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Abstract 21 

Ensemble Kalman Filters (EnKFs), which assimilate observations based on statistics derived from 22 

samples of ocean states called ensemble, have become the norm for ocean data assimilation (DA) 23 

and forecasting. These schemes are commonly implemented with inflation and localization 24 

techniques to increase their ensemble spread and to filter out spurious long-range correlations 25 

resulting from the limited-size ensembles imposed by computational burden constraints. Such ad 26 

hoc methods were found not necessary in ensemble DA experiments with simplified 27 

ocean/atmospheric models and large ensembles. Here, we conduct a series of 1-year-long ensemble 28 

experiments with a fully realistic EnKF-DA system in the Red Sea using tens-to-thousands of 29 

ensemble members. The system assimilates satellite and in-situ observations and accounts for model 30 

uncertainties by integrating a 4km-resolution ocean model with ECMWF atmospheric ensemble 31 

fields, perturbed internal physics and initial conditions for forecasting. 32 

Our results indicate that accounting for model uncertainties is more beneficial than simply 33 

increasing the ensemble size, with the improvements due to large ensemble leveling off at about 34 

250 members. Besides, and in contrast to what is commonly observed with simplified models, the 35 

investigated ensemble DA system still required localization even when implemented with thousands 36 

of members. These findings are explained by (i) amplified spurious long-range correlations 37 

produced by the low-rank nature of the ECMWF atmospheric forcing ensemble, and (ii) non-38 

Gaussianity generated by the perturbed internal physical parameterization schemes. Large ensemble 39 

forcing fields and non-Gaussian DA methods might be needed to take full benefits from large 40 

ensembles in ocean DA.  41 

 42 

 43 
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Plain Language Summary 44 

Data assimilation (DA) using Ensemble Kalman Filters (EnKFs) requires large ensembles to 45 

estimate robust statistics in order to efficiently spread the observation’s information to all model 46 

variables, key for robust predictions of the ocean state. Until recently, only limited ensembles (~10-47 

100 members) could be afforded in realistic ocean DA applications. With the ever-increasing 48 

computational resources, the use of larger ensembles will become possible in the near future. In this 49 

context, the present study assesses the performance of a fully realistic high-resolution ocean EnKF-50 

DA system by systematically examining its sensitivity to ensembles composed of tens-to-thousands 51 

of members. It offers fresh perspectives on the employment of ad hoc inflation and localization 52 

methods, which have been traditionally implemented with EnKFs to compensate for the use of small 53 

ensembles and for the omittance of various model uncertainties. The results of this study suggest 54 

large-ensemble forcing fields as well as non-Gaussian DA methods may be needed to maximize the 55 

benefits of large ensembles in ocean DA.  56 

 57 

 58 

 59 

 60 

 61 

 62 
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1. Introduction 64 

Ensemble Kalman Filter (EnKF) based data assimilation (DA) systems provide an efficient 65 

framework to update the background error covariance, a critical element for any ocean DA system 66 

to spread the observation information across model variables [Derber and Bouttier, 1999; Bouttier 67 

and Courtier, 1999, 2002; Edwards et al., 2015; Hoteit et al., 2018]. In ENKFs, a set of ocean 68 

states, called ensemble, is integrated using an ocean model for forecasting the first two-moments 69 

statistics of the ocean state, i.e., sample mean and covariance, which are in turn used to apply a 70 

Kalman filter to update the forecast [Hoteit et al., 2015]. These DA schemes require the size of the 71 

ensemble to be large enough to estimate robust statistics [Mitchell et al., 2002; Houtekamer and 72 

Zhang, 2016; Lei and Whitaker, 2017; Leutbecher, 2019]. Using small ensembles was shown to 73 

produce spurious long-range covariances and rapid collapse of the ensemble spread after few 74 

assimilation cycles [Houtekamer and Mitchell, 1998; Anderson 2001]. In spite of this, only limited 75 

ensembles (~10-100 members) were so far considered in real-world applications mainly to reduce 76 

the computational burden [e.g., Hoteit et al., 2012; Wang and Lei, 2014; Penny et al., 2015; Lei and 77 

Whitaker, 2017; Baduru et al., 2019; He et al., 2019; Toye et al., 2020; Sanikommu et al., 2023]. 78 

Ad hoc techniques such as inflation and localization, which respectively inflates ensemble 79 

covariances artificially and limits the observations influence to only within certain radius by 80 

tapering long-range correlations in the ensemble, are usually deployed as a compensation for small 81 

ensemble size [e.g., Houtekamer and Mitchell, 1998, 2001; Hunt et al., 2007; Bishop and Hodyss, 82 

