figure 4. RMSE of the different reconstructions during the test year (2017)

as in Figure 5. The central image is a 10-day Delayed Time reconstruction as we need373

images of observations 10 days in the future. In Figure 5 we can verify that 21 days of374

data contain enough information to reconstruct the central image: for instance, 5 days375

from the border of the temporal window the reconstruction error is just 3% higher than376

the one at the center. This means that we can significantly reduce the delay (and there-377

fore the training cost of our model) without causing severe drops in performance, which378

could be useful if applied in an operational framework. However, when it comes to pro-379

ducing NRT products (0 delay) this graph shows that we expect a significant loss of qual-380

ity in the reconstruction which is usual (Amores et al., 2018; Stegner et al., 2021). To381

accurately produce an NRT image and even forecast, different training methods should382
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be tested such as centering the target time window in the future compared to observa-383

tions.
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Figure 5. RMSE of the different reconstructions along the time window. The errors at a time

delay of −20 correspond to an anti-causal scheme (knowing only future observations) whereas

timedelay = 0 corresponds to a causal scheme (knowing no future observations). Knowing both

past and future observations leads to the optimal reconstruction at timedelay = −10.

384

4.2 Eddy detection analysis385

4.2.1 Importance of mesoscale eddies386

Mesoscale eddies play an important role in ocean circulation and dynamics and their387

understanding leads to diverse applications in oceanography or navigation (Chelton, Schlax,388

& Samelson, 2011). Previous studies underline how these structures transport heat, es-389

pecially between latitudes 0◦ and 40◦ in the North Atlantic (Jayne & Marotzke, 2002),390

but also salinity (Amores et al., 2017), or plankton (Chelton, Gaube, et al., 2011). In391

practice, mesoscale eddies and structures are estimated through geostrophic currents de-392

rived from satellite altimetry. However, operational satellite products such as duacs, have393

too coarse resolutions to resolve accurately mesoscale structures. Performing an OSSE394

to simulate the satellite’s remote sensing Amores et al. (2018); Stegner et al. (2021) showed395

that duacs-like optimal interpolation aggregates small eddies into larger ones (i.e. with396

a radius greater than 100 km). These interpolations also capture a small percentage of397

eddies present in the model simulation (around 6% in the North Atlantic) and change398

the eddies’ distribution and properties. This is why we are interested in finding to what399

extent our reconstruction methods are able to detect small eddies in the ground truth,400

and how well the detected eddies are resolved and their physical properties conserved.401

4.2.2 Automatic eddy detection algorithm: AMEDA402

We use the Angular Momentum for Eddy Detection and tracking Algorithm (AMEDA)403

introduced by (Vu et al., 2018) to perform the eddies detection. It is based on the Lo-404

cal Normalized Angular Momentum (LNAM), a dynamic metric first introduced by (Mkhinini405

et al., 2014), that we define hereafter:406

LNAM(Pi) =

∑
j

−−→
PiPj ×

−→
Vj∑

j

−−→
PiPj .

−→
Vj +

∑
j |
−−→
PiPj ||

−→
Vj |

=
Li

Si +BLi
(8)
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where Pi is the point of the grid where we compute the LNAM, Pj is a neighbor point407

of the grid,
−−→
PiPj is the position vector from Pi to Pj and

−→
Vj is the velocity vector in Pj .408

Thus, the unnormalized angular momentum Li is computed through a sum of cross prod-409

ucts and is bounded by BLi, so that if Pi is the center of an axisymmetric cyclone (resp410

anticyclone), LNAM(Pi) will be equal to 1 (resp -1). Also, if the circulation field is hy-411

perbolic and not an ellipsoid, Si will reach large values, and LNAM(Pi) will be close412

to 0. All sum is computed on a local neighborhood of Pi, which is a hyperparameter of413

the method (typically a square centered in Pi).414

AMEDA finds potential eddy centers by searching for the local extrema of the LNAM415

field. The shapes of the eddies are then defined by following closed current streamlines416

(either taking the last closed streamline, or the maximum velocity one). We perform the417

