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Key Points: 9 

• Grouping data properly de-trended from stations of consistent meteorology does not 10 

induce biases at long recurrence intervals 11 

• The ‘superstation’ technique reduces the sampling errors of short-length data from 12 

individual stations of consistent meteorology 13 

• Consistent meteorology is required for grouping stations corrected for non-standard 14 

terrain and effects of local topography 15 

 16 

Abstract 17 

The ‘super-station’ approach has been adopted since 1980s as a pragmatic method of improving 18 

extreme-value predictions by grouping short-length datasets from several measurement 19 

stations to become a larger dataset to reduce uncertainties due to random sampling variation.  20 

El Rafei et al. (2023, https://doi.org/10.1029/2023GL105286) analyzed reanalysis, and 21 

randomly generated, wind extremes datasets and suggested that this technique can introduce 22 

unexpected biases in typical situations.  We complement their work and demonstrate by Monte-23 

Carlo simulation, assuming the same number of grouped stations and data lengths used, that 24 

applying the grouping technique to samples of properly de-trended datasets to meet the 25 

homogeneity assumption does not lead to biased prediction of extremes.  In addition, the 26 

grouping technique effectively reduces the uncertainty and sampling errors that result from 27 

short-length datasets from individual stations of consistent meteorology. 28 

Plain Language Summary 29 

Pooling extremal data observed from different sites of consistent environment for analysis and 30 

treating the pooled data as if they were observed at one site has been in practice for 40 years.  31 

A recent study reckoned such data pooling introduces bias errors in typical situations.  We 32 

repeat their analysis by random-number generation plus a data homogenizing step and show 33 

that the data-pooling technique does not cause bias errors.  Instead, the technique is effective 34 

in reducing the random errors experienced when analyzing an un-pooled small dataset. 35 

 36 

1 Introduction  37 

Complementing El Rafei et al (2023), the main objective of this comment is to clarify that the 38 

superstation approach is an unbiased approach for analysis of grouped data sets that conform 39 

to consistent meteorology.  The superstation technique was developed based on the assumption 40 

of homogeneous meteorology (Dorman 1983a; Palutikof et al. 1999) in an effort to reduce 41 

statistical sampling errors.  To fulfil the assumed homogeneity, the data sets to be grouped as 42 
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a superstation need to be ‘de-trended’ (i.e. ‘homogenized’) (Peterka, 1992; Palutikof et al., 43 

1999; Torrielli et al., 2013).  The de-trending step appears not carried out in El Rafei et al 44 

(2023), which leads to the bias the authors suggested as being introduced by the superstation 45 

approach.  To facilitate fulfilment of the homogeneity assumption, we present a de-trending 46 

algorithm that produces a superstation representative of the ‘average’ behaviour of a consistent 47 

environment, and demonstrate the de-trending step by reproducing the result in Figure 2A of 48 

El Rafei et al. (2023). 49 

 50 

2 Superstation technique for homogeneous meteorology 51 

El Rafei et al. (2023) have used convective wind gusts from Bureau of Meteorology 52 

Atmospheric high-resolution Regional Reanalysis for Australia Sydney region (BARRA-SY) 53 

and from Monte Carlo simulation of heterogeneous probability distributions, as examples of 54 

wind gust hazard analysis using the superstation approach, and suggested that the grouping 55 

approach can introduce unexpected biases in typical situations at long recurrence intervals.  56 

Thus, in their ‘Conclusion’ section, for example, the authors state: “The superstation fit tends 57 

to the highest levels suggested by any of the pooled locations and this bias increases with 58 

longer recurrence intervals”.  We intend to emphasize that the suggested bias occurs, 59 

unsurprisingly, to situations where data sets are grouped as a superstation, but not analyzed by 60 

a method that conforms to the underlying assumption of meteorological homogeneity.  On the 61 

other hand, if meteorological homogeneity is fulfilled, this data-grouping technique is unbiased 62 

and effectively reduces the uncertainty and sampling errors that result from short-length 63 

datasets of individual stations. 64 

It has been well recognized that the superstation approach “… is only feasible in a 65 

climatologically homogeneous area” (Palutikof et al. 1999). Furthermore, when homogeneity 66 

is assumed, the data sets to be grouped need to be ‘de-trended’, as pointed out by Palutikof et 67 