2007; Miyoshi, 2011; Whitaker and Hamill, 2012; Lee et al., 2017; Luo et al., 2018]. With the ever-83 

increasing computational resources, the use of large ensembles will become possible in the near 84 

future. Hence, identifying the benefits and outstanding issues associated with large ensembles is 85 

important to provide new insights into the future applications of ensemble DA methods in ocean 86 

applications.  87 
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Up to date, large ensemble experiment studies (LEEs) with realistic ocean and atmospheric 88 

DA and forecasting systems remain limited. The studies of Miyoshi et al. (2014), Kondo and 89 

Miyoshi (2016) and Toye et al. (2020) have suggested that with large ensembles, the performance 90 

of the ensemble DA system generally becomes less dependent on inflation and localization. 91 

However, these LEE studies were not performed with a fully realistic ensemble DA framework. For 92 

instance, the LEE (up to 10,000 members) results of the first two studies were based on a mid-93 

complex coupled ocean-atmospheric model and assimilated pseudo-observations. Toye et al., 94 

(2018) conducted LEEs, up to 1000 members, with an ocean general circulation model of the Red 95 

Sea assimilating real observations, but only accounted for uncertainties in the initial conditions. 96 

Ensembles from such mid-complex LEE systems were also investigated to (1) examine the 97 

characteristics of background model errors [Pinardi et al., 2008; Jacques and Zawadzki, 2015], (2) 98 

understand and model sampling errors [Necker et al., 2020a, 2020b], (3) assess non-Gaussianity 99 

and sensitivity to covariance localization [Miyoshi et al., 2014; Kondo and Miyoshi, 2016; Toye et 100 

al., 2018], and (4) examine the potential impact of observations [Necker et al., 2020a].  101 

Accounting for uncertainties of a forecasting ocean model via stochastic inputs and 102 

parameters has recently become popular in the EnKF DA systems [see review papers Martin et al., 103 

2015; Houtekamer and Zhang, 2016]. In ocean applications, uncertainties are now considered in 104 

the atmospheric forcing, boundary conditions, internal physics, bathymetry, and of course initial 105 

conditions. These studies suggested noticeable improvements, compared to those that do not 106 

account for uncertainties, in the performance of the underlying ensemble assimilation systems [e.g. 107 

Fujita et al., 2007; Bowler et al., 2008; Houtekamer et al., 2009; Kwon et al., 2016; Penny et al., 108 

2015; Vandenbulcke and Barth, 2015; Sanikommu et al., 2017, 2019, 2020; Baduru et al., 2019]. 109 

Accounting for uncertainties in model’s inputs may however introduce non-Gaussian features in 110 

the distribution of the forecast ensemble due to the model’s non-linearity [e.g., Sura et al., 2005; 111 
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Sura and Sardeshmukh, 2008; Sura and Hannachi, 2015], which may limit the performances of the 112 

Gaussian-based EnKFs [e.g. Anderson, 2001; Whitaker and Hamill, 2002; Hoteit et al., 2008, 2012; 113 

Subramanian et al., 2012].  114 

Here we conduct for the first time LEEs with up to 5000 members using a fully realistic 115 

high-resolution EnKF-DA system of the Red Sea (RS) and assimilating real observations 116 

accounting for uncertainties in the atmosphere and physics, in addition to the initial conditions. We 117 

assess the sensitivity of the system to increasing ensembles. We examine in particular probability 118 

distribution of the forecasted ensemble and investigate the need for localization. We further examine 119 

the sensitivity of the LEE results to accounting for the uncertainties of various inputs. Our results 120 

suggest that increasing the ensemble size seems to be beneficial up to a few hundred ensemble 121 

members, and localization is necessary even when the system is implemented with large ensembles. 122 

Accounting for uncertainties is more beneficial than increasing the ensemble size, even though it 123 

may introduce non-Gaussian features that limit the performance of our EnKF-based assimilation 124 

system. Detailed analyses and discussions of these findings are provided in the remainder of this 125 

study, which is organized as follows. Section 2 describes the RS EnKF DA system, including the 126 

ocean model. Section 3 presents the setup of the assimilation experiments, including various 127 

observational datasets used for validation. The ensemble DA experiment results are analyzed and 128 

discussed in Section 4. A summary of the main findings and a discussion on future research 129 

conclude the work in Section 5.   130 

2. The Ensemble Ocean Data Assimilation System of the Red Sea 131 

The Red Sea ensemble DA system is based on the Massachusetts Institute of Technology Ocean 132 

general circulation model (MITgcm; Marshall et al., 1997) and an ensemble adjustment Kalman 133 