AMEDA algorithm on the geostrophic velocity field of our estimation and on the ground418

truth currents. An eddy is said to be detected if its ground truth barycenter is inside419

the closed streamline of its estimation.420

4.2.3 Eddy detection performances421

We present hereafter the detection scores of the different reconstruction methods,422

with three data scenarios and three losses. We take the ensemble SSH estimation of the423

neural networks and perform the AMEDA algorithm on the velocity field derived through424

the geostrophic approximation (see Equation 1).425

In Table 3 we present the F1 score, the recall, and the precision of the methods.426

The recall tells us the proportion of actual positive instances that were correctly iden-427

tified by the detection (a recall of 1 means that all ground truth eddies were detected).428

The precision measures the trust that we can put in the detected eddies (a precision of429

1 means that all eddies in the simulation were also present in the ground truth). To ag-430

gregate the recall and the precision, we use the F1 score which is the harmonic mean of431

recall and precision.A value of 1 means a perfect detection: all ground truth eddies were432

detected and the estimation produced no false positive.433

Loss SSH SSH+nSST SSH+SST

F1 recall precision F1 recall precision F1 recall precision

L (supervised) 0.719 0.617 0.86 0.765 0.685 0.866 0.785 0.728 0.852

Ltri 0.704 0.647 0.771 0.727 0.672 0.79 0.739 0.692 0.793

Ltri reg 0.714 0.609 0.863 0.725 0.623 0.865 0.742 0.644 0.877

Table 3. Scores of the AMEDA eddy detection performed on the Ensemble estimation of abed

interpolation. The considered scores are the precision, the recall, and the F1 score.

Data comparison. As expected, no matter which loss we consider, the detection method434

using noise-free temperature outperforms the two other scenarios with higher F1 scores.435

Even the noisy SST provides important information for eddy reconstruction as the SSH-436

only method yields lower results than the two other scenarios. We also see that for each437

loss, the precision scores are less impacted by the input data than the recall is. This means438

that the SSH-only scenario does not produce a lot more false detection than the SST meth-439

ods, but misses much more structures.440

Loss comparison. On the other hand, the loss function used to perform the inversion441

has a substantial impact on precision and recall. The regularization of the unsupervised442

loss brings the detection precision to the level of the supervised method (even higher for443

the SSH-only and SSH+SST) but also reduces the recall of all methods compared to their444
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unregularized version. In other words, adding a smoothness constraint on the SSH gra-445

dient field prevents the neural network from generating false eddies, but also prevents446

it from retrieving some structures.447

4.2.4 Physical properties of detected eddies448

In order to further investigate the performance of the eddy detection methods, we449

analyze the detection outcomes based on the physical characteristics of the eddies. For450

instance, smaller eddies tend to have shorter lifespans, making them more challenging451

to detect due to their decreased likelihood of being observed by satellites. Conversely,452

high-speed eddies are derived from important sea surface height (SSH) variations, thus453

exhibiting a strong signature in the generated mapping. Figure 6 shows the detection454

performances as a function of some key parameters such as the maximum radius, life-455

time, or maximum velocity along the final closed current line.456

As anticipated, using SST and nSST data contributes to the detection of eddies,457

as indicated by the higher F1 scores achieved in every loss scenario. However, small and458

short-lived eddies are less frequently detected, resulting in lower recall scores. Specifi-459

cally, only 17% of the eddies with a radius below 15 km are successfully detected in the460

best scenario. Nonetheless, except for the unregularized trilinear loss function, the pre-461

cision scores for the detected eddies remain high, even for small and short-lived ones. This462

observation confirms the previously observed phenomenon where the regularization em-463

ployed in the inversion process prevents the network from generating false eddy detec-464

tions, but also stops it from capturing a significant portion of the actual eddies. This reg-465

ularization behavior is expected, as forcing a smoothness constraint on the SSH gradi-466

ent field leads to denying some of the small structures.467

We also want to assess the accuracy of the model to estimate the physical prop-468

erties of the eddies. To this end, we focus on the eddies that were successfully detected469

by all the methods (4881 eddies out of the 7908 eddies in the ground truth). We com-470

pare the physical parameters of the estimated eddies to their values in the correspond-471

ing true eddy. To do so, we compute the RMSE and bias of the following parameters:472

the maximum radius and velocity, and the average distance between the centers of es-473

timate and true eddies. The error RMSE tells us if the eddies are well resolved, whereas474

the bias (estimate parameter minus ground truth parameter) tells us if the interpolation475

method has a global tendency to overestimate or underestimate some characteristics of476

the eddies.477

Once again, Tables 4, 5 and 6 show that SST helps to estimate eddies radius, ve-478

locity, and position. Nonetheless, there is a bias of radius and velocity: the size of the479

eddy is statistically overestimated compared to its ground truth, while its speed is sys-480

tematically underestimated. This is particularly true for the regularized unsupervised481

loss because of its smoothness constraint, with a velocity bias accountable for half of the482