al. (1999), “… de-trending was carried out using the mean annual extreme, so that the resulting 68 

superstation data may be expected to be homogeneous in the upper tail.” 69 

An apparent difficulty faced by the analysts is a lack of criteria for gauging the appropriateness 70 

of data grouping.  Even though statistical techniques have been attempted (e.g. Dorman 1983b) 71 

for this purpose, to our knowledge, no clear criteria based on physical reasoning have been 72 

developed.  Under such circumstances, the analysts must exercise judgments on whether 73 

homogeneity is acceptable for their objective.  If they decide to regard the data sets as being 74 

from consistent meteorology and apply the superstation technique, then dataset de-trending 75 

should be performed before conducting extreme-value analysis.  On the other hand, if the data 76 

sets are regarded, or known, to be from heterogeneous underlying statistics, the superstation 77 

technique is not applicable such that they should be analyzed separately. 78 

El Rafei et al. rightly noted that: “… These superstations represent specific geographical areas 79 

where stations with meteorological consistency are grouped together…”  However, the results 80 

from their analyses appear not to follow the consistent meteorological assumption or not to 81 

analyze the data sets properly.  For instance, Figure 2A presents a superstation derived by 82 

grouping five data sets, each was generated by one of five generalized Pareto distributions 83 

(GPDs).  The application of superstation technique implies that the data sets were regarded to 84 

be from consistent meteorology.  If this is indeed the authors’ intention, the de-trending step 85 

should be performed.  However, this appears not to be the case, as judged from the resulting 86 

superstation which exhibits bias towards the most hazardous model. 87 



In the following, we first show by Monte-Carlo simulation that applying the grouping 88 

technique to samples from homogeneous datasets does not lead to biased prediction of 89 

extremes.  We then present a de-trending algorithm that facilitates fulfilment of meteorological 90 

homogeneity and demonstrate the de-trending step for the resulting superstation illustrated in 91 

Figure 2A of El Rafei et al. (2023). 92 

3 Validity of the superstation approach 93 

Because of random sampling variation, the extent of uncertainty for estimating the underlying 94 

statistical distribution depends on the length of the dataset. This manifests as the extent of 95 

uncertainty in the estimated distribution parameters: the longer the dataset, the narrower the 96 

confidence intervals (CI’s) of the distribution parameters. For example, as illustrated in Figure 97 

1 below, individual station data lengths of 23 years and 1,000 years, as used for the results 98 

shown respectively in Figures 1 and 2 in El Rafei et al. (2023), lead to different conclusions 99 

about whether a specific distribution is accepted as the underlying model of the data. 100 

Five GPD models were used in Figure 2A by El Rafei et al. These had the same exceedance 101 

rate (𝜆 = 5), threshold (𝑢0 = 20 m/s) and shape parameter (𝜉 = −0.1), but different scale 102 

parameters (𝜎𝑖 = 2.75 + 0.25𝑖, 𝑖 = 1,2, . . . ,5).  103 

To check of validity of the biases by the super-station approach claimed by El Rafei et al, their 104 

third GPD model (i.e. with 𝜎3 = 3.5) is used here to generate synthetic data. We follow the 105 

treatment of their paper to generate by Monte-Carlo simulation 23 years of data for 25 106 

hypothetical stations.  Figure 1a shows the generated data (thin black lines) and the resulting 107 

super-station data (red circular points) along with the five theoretical GPD models (thick 108 

colored lines) in the wind gust versus log-ARI plot.  Similarly, because Figure 2A of El Rafei 109 

et al. used 1,000 years of data to obtain the super-station data, we have generated 1,000 years 110 

of data for 25 hypothetical stations, as shown in Figure 1b. 111 

 112 

Figure 1: Simulated gust data of 25 hypothetical stations and super-station for (a) 23 years; 113 

and (b) 1,000 years. 114 

 115 

Figure 1 clearly reveals that, for wind gusts given an ARI, the dataset of 23 years spreads much 116 

more widely than the dataset of 1,000 years. This is a result of shorter records being more 117 



seriously affected by sampling variation than of longer records. The spread of the 23-year data 118 

tracks of the 25 stations covers essentially all the theoretical gust speed values of the five 119 

models. That is, given a sample of 23-year data from any individual station, one cannot assert 120 

with high confidence which of the five models is the underlying model. On the contrary, with 121 

