REFERENCES
Abanades, B., Wong, W. K., Boyles, F.,
Georges, G., Bujotzek, A., & Deane, C. (2022). ImmuneBuilder:
Deep-Learning models for predicting the structures of immune proteins .https://doi.org/10.1101/2022.11.04.514231
Adams, J. J., & Sidhu, S. S. (2014,
Feb). Synthetic antibody technologies. Curr Opin Struct Biol, 24 ,
1-9.https://doi.org/10.1016/j.sbi.2013.11.003
Albrecht, H., Burke, P. A., Natarajan,
A., Xiong, C. Y., Kalicinsky, M., DeNardo, G. L., & DeNardo, S. J.
(2004, Jan-Feb). Production of soluble ScFvs with C-terminal-free thiol
for site-specific conjugation or stable dimeric ScFvs on demand.Bioconjug Chem, 15 (1), 16-26.https://doi.org/10.1021/bc030018+
Arruebo, M., Valladares, M., &
González-Fernández, Á. (2009). Antibody-conjugated nanoparticles for
biomedical applications. Journal of Nanomaterials, 2009 , 1-24.https://doi.org/10.1155/2009/439389
Ascoli, C. A., & Aggeler, B. (2018,
Sep). Overlooked benefits of using polyclonal antibodies.Biotechniques, 65 (3), 127-136.https://doi.org/10.2144/btn-2018-0065
Balmforth, M. R., Haigh, J., Kumar,
V., Dai, W., Tiede, C., Tomlinson, D. C., Deuchars, J., Webb, M. E., &
Turnbull, W. B. (2021, Oct 20). Piggybacking on the Cholera Toxin:
Identification of a CTB-Binding Protein as an Approach for Targeted
Delivery of Proteins to Motor Neurons. Bioconjug Chem, 32 (10),
2205-2212.https://doi.org/10.1021/acs.bioconjchem.1c00373
Baloch, A. R., Baloch, A. W., Sutton,
B. J., & Zhang, X. (2016). Antibody mimetics: promising complementary
agents to animal-sourced antibodies. Crit Rev Biotechnol, 36 (2),
268-275.https://doi.org/10.3109/07388551.2014.958431
Basran, A., & Stanley, E. (2018,
07/01). Abstract 3776: Generation and formatting of an Affimer®
biotherapeutic for the inhibition of the PD-L1/PD-1 pathway: Proof of
concept in mouse. Cancer Research, 78 , 3776-3776.https://doi.org/10.1158/1538-7445.AM2018-3776
Bradbury, A., & Plückthun, A. (2015,
Feb 5). Reproducibility: Standardize antibodies used in research.Nature, 518 (7537), 27-29.https://doi.org/10.1038/518027a
Busch, R. T., Karim, F., Weis, J.,
Sun, Y., Zhao, C., & Vasquez, E. S. (2019, Sep 17). Optimization and
Structural Stability of Gold Nanoparticle-Antibody Bioconjugates.ACS Omega, 4 (12), 15269-15279.https://doi.org/10.1021/acsomega.9b02276
Chen, C. (2004, Apr 6). Searching for
intellectual turning points: progressive knowledge domain visualization.Proc Natl Acad Sci U S A, 101 Suppl 1 (Suppl 1), 5303-5310.https://doi.org/10.1073/pnas.0307513100
Chen, C. M. (2006, Feb 1). CiteSpace
II: Detecting and visualizing emerging trends and transient patterns in
scientific literature [Article]. Journal of the American
Society for Information Science and Technology, 57 (3), 359-377.https://doi.org/10.1002/asi.20317
Chomet, M., van Dongen, G., & Vugts,
D. J. (2021, Jul 21). State of the Art in Radiolabeling of Antibodies
with Common and Uncommon Radiometals for Preclinical and Clinical
Immuno-PET. Bioconjug Chem, 32 (7), 1315-1330.https://doi.org/10.1021/acs.bioconjchem.1c00136
Chu, T. C., Marks, J. W., 3rd,
Lavery, L. A., Faulkner, S., Rosenblum, M. G., Ellington, A. D., &
Levy, M. (2006, Jun 15). Aptamer:toxin conjugates that specifically
target prostate tumor cells. Cancer Res, 66 (12), 5989-5992.https://doi.org/10.1158/0008-5472.Can-05-4583
Desmet, J., Verstraete, K., Bloch,