RMSE. It could be interesting to know if the estimated eddies could be unbiased with-483

out decreasing the other performances.484
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Figure 6. Detection scores of the different methods on eddies separated by radius (first row),

lifetime (second row), and maximum velocity (last row). The considered scores are F1 (first col-

umn), recall (second column), and precision (third column). The recall tells the proportion of

actual positive instances that were correctly identified, the precision measures the trust that we

can put in the detected eddies, and the F1 score aggregates these two values.
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Loss SSH SSH+nSST SSH+SST

RMSE bias RMSE bias RMSE bias

L (supervised) 21.8 3.8 20.5 4.5 19.0 3.8
Ltri 21.5 1.6 20.4 2.2 20.8 1.7
Ltri reg 22.4 2.9 21.7 3.3 21.2 3.9

Table 4. Eddies maximum radius RMSE and bias (km). The eddy detection is performed on

geostrophic currents of the ensemble estimation and the bias is computed from the estimated

radius minus ground truth radius

Loss SSH SSH+nSST SSH+SST

RMSE bias RMSE bias RMSE bias

L (supervised) 12.9 -6.2 11.0 -3.8 10.2 -2.4
Ltri 12.7 -5.3 11.9 -4.5 12.2 -3.8
Ltri reg 13.8 -8.0 13.0 -6.9 12.1 -5.8

Table 5. Eddies maximum velocity RMSE and bias (cm/s)

Loss SSH SSH+nSST SSH+SST

RMSE RMSE RMSE

L (supervised) 23.2 21.7 20.3
Ltri 24.5 23.5 22.9
Ltri reg 23.4 23.2 22.2

Table 6. Eddies center position RMSE (km)

4.3 Comparison with state-of-the-art methods on a NATL60 OSSE485

We are interested in comparing our estimations to state-of-the-art methods for grid-486

ding SSH maps. To this end, the Ocean Data Challenge 2020 (CLS/MEOM, 2020) pro-487

vides a similar OSSE to the one we used, as well as the interpolations of several meth-488

ods. The studied area is the same, and the included data are SSH, SST, surface currents489

and the simulated along tracks measures. However, the ground truth used is the NATL60490

simulation (Ajayi et al., 2019) which uses the same physical model (NEMO 3.6) (Madec491

et al., 2017) but at finer scales than GLORYS, and without assimilation. Also, this sim-492

ulation was run for only one year, which makes it difficult to train neural networks, this493

is why we designed our own OSSE. The state-of-the-art framework presented in this chal-494

lenge is the following:495

• duacs: the operational linear optimal interpolation leveraging covariance matrix496

tuned on 25 years of data.497

• dymost (Ubelmann et al., 2016; Ballarotta et al., 2020) and miost (Ardhuin et498

al., 2020) : two variants of the linear optimal interpolation where the Gaussian499

covariance model is changed for a non linear surface quasi-geostrophic dynamic500

model (for dymost) or by a wavelet base (miost).501

• bfn (Le Guillou et al., 2020) : a data assimilation method that performs a back502

and forward nudging of a surface quasi-geostrophic model.503
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• 4dvarnet (Fablet et al., 2021): introduced 4dvarnet, a supervised deep learning504

framework. In this configuration, it only takes SSH observations as input.505

• musti (Archambault et al., 2023): an unsupervised neural network that overfits506

SSH along tracks observations starting from an SST image. But this method must507

be refitted to new observations.508

To produce our own estimation, we regrid the provided data to our resolution and509

perform the interpolation on this dataset without any finetuning or retraining. We eval-510

uate all methods on 42 days of simulation, (between October 22nd and December 2nd511