1,000-year data from an individual station, in the overwhelming cases one is able to deduce 122 

with sufficient confidence the third model is the model which generates the dataset. In addition, 123 

the super-stations (red circular points) shown in the two cases do not exhibit a systematic 124 

tendency of biases towards more hazardous models, as suggested by El Rafei et al. 125 

To see more closely the uncertainties in 𝜎3, 10,000 stations are generated for datasets of 23 and 126 

1,000 years. They have been fitted to the GPD model with the shape parameter being the only 127 

unknown. The probability densities of the estimated 𝜎3 are shown in Figure 2, in which the 128 

thick and thin red lines represent 67 % and 95 % CIs, respectively. Figure 2a shows that the 129 

95 % CI for 𝜎3 for 23-year data from one station is [2.93, 4.08], covering all the 130 

shape-parameter values (ranging from 3 to 4) of the five models. This implies that, with 23 131 

years of data in one station, we fail to reject that any of the five models could be the true model. 132 

In contrast, the 95 % CI of 𝜎3 for 1,000 years data from one station is [3.41, 3.59] (Figure 2c), 133 

which establishes, with statistical significance, that the third model is the true one. 134 

 135 

 136 

Figure 2: Probability densities and confidence intervals of 𝜎3 for datasets of (a) 23 years at 137 

one station; (b) 23 years at 25 grouped stations; (c) 1,000 years at one station; and (d) 1,000 138 

years at 25 grouped stations. 139 

 140 

Comparing Figures 2a and c to Figures 2b and d (produced by grouping data from the 25 141 

hypothetical stations to form super-stations), respectively, illustrates the advantageous effect 142 

by data grouping in reducing the variance of 𝜎3, which is also implied in Figure 1.  Importantly, 143 

b a 

c d 



all the point estimates (red circles) do not show biases for the true value of 𝜎3 due to data 144 

grouping. 145 

Another implication of Figure 2 is that the 1,000-year datasets generated by the five different 146 

models, as done in El Rafei et al. (2023), would indicate clearly that they are generated by five 147 

distinct models, which mean indeed the five datasets are from heterogeneous meteorology. 148 

Grouping the five datasets into a super-station would violate the basic requirement that they 149 

are recorded in regions of consistent meteorology, which is the same basic requirement for 150 

estimating the common inferential statistics (e.g. mean and standard deviation) of a dataset 151 

drawn from a defined sample space. Therefore, the claimed biases observed in Figure 2A of 152 

the paper by El Rafei et al. arise from treating datasets from obviously different sample spaces 153 

as if they were drawn from one sample space, but not biases due to the application of super-154 

station approach. This also indicates the importance of clearly identifying the sample space of 155 

the subject-matter problem before conducting a proper statistical analysis. 156 

 157 

4 A ‘de-trending’ algorithm for superstation approach 158 

Based on the concept of standardizing random variables, this section presents an algorithm that 159 

produces the ‘average’ behavior of homogenized meteorology manifested as the de-trended 160 

superstation. 161 

Suppose that there are J stations and the j-th station provides 𝑁𝑗 wind speeds, i.e. 𝑣𝑖,𝑗, where 162 

𝑖 = 1, . . . , 𝑁𝑗. Then 163 

1. For the j-th station data: 164 

i) Estimate the mean, 𝑣‾𝑗 = ∑ 𝑣𝑖,𝑗
𝑁𝑗

𝑖=1
/𝑁𝑗 , and standard deviation, 𝑠𝑣,𝑗 =165 

√∑ (𝑣𝑖,𝑗 − 𝑣‾𝑗)
2𝑁𝑗

𝑖=1
/(𝑁𝑗 − 1), of 𝑣𝑖,𝑗’s. 166 

ii) Compute the standardized wind speeds, 𝑣𝑖,𝑗
′ = (𝑣𝑖,𝑗 − 𝑣‾𝑗)/𝑠𝑣,𝑗 167 

2. The standardized wind speeds from the J stations are then grouped and transformed: 168 

i) Estimate the grand mean, 𝑣‾𝑔 = ∑ 𝑣‾𝑗
𝐽
𝑗=1 /𝐽 and grand standard deviation 𝑠𝑔 =169 