Filter (EAKF) available from the Data Assimilation Research Testbed (DART), the MITgcm-DART 134 
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[Hoteit et al., 2013; Gopalakrishnan et al., 2019; Toye et al., 2018, 2020, 2021; and Sanikommu et 135 

al., 2020, 2023]. The MITgcm-DART configuration used here is basically the same as that of 136 

Sanikommu et al., (2020), including the initial conditions, the model physics dictionary (described 137 

below), the atmospheric forcing ensemble, assimilated observations, localization, etc. The outputs of 138 

this assimilation system were validated against independent in-situ and satellite observations and 139 

were found to provide robust estimates of the Red Sea state [Sanikommu et al., 2020; Toye et al., 140 

2020], significantly better than those available from the widely used global ocean reanalyses 141 

[Sanikommu et al., 2023]. Below we provide a brief overview of the system components. 142 

The MITgcm was implemented on a spherical polar grid covering the entire RS domain, 143 

including the Gulfs of Suez and Aqaba, and a part of the Gulf of Aden where an open boundary 144 

connects it to the Arabian Sea [e.g., Krokos et al., 2019, 2022; Sanikommu et al., 2020; and Zhan et 145 

al., 2019, 2022]. The open boundary conditions for temperature, salinity, and horizontal velocity are 146 

prescribed daily from the 8km-resolution Global Ocean Reanalysis and Simulation data [GLORYS; 147 

Parent et al., 2003]. The Red Sea MITgcm uses a direct space-time 3rd order scheme for tracer 148 

advection, harmonic viscosity with the coefficients of 30 m2/s in the horizontal and 7x10-4 m2/s in 149 

the vertical direction, implicit horizontal diffusion for both temperature and salinity, and the K-150 

Profile Parameterization (KPP) scheme [Large et al., 1994] for vertical mixing with a vertical 151 

diffusion coefficient of 10-5 m2/s for both temperature and salinity. The model was spin up for 31 152 

years starting from 1979 to 2010 using the 75 km resolution European Center for Medium Range 153 

Weather Forecast (ECMWF) reanalysis of atmospheric surface fluxes of radiation, momentum, and 154 

freshwater sampled every 6 hours [Dee et al., 2011]. The MITgcm outputs have been extensively 155 

validated for the RS by earlier studies [e.g. Yao et al., 2014a, 2014b; Zhan et al., 2018; Toye et al., 156 

2017; Gittings et al., 2019; Krokos et al., 2022].  157 



8 
 

The EAKF is a deterministic square-root filter [Anderson, 2001; Hoteit et al., 2015]. It is used 158 

here to assimilate three types of observations every 3 days, with a localization radius of 300 km. The 159 

observations include SST data extracted from a level-4 in-situ and advanced very high-resolution 160 

radiometer infrared satellite SST blended daily product available at 25 km resolution [Reynolds et 161 

al., 2007]), along-track satellite level-3 merged altimeter filtered sea level anomalies (SLA), 162 

corrected for dynamic atmospheric, ocean tide, and long wavelength errors, from Copernicus Marine 163 

Environment Monitoring Service (CMEMS; Pujol et al., 2018), and in-situ temperature and salinity 164 

profiles available from Good et al. (2013). Observational errors are assumed uncorrelated. 165 

Temporally static and spatially homogeneous observational error variance values of (0.04 m)2, 166 

(0.5°C)2, and (0.3psu)2 are prescribed for the satellite along-track SLA, and the in-situ T and S, 167 

respectively, in accordance with the suggested ranges of in-situ observational errors by earlier 168 

assimilation studies [e.g., Richman et al., 2005; Forget and Wunsch, 2007; Oke and Sakov, 2008; 169 

Karspeck, 2016]. The specified observational error variances for SST vary between (0.1°C)2 and 170 

(0.6°C)2 in accordance with those of the level-4 gridded SST product of Reynolds et al., (2007).  171 

The MITgcm-DART is implemented with ROCOTO scheduler to facilitate the inclusion of 172 

uncertainties from various inputs, thereby avoiding the need of any inflation method [Sanikommu et 173 

al., 2020]. Ocean hindcasts from the aforementioned model spin up are used to generate an ensemble 174 

of initial conditions to initialize the EAKF. To account for uncertainties in the atmospheric forcing 175 

fields, the MITgcm was forced with 6 hourly, 50km-resolution, 50-member ECMWF atmospheric 176 

ensemble available from The Observing System Research and Predictability Experiment Interactive 177 