2012) which was the test set defined by the challenge. Each method is then evaluated512

using the following metrics, and we sum up the results in Table 7:513

• µ and σt (in cm), are respectively the RMSE of the SSH and the temporal stan-514

dard deviation of this RMSE.515

• λx (in degrees) and λt (in days) are two spectral metrics, introduced by (Le Guil-516

lou et al., 2020). We compute respectively the spatial and temporal power spec-517

trum of the error, λx is then the smallest spatial wavelength where the power spec-518

trum of the error is equal to the power spectrum of the signal and λt its tempo-519

ral equivalent. For further information, we refer the reader to (Le Guillou et al.,520

2020)521

• µu and µv (in cm/s) are the RMSE between the geostrophic currents of the ground522

truth and the one of the estimation.523

Method SST SUP µ σt λx λt µu µv

duacs ✗ ✗ 4.89 3.02 1.42 12.08 16.8 16.2
dymost ✗ ✗ 5.18 3.05 1.35 11.87 16.8 16.8
miost ✗ ✗ 4.21 2.5 1.34 10.34 14.9 14.5
bfn ✗ ✗ 4.7 2.73 1.23 10.64 15.1 15.3
4dvarnet ✗ ✓ 3.26 1.73 0.84 7.95 13.1 12.8
musti ✓ ✗ 3.12 1.32 1.23 4.14 12.2 14.2

SSH L ✗ ✓ 3.75 2.0 1.21 8.74 13.3 13.5
SSH Ltri ✗ ✗ 4.06 2.19 1.32 9.29 13.7 15.1
SSH Ltri reg ✗ ✗ 4.23 2.36 1.24 9.98 13.8 14.2
SSH+SST L ✓ ✓ 2.88 1.24 0.95 4.51 11.4 11.4
SSH+SST Ltri ✓ ✗ 3.08 1.41 1.18 5.18 11.8 12.8
SSH+SST Ltri reg ✓ ✗ 3.39 1.65 1.18 5.7 12.4 12.3

Table 7. Comparison of the state-of-the-art reconstruction methods on a 43-day OSSE. SST

stands for whether or not the reconstruction methods are using SST, and SUP stands for whether

or not the methods are supervised.

We clearly see in thes scores a predominance of neural network-based methods (musti,524

4dvarnet and ours) as the importance of the SST in the reconstruction (musti, and ours).525

This analysis highlights the interest in using deep learning-based methods for these in-526

verse problems, as we can expect around 2 cm of error reduction on the operational in-527

terpolation scheme duacs with our best method (41% of reduction). We also significantly528

reduce the errors on currents compared to duacs’s, by 5.7 cm/s for u and 5.4 cm/s for v529

(35% and 34% error reduction).530
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5 Conclusion and perspectives531

5.1 Summary532

Throughout this study, we show promising results for a neural interpolation of SSH533

tracks, even while training without fully gridded data. Leveraging an Observing System534

Simulation Experiment, we trained an attention-based auto-encoder neural network, with535

3 different loss functions (2 of them learning the reconstruction without ground truth),536

and using 3 sets of data (SSH only, SSH and noised SST, SSH, and SST). We show a sys-537

tematic improvement of the interpolation thanks to the use of SST as well for the SSH538

itself, but also for the reconstruction of currents and the detection of eddies. Using tem-539

perature data (noisy or not), the unsupervised inversion outperforms even the supervised540

SSH-only neural network (3.86 cm of RMSE for the unsupervised noisy SST against 4.18541

cm for the supervised SSH-only method). This shows the importance of contextual in-542

formation to constrain the inverse problem, even while learning with observation only.543

Using AMEDA, an automatic eddy detection algorithm, we were able to identify544

cyclones and anticyclones in the ground truth and compare them with the eddies detected545

in the geostrophic approximation of the different mappings. This allows a deeper phys-546

ical interpretation than the SSH reconstruction alone. We conclude that SST aids in cap-547

turing finer structures that might be overlooked by SSH-only methods, but also that the548

key physical properties of the detected eddies such as size, speed, or center position are549

better rendered by SST-using methods. Furthermore, when it comes to unsupervised re-550

construction, we show that the non-regularized and regularized inversions have close de-551

tection scores, but their errors are different. The regularized inversions exhibited lower552

recall scores, indicating that certain eddies were not detected due to the regularization553

process. However, they demonstrated higher precision scores, implying increased con-554

fidence in the eddies that were successfully detected.555

We conducted an evaluation of our model’s performance by comparing it with state-556

of-the-art interpolation techniques produced during the Ocean Data Challenge 2020 which557

provided diverse input data, ground truth measurements, and mappings derived from558

different methods. Remarkably, our approach exhibits superior performance even with-559

out retraining the neural network on this novel dataset, thanks to the integration of SST560

information. Notably, the utilization of SST led to a substantial enhancement of 41%561

in terms of RMSE for SSH when compared to the widely used L4 product from duacs.562