Y., Lorent, E., Wen, Y., Devreese, B., Vandenbroucke, K., Loverix, S.,
Hettmann, T., Deroo, S., Somers, K., Henderikx, P., Lasters, I., &
Savvides, S. N. (2014, Oct 30). Structural basis of IL-23 antagonism by
an Alphabody protein scaffold. Nat Commun, 5 , 5237.https://doi.org/10.1038/ncomms6237
Dietrich, A., Andreeff, M., Koi, L.,
Bergmann, R., Schubert, M., Schreiner, L., Löck, S., Sihver, W.,
Freudenberg, R., Hering, S., Pietzsch, H. J., Steinbach, J., Kotzerke,
J., Baumann, M., & Krause, M. (2021, Feb). Radiotherapy enhances uptake
and efficacy of (90)Y-cetuximab: A preclinical trial. Radiother
Oncol, 155 , 285-292.https://doi.org/10.1016/j.radonc.2020.11.013
Fernandes, L. A., Gomes, A. A.,
Guimarães, B. G., de Lourdes Borba Magalhães, M., Ray, P., & da Silva,
G. F. (2022, Jun). Engineering defensin α-helix to produce high-affinity
SARS-CoV-2 spike protein binding ligands. Protein Sci, 31 (6),
e4355.https://doi.org/10.1002/pro.4355
Fosgerau, K., & Hoffmann, T. (2015,
Jan). Peptide therapeutics: current status and future directions.Drug Discov Today, 20 (1), 122-128.https://doi.org/10.1016/j.drudis.2014.10.003
Ge, S., Wu, R., Zhou, T., Liu, X.,
Zhu, J., & Zhang, X. (2022, Feb 12). Specific anti-SARS-CoV-2 S1
IgY-scFv is a promising tool for recognition of the virus. AMB
Express, 12 (1), 18.https://doi.org/10.1186/s13568-022-01355-4
Goodman, C. M., Choi, S., Shandler,
S., & DeGrado, W. F. (2007, May). Foldamers as versatile frameworks for
the design and evolution of function. Nat Chem Biol, 3 (5),
252-262.https://doi.org/10.1038/nchembio876
Gravina, A., Tediashvili, G.,
Rajalingam, R., Quandt, Z., Deisenroth, C., Schrepfer, S., & Deuse, T.
(2023, Jan 2). Protection of cell therapeutics from antibody-mediated
killing by CD64 overexpression. Nat Biotechnol .https://doi.org/10.1038/s41587-022-01540-7
Guillard, S., Kolasinska-Zwierz, P.,
Debreczeni, J., Breed, J., Zhang, J., Bery, N., Marwood, R., Tart, J.,
Overman, R., Stocki, P., Mistry, B., Phillips, C., Rabbitts, T.,
Jackson, R., & Minter, R. (2017, Jul 14). Structural and functional
characterization of a DARPin which inhibits Ras nucleotide exchange.Nat Commun, 8 , 16111.https://doi.org/10.1038/ncomms16111
Holliger, P., & Hudson, P. J. (2005,
Sep). Engineered antibody fragments and the rise of single domains.Nat Biotechnol, 23 (9), 1126-1136.https://doi.org/10.1038/nbt1142
Jiang, T., Zhang, L., Wang, J., &
Li, X. (2009, Nov). Reasonable design of antibody mimetics for targeting
glioma and small cell lung cancer. Eur J Cancer Prev, 18 (6),
431-435.https://doi.org/10.1097/CEJ.0b013e32832e0912
Kadonosono, T., Yimchuen, W., Ota,
Y., See, K., Furuta, T., Shiozawa, T., Kitazawa, M., Goto, Y., Patil,
A., Kuchimaru, T., & Kizaka-Kondoh, S. (2020, Jan 21). Design Strategy
to Create Antibody Mimetics Harbouring Immobilised Complementarity
Determining Region Peptides for Practical Use. Sci Rep, 10 (1),
891.https://doi.org/10.1038/s41598-020-57713-4
Khalili, H., Godwin, A., Choi, J. W.,
Lever, R., Khaw, P. T., & Brocchini, S. (2013, Nov 20). Fab-PEG-Fab as
a potential antibody mimetic. Bioconjug Chem, 24 (11), 1870-1882.https://doi.org/10.1021/bc400246z
Khalili, H., Lee, R. W., Khaw, P. T.,
Brocchini, S., Dick, A. D., & Copland, D. A. (2016, Nov 22). An
anti-TNF-α antibody mimetic to treat ocular inflammation. Sci Rep,
6 , 36905.https://doi.org/10.1038/srep36905
Khatib, S. E., & Salla, M. (2022).