∑ 𝑠𝑣,𝑗
𝐽
𝑗=1 /𝐽, as the mean and standard deviation of the wind-speed probability 170 

distribution which may be regarded as the ‘mean’ underlying wind-generating 171 

mechanism. 172 

ii) Group the J-station data to form a standardized superstation data, 𝑣𝑘
′ , 𝑘 =173 

1, . . . , 𝐾, where 𝐾 = ∑ 𝑁𝑗
𝐽
𝑗=1 . 174 

iii) Compute the superstation wind speeds 𝑣𝑘 = 𝑣‾𝑔 + 𝑠𝑔𝑣𝑘
′ , which are used to 175 

analyze the hazard of the homogenized region. 176 

It should be emphasized that such ‘homogenization’ process should be done to data sets that 177 

the analysts regard as being collected from homogeneous meteorology. As an example to 178 

illustrate the de-trending step for the case presented in Figure 2A of El Rafei et al. (2023), we 179 

used each model in that figure to generate one data set of 50,000 years of gust speeds, for a 180 

total of five data sets which was then de-trended. This leads to a superstation with 250,000 181 



station-years. Figure 3 shows the results. Up to 10,000-year ARI (the highest ARI in Figure 2A 182 

of El Rafei et al.), the thick non-de-trended red line is close to the superstation represented by 183 

square points in Figure 2A of El Rafei et al., (2023), while the thick de-trended blue line 184 

(representing the average behavior of assumed homogeneous meteorology) happens to follow 185 

closely the model with 𝜎 = 3.5. 186 

 187 

Figure 3: Simulated superstation data that are from heterogeneous (red line) and 188 

‘homogenized’ (blue line) environments 189 

 190 

5 Correction for local terrain and topographical effects and the GPD-GEV duality 191 

El Rafei et al. did not use recorded and corrected surface wind data, but instead distributions 192 

from BARRA-SY reanalysis.  When processing recorded anemometer data from surface 193 

weather stations, correction for terrain to standard conditions can be as high as 20 % with 194 

topographic corrections even greater (e.g. Holmes 2016; Australian Standards 2021); however 195 

it is not clear how this is done with the reanalysis-derived gusts.  Secondly the data set only 196 

extends to 23 years (1996 to 2019).  The ‘speckled’ values in Figure 1A derived from such a 197 

short period therefore may contain significant sampling errors.   198 

El Rafei et al. (2023) also observed at the end of Section 3 that: “Both (GPD and GEV) show 199 

a similar level of bias for all record lengths, although the biases are slightly smaller if GPD is 200 

used instead of the usual (for rainfall) GEV.” The GPD and GEV have been known to possess 201 

a duality relationship: for a given GPD model, an equivalent GEV model can be found, and 202 

vice versa (Wang and Holmes, 2020). That is, if the same post-processed dataset is analyzed, 203 

both GPD and GEV should give exactly the same result because of the duality relationship, 204 

e.g. for the model with 𝜎3 = 3.5 in Figure 2A of El Rafei et al (2023), the parameters of its 205 

equivalent GEV are 𝑢0𝑔 = 25.2, 𝜎𝑔 = 2.98, and 𝜉𝑔 = −0.1.  It is not clear how the data sets for 206 

the rainfall example were processed for fitting to the two probability models.  For example, 207 

processing the raw data sets into a block-maxima and a peaks-over-threshold data sets would 208 

invariably produce two different data sets that lead to two different fitted models.  Therefore, 209 

the observed performance difference between the GPD and GEV may originate from data 210 

processing or model fitting step rather than inherently disparate properties of the models. 211 



 212 

6 Summary 213 

We have shown by simulation of samples from the same underlying probability distribution, 214 

i.e. homogeneous datasets, that the grouping technique does not lead to biased prediction of 215 

extremes, as previously suggested by El Rafei et al (2023).  We have presented a de-trending 216 

algorithm for homogenizing the data sets to be grouped as a superstation to meet its 217 

homogeneity assumption.  Moreover, the superstation technique is shown to reduce the 218 

uncertainty and sampling errors resulting from prediction from datasets from individual 219 

stations of short length, provided that datasets from similar climates are grouped, and that they 220 

are corrected for non-standard terrain and for any effects of local topography. 221 
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