loading page

A Refined Satellite-based Emissions Estimate from Onshore Oil and Gas Flaring and Venting Activities in the United States and their Impacts on Air Quality and Health
  • +4
  • Huy Tran,
  • Erin Polka,
  • Jonathan Buonocore,
  • Ananya Roy,
  • Beth Trask,
  • Hillary Hull,
  • Saravanan Arunachalam
Huy Tran
University of North Carolina at Chapel Hill
Author Profile
Erin Polka
Boston University School of Public Health
Author Profile
Jonathan Buonocore
Boston University School of Public Health
Author Profile
Ananya Roy
Environmental Defense Fund
Author Profile
Beth Trask
Environmental Defense Fund
Author Profile
Hillary Hull
Environmental Defense Fund
Author Profile
Saravanan Arunachalam
University of North Carolina at Chapel Hill

Corresponding Author:[email protected]

Author Profile

Abstract

Emissions from flaring and venting (FV) in oil and gas (O&G) production are difficult to quantify due to their intermittent activities and lack of adequate monitoring and reporting. Given their potentially significant contribution to total emissions from O&G sector in the United States, we estimate emissions from FV using Visible Infrared Imaging Radiometer Suite satellite observations and state/local reported data on flared gas volume. These refined estimates are higher than those reported in the National Emission Inventory: by upto 15 times for fine particulate matter (PM2.5), two times for sulfur dioxides, and 22% higher for nitrogen oxides(NOx). Annual average contributions of FV to ozone (O3), NO2 and PM2.5 in the conterminous U.S. (CONUS) are less than 0.15%, but significant contributions of upto 60% are found in O&G fields with FV. FV contributions are higher in winter than in summer months for O3 and PM2.5; an inverse behavior is found for NO2. Nitrate aerosol contributions to PM2.5 are highest in the Denver basin whereas in the Permian and Bakken basins, sulfate and elemental carbon aerosols are the major contributors. Over four simulated months in 2016 for the entire CONUS, FV contributes 210 additional instances of exceedances to the daily maximum 8-hour average O3, and has negligible contributions to exceedance of NO2 and PM2.5 given the current form of the national ambient air quality standards. FV emissions are found to cause over $7.4 billion in health damages, 710 premature deaths and 73,000 asthma exacerbations among children annually.
11 Sep 2023Submitted to ESS Open Archive
11 Sep 2023Published in ESS Open Archive