The mosaic puzzle of the therapeutic monoclonal antibodies and antibody
fragments - A modular transition from full-length immunoglobulins to
antibody mimetics. Leuk Res Rep, 18 , 100335.https://doi.org/10.1016/j.lrr.2022.100335
Kuroda, D., Shirai, H., Jacobson, M.
P., & Nakamura, H. (2012, Oct). Computer-aided antibody design.Protein Eng Des Sel, 25 (10), 507-521.https://doi.org/10.1093/protein/gzs024
Lenci, E., & Trabocchi, A. (2020,
Jun 7). Peptidomimetic toolbox for drug discovery. Chem Soc Rev,
49 (11), 3262-3277.https://doi.org/10.1039/d0cs00102c
Li, Z., Mohamed, M. A., Vinu Mohan,
A. M., Zhu, Z., Sharma, V., Mishra, G. K., & Mishra, R. K. (2019, Dec
10). Application of Electrochemical Aptasensors toward Clinical
Diagnostics, Food, and Environmental Monitoring: Review. Sensors
(Basel), 19 (24).https://doi.org/10.3390/s19245435
Lipman, N. S., Jackson, L. R.,
Trudel, L. J., & Weis-Garcia, F. (2005). Monoclonal versus polyclonal
antibodies: distinguishing characteristics, applications, and
information resources. Ilar j, 46 (3), 258-268.https://doi.org/10.1093/ilar.46.3.258
Miersch, S., & Sidhu, S. S. (2012,
Aug). Synthetic antibodies: concepts, potential and practical
considerations. Methods, 57 (4), 486-498.https://doi.org/10.1016/j.ymeth.2012.06.012
Mooghali, A., Alijani, R., Karami,
N., & Khasseh, A. (2011). Scientometric analysis of the scientometric
literature. International Journal of Information Science and
Management (IJISM), 9 (1), 19-31.
Moore, G. P. (1989, Sep). Genetically
engineered antibodies. Clin Chem, 35 (9), 1849-1853.
Mullard, A. (2021, Jul). FDA approves
100th monoclonal antibody product. Nat Rev Drug Discov, 20 (7),
491-495.https://doi.org/10.1038/d41573-021-00079-7
Nelson, P. N., Reynolds, G. M.,
Waldron, E. E., Ward, E., Giannopoulos, K., & Murray, P. G. (2000,
Jun). Monoclonal antibodies. Mol Pathol, 53 (3), 111-117.https://doi.org/10.1136/mp.53.3.111
Olson, C. A., Nie, J., Diep, J.,
Al-Shyoukh, I., Takahashi, T. T., Al-Mawsawi, L. Q., Bolin, J. M.,
Elwell, A. L., Swanson, S., Stewart, R., Thomson, J. A., Soh, H. T.,
Roberts, R. W., & Sun, R. (2012, Dec 7). Single-round, multiplexed
antibody mimetic design through mRNA display. Angew Chem Int Ed
Engl, 51 (50), 12449-12453.https://doi.org/10.1002/anie.201207005
Park, B. W., Zhang, H. T., Wu, C.,
Berezov, A., Zhang, X., Dua, R., Wang, Q., Kao, G., O’Rourke, D. M.,
Greene, M. I., & Murali, R. (2000, Feb). Rationally designed
anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in
vitro and in vivo. Nat Biotechnol, 18 (2), 194-198.https://doi.org/10.1038/72651
Park, H. I., Yoon, H. W., & Jung, S.
T. (2016, Nov). The Highly Evolvable Antibody Fc Domain. Trends
Biotechnol, 34 (11), 895-908.https://doi.org/10.1016/j.tibtech.2016.04.005
Qiu, X. Q., Wang, H., Cai, B., Wang,
L. L., & Yue, S. T. (2007, Aug). Small antibody mimetics comprising two
complementarity-determining regions and a framework region for tumor
targeting. Nat Biotechnol, 25 (8), 921-929.https://doi.org/10.1038/nbt1320
Qu, H., Csordas, A. T., Wang, J., Oh,
S. S., Eisenstein, M. S., & Soh, H. T. (2016, Aug 23). Rapid and
Label-Free Strategy to Isolate Aptamers for Metal Ions. ACS Nano,
10 (8), 7558-7565.https://doi.org/10.1021/acsnano.6b02558
Raybould, M. I. J., Marks, C.,
Krawczyk, K., Taddese, B., Nowak, J., Lewis, A. P., Bujotzek, A., Shi,
J., & Deane, C. M. (2019, Mar 5). Five computational developability
guidelines for therapeutic antibody profiling. Proc Natl Acad Sci
U S A, 116 (10), 4025-4030.https://doi.org/10.1073/pnas.1810576116
Šácha, P., Knedlík, T., Schimer, J.,
Tykvart, J., Parolek, J., Navrátil, V., Dvořáková, P., Sedlák, F.,
Ulbrich, K., Strohalm, J., Majer, P., Šubr, V., & Konvalinka, J. (2016,
Feb 12). iBodies: Modular Synthetic Antibody Mimetics Based on
Hydrophilic Polymers Decorated with Functional Moieties. Angew
Chem Int Ed Engl, 55 (7), 2356-2360.https://doi.org/10.1002/anie.201508642
Shahidian, A., Ghassemi, M.,
Mohammadi, J., & Hashemi, M. (2020). 4 - Immunotherapy. In A.