Moreover, we observed significant improvements of 34% and 35% for u and v currents,563

respectively. These findings present promising perspectives for advancing satellite SSH564

gridding through the application of deep learning methodologies and the fusion of di-565

verse physical information.566

5.2 Perspectives567

Transfer to real-world data. In this work, we performed SSH interpolation on568

an OSSE, which allows us to evaluate our methods on an idealized simulation of satel-569

lite tracks. The OSSE has the advantage of being more interpretable than real-world data,570

as the ground truth is accessible for performance evaluation, but is less realistic, espe-571

cially in the simulation of SST noise which is hard to model. While simulations provide572

valuable insights, their direct application to real-world observations can be challenging573

due to inherent differences between the two domains. However, by employing transfer574

learning, we expect to leverage the knowledge gained from simulations to enhance re-575

construction algorithms for real-world data. In further work, we are interested in com-576

paring strategies able to learn directly from observations such as (Archambault et al.,577

2023; S. A. Martin et al., 2023), and a network that would benefit from supervised pre-578

training on simulation, and transfer on real-world observations. For instance, a model579

supervised on a simulation can be adapted to the new domain using one of the unsuper-580
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vised losses used in this study. This will require accurate modeling of the SST input noise581

and an adapted transfer strategy in order for the pre-training to be efficient.582

Global interpolation. Furthermore, to get toward a global gridded SSH prod-583

uct, many challenges still need to be addressed. For instance, as the geostrophic equi-584

librium depends on the Coriolis force surface projection, and thus on the latitude con-585

sidered, we may require a model to be trained on several areas with different latitudes.586

Also, we can wonder which strategy is more efficient between training a global model or587

several local models, each one specialized for a range of latitude or geographical area.588

Closed seas and coastal water also have very different physical interactions and should589

be reconstructed by different methods.590

Using different input and output data. We have demonstrated the benefit of591

using multi-physical information, specifically SST, to enhance SSH reconstruction through592

the implementation of a flexible neural network framework. The integration of data from593

diverse physical sources exhibits promising outcomes, yet conventional model-based meth-594

ods encounter challenges due to noise and observational difficulties associated with real-595

world data. In contrast, machine learning opens doors to augment these methods with596

diverse and abundant data sources. For instance, in our investigation, we employed noisy597

yet complete SST data, but using L3 SST products is also possible. Furthermore, an in-598

triguing prospect arises as to whether Level 4 (L4) and Level 3 (L3) SST products can599

be effectively combined, thereby potentially yielding even more precise and exhaustive600

information. Other physical measures might improve the reconstruction, such as chloro-601

phyll maps that track plankton advected by currents (Kahru et al., 2012).602
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6 Annexes622

6.1 Along-track spatial derivative623

To calculate the first and second spatial derivatives of the SSH along the ground624

tracks which we use to regularize the network (see Section 3.3). Given Yssh, we approx-625
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imate the derivative by the rate of change of the SSH:626

∂

∂s
Yssh

i ≃
Yssh

i+1 −Yssh
i

△s
(9)

627

∂2

∂s2
Yssh

i ≃
∂
∂sY

ssh
i+1 − ∂

∂sY
ssh
i

△s
(10)

where △s is the ground distance between the measures. We only compute the spatial628

derivatives from observations coming from the same satellite and only if the measures629

are taken with less than two seconds of delay. This way we estimate spatial derivatives630

only where the rate of change is a valid approximation of the derivation.631

6.2 Detection plot632

In the following, we present the Ensemble interpolation of the methods for three633

days. To select which day to look at, we computed the daily error of the SSH method634

and the SSH+SST error. The first day is chosen so that the gap between these two er-635

rors is maximal (the SST method performs a lot better than the SSH-only method). The636

second day corresponds to the median error gap, and the last to the minimal error gap.637

With the reconstructions of every method and the corresponding SSH ground truth, we638

also provide the SST and the noised SST. To highlight the eddy signatures in SST data639

we plot the ground truth eddy computed on SSH on SST images as well.640
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