Shahidian, M. Ghassemi, J. Mohammadi, & M. Hashemi (Eds.),Bio-Engineering Approaches to Cancer Diagnosis and Treatment (pp.
69-114). Academic Press.https://doi.org/https://doi.org/10.1016/B978-0-12-817809-6.00004-2
Shan, L., Cook, K. M., Haskins, N.,
Omar, B., Jiang, Y., Garcia, A., Koksal, A., Oganesyan, V., Rosenthal,
K., Wu, H., Dall’Acqua, W. F., & Damschroder, M. M. (2020, Oct 14).
Long-acting antibody ligand mimetics for HER4-selective agonism.Sci Rep, 10 (1), 17257.https://doi.org/10.1038/s41598-020-74176-9
Sloth, A. B., Bakhshinejad, B.,
Jensen, M., Stavnsbjerg, C., Liisberg, M. B., Rossing, M., & Kjaer, A.
(2022, Oct 29). Analysis of Compositional Bias in a Commercial Phage
Display Peptide Library by Next-Generation Sequencing. Viruses,
14 (11).https://doi.org/10.3390/v14112402
Ståhl, S., Gräslund, T., Eriksson
Karlström, A., Frejd, F. Y., Nygren, P., & Löfblom, J. (2017, Aug).
Affibody Molecules in Biotechnological and Medical Applications.Trends Biotechnol, 35 (8), 691-712.https://doi.org/10.1016/j.tibtech.2017.04.007
Stojanovic, M. N., de Prada, P., &
Landry, D. W. (2001, May 30). Aptamer-based folding fluorescent sensor
for cocaine. J Am Chem Soc, 123 (21), 4928-4931.https://doi.org/10.1021/ja0038171
Šubr, V., Ormsby, T., Šácha, P.,
Konvalinka, J., Etrych, T., & Kostka, L. (2021). The role of the biotin
linker in polymer antibody mimetics, iBodies, in biochemical assays.Polymer Chemistry, 12 (41), 6009-6021.https://doi.org/10.1039/d1py00707f
Tiede, C., Bedford, R., Heseltine, S.
J., Smith, G., Wijetunga, I., Ross, R., AlQallaf, D., Roberts, A. P.,
Balls, A., Curd, A., Hughes, R. E., Martin, H., Needham, S. R.,
Zanetti-Domingues, L. C., Sadigh, Y., Peacock, T. P., Tang, A. A.,
Gibson, N., Kyle, H., Platt, G. W., Ingram, N., Taylor, T., Coletta, L.
P., Manfield, I., Knowles, M., Bell, S., Esteves, F., Maqbool, A.,
Prasad, R. K., Drinkhill, M., Bon, R. S., Patel, V., Goodchild, S. A.,
Martin-Fernandez, M., Owens, R. J., Nettleship, J. E., Webb, M. E.,
Harrison, M., Lippiat, J. D., Ponnambalam, S., Peckham, M., Smith, A.,
Ferrigno, P. K., Johnson, M., McPherson, M. J., & Tomlinson, D. C.
(2017, Jun 27). Affimer proteins are versatile and renewable affinity
reagents. Elife, 6 .https://doi.org/10.7554/eLife.24903
Tunyasuvunakool, K., Adler, J., Wu,
Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A.,
Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A.,
Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl,
S. A. A., Potapenko, A., Ballard, A. J., Romera-Paredes, B., Nikolov,
S., Jain, R., Clancy, E., Reiman, D., Petersen, S., Senior, A. W.,
Kavukcuoglu, K., Birney, E., Kohli, P., Jumper, J., & Hassabis, D.
(2021, Aug). Highly accurate protein structure prediction for the human
proteome. Nature, 596 (7873), 590-596.https://doi.org/10.1038/s41586-021-03828-1
Van Holsbeeck, K., Martins, J. C., &
Ballet, S. (2022, Feb). Downsizing antibodies: Towards
complementarity-determining region (CDR)-based peptide mimetics.Bioorg Chem, 119 , 105563.https://doi.org/10.1016/j.bioorg.2021.105563
Vazquez-Lombardi, R., Phan, T. G.,
Zimmermann, C., Lowe, D., Jermutus, L., & Christ, D. (2015, Oct).
Challenges and opportunities for non-antibody scaffold drugs. Drug
Discov Today, 20 (10), 1271-1283.https://doi.org/10.1016/j.drudis.2015.09.004
Wang, D. D., Chan, M. T., & Yan, H.
(2021). Structure-based protein-ligand interaction fingerprints for
binding affinity prediction. Comput Struct Biotechnol J, 19 ,
6291-6300.https://doi.org/10.1016/j.csbj.2021.11.018
Wilson, D. S., Keefe, A. D., &
Szostak, J. W. (2001, Mar 27). The use of mRNA display to select
high-affinity protein-binding peptides. Proc Natl Acad Sci U S A,
98 (7), 3750-3755.https://doi.org/10.1073/pnas.061028198
Wold, E. D., Axup, J. Y., Felding, B.
H., & Smider, V. V. (2015, Dec 16). Fc-Small Molecule Antibody
Mimetics. Bioconjug Chem, 26 (12), 2311-2314.https://doi.org/10.1021/acs.bioconjchem.5b00530
Wrapp, D., De Vlieger, D., Corbett,
K. S., Torres, G. M., Wang, N., Van Breedam, W., Roose, K., van Schie,
L., Hoffmann, M., Pöhlmann, S., Graham, B. S., Callewaert, N., Schepens,
B., Saelens, X., & McLellan, J. S. (2020, May 28). Structural Basis for
Potent Neutralization of Betacoronaviruses by Single-Domain Camelid
Antibodies. Cell, 181 (5), 1004-1015.e1015.https://doi.org/10.1016/j.cell.2020.04.031
Wright, A., Shin, S. U., & Morrison,
S. L. (1992). Genetically engineered antibodies: progress and prospects.Crit Rev Immunol, 12 (3-4), 125-168.
Wu, R., Yakhkeshi, S., & Zhang, X.
(2022, Apr). Scientometric analysis and perspective of IgY technology
study. Poult Sci, 101 (4), 101713.https://doi.org/10.1016/j.psj.2022.101713
Xu, D., Xu, D., Yu, X., Liu, Z., He,
W., & Ma, Z. (2005, Aug 15). Label-free electrochemical detection for
aptamer-based array electrodes. Anal Chem, 77 (16), 5107-5113.https://doi.org/10.1021/ac050192m
Yakhkeshi, S., Wu, R., Chelliappan,
B., & Zhang, X. (2022). Trends in industrialization and
commercialization of IgY technology. Front Immunol, 13 , 991931.https://doi.org/10.3389/fimmu.2022.991931
Yan, J., Gao, T., Lu, Z., Yin, J.,
Zhang, Y., & Pei, R. (2021, Jun 23). Aptamer-Targeted Photodynamic
Platforms for Tumor Therapy. ACS Appl Mater Interfaces, 13 (24),
27749-27773.https://doi.org/10.1021/acsami.1c06818
Yang, K. A., Barbu, M., Halim, M.,
Pallavi, P., Kim, B., Kolpashchikov, D. M., Pecic, S., Taylor, S.,
Worgall, T. S., & Stojanovic, M. N. (2014, Nov). Recognition and
sensing of low-epitope targets via ternary complexes with
oligonucleotides and synthetic receptors. Nat Chem, 6 (11),
1003-1008.https://doi.org/10.1038/nchem.2058
Yu, X., Yang, Y. P., Dikici, E., Deo,
S. K., & Daunert, S. (2017, Jun 12). Beyond Antibodies as Binding
Partners: The Role of Antibody Mimetics in Bioanalysis. Annu Rev
Anal Chem (Palo Alto Calif), 10 (1), 293-320.https://doi.org/10.1146/annurev-anchem-061516-045205
Zhang, X., & Diraviyam, T. (2017).
Antibody Mimetics, Peptides, and Peptidomimetics. Methods Mol
Biol, 1575 , 3-13.https://doi.org/10.1007/978-1-4939-6857-2_1
Zinn, S., Vazquez-Lombardi, R.,
Zimmermann, C., Sapra, P., Jermutus, L., & Christ, D. (2023, Feb 20).
Advances in antibody-based therapy in oncology. Nat Cancer .https://doi.org/10.1038/s43018-023-00516-z