Grand Global Ensemble project (TIGGE; Bougeault et al., 2010; Buizza, 2014). Uncertainties in 178 

internal physics are accounted for by integrating each ensemble forecast model run with a set of 179 

model physics randomly selected from a predefined dictionary of model physics (MPD), specifically 180 

a model run with a certain set of model physics in a given cycle is integrated with a different set of 181 
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model physics in the next cycle. The MPD consists of various vertical and horizontal mixing 182 

schemes, and different diffusion and viscosity parameters and is described in details in Sanikommu 183 

et al., (2020).  184 

3. Data Assimilation Experiments 185 

Ten one-year long assimilation experiments are conducted starting from January 1st, 2011 to 186 

systematically investigate the behavior of the Red Sea MITgcm-DART with respect to the ensemble 187 

size and localization radius, as outlined in Table 1. The Fexp is a free-run in which the model was 188 

integrated with the mean of the ECMWF atmospheric ensemble. A50exp_loc is a 50-member 189 

assimilation experiment accounting for uncertainties in the initial conditions, internal physics, and 190 

atmospheric forcing. A100exp_loc, A250exp_loc, and A500exp_loc are the same as A50exp_loc 191 

with ensembles of 100, 250, and 500 members, respectively. Localization was used in all these 192 

experiments with a radius of 300km. A500exp and A5000exp respectively use 500 and 5000 193 

ensemble members and are configured here without localization. The initial ensembles for all these 194 

experiments are selected from the January months of a long model hindcast run (here 20 years). The 195 

atmospheric forcing ensembles are randomly sampled from a Gaussian distribution with mean and 196 

covariance matching those of the 50-member ECMWF ensemble, using   197 

𝑋! = 𝑋# +
1

√𝑘 − 1
𝐶"𝑢"×!; 198 

where 𝑘 is the size of the original ensemble (50), 𝑠 is the size of the intended ensemble, 𝑋, is the 199 

matrix of the mean of the original ensemble, 𝐶! is the matrix of atmospheric ensemble members 200 

anomalies, 𝑢!×# is the matrix of perturbations sampled from Gaussian (0,1), and 𝑋# is the intended 201 

ensemble.  202 
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Four more experiments, Atm_A500exp_loc and Atm_A500exp, and Init_A500exp_loc and 203 

Init_A500exp were conducted to assess the impact of different sources of uncertainties (Table 1). 204 

Atm_A500exp_loc and Atm_A500exp are the same as those of A500exp_loc and A500exp except 205 

that the uncertainties in the model physics are not accounted for. Similarly, Init_A500exp_loc and 206 

Init_A500exp are the same as those of A500exp_loc and A500exp except that the uncertainties in 207 

both model physics and atmospheric forcing are not accounted for, and uses an inflation factor of a 208 

value of 1.1 instead.  209 

In addition to the aforementioned one-year long experiments, we conducted five single-DA 210 

EAKF runs on October 1st, 2011, to specifically investigate the influence of long-range correlations 211 

in a forecast ensemble derived from A500exp. These experiments, namely SSHrun, SSTrun, 212 

SSTnrsrun, SSTsrsrun, and SSTgoarun, assimilated a subset of observations as described in Table 213 

2. These runs were designed to provide insights into the impact of long-range correlations on the 214 

assimilation process and its subsequent effects on the analyzed variables. 215 

3.1. Validation Datasets 216 

Various satellite and in-situ observations are used to evaluate the MITgcm-DART state estimates 217 

of the RS. The daily-averaged forecasts of SST and SSH are compared against the merged satellite 218 

level-3 observations from Group for High-Resolution Sea Surface Temperature (GHRSST; 219 

EUMETSAT, 2008) available at 5 km-resolution and merged along-track level-3 altimeter 220 

observations of SSH from CMEMS [Pujol et al., 2018] available at 12 km-resolution, respectively. 221 

In the subsurface, the RS state estimates are evaluated against Conductivity Temperature and Depth 222 

(CTD) observations of temperature and salinity profiles that have been collected between 15th 223 

September and 8th October, 2011. This dataset includes 206 profiles sampled by a joint King 224 

Abdullah University of Science and Technology (KAUST) and Woods Hole Oceanography 225 
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Institute (WHOI) cruise along the eastern RS, with a horizontal spacing of 10 km [Zhai et al., 2015; 226 

hereafter KAUST/WHOI summer cruise]. These observations are not assimilated in any of the 227 

experiments and are therefore considered independent observations for validation. 228 

4. Results and Discussion 229 

In this section, we first address the computational costs associated with the 5000-member ensemble 230 

experiment in comparison to a standard 50-member ensemble experiment. This comparison helps 231 

us gain a better understanding of the scale of the computational challenge we dealt with. 232 

Next, we compare the outputs of all the large ensemble experiments with satellite and 233 

independent in-situ observations. This comparative analysis enables us to assess the system's 234 

sensitivity to ensemble size and localization. By examining how the assimilation experiments 235 

perform under different configurations, we can identify the impact of these factors on the quality of 236 

the assimilated data. 237 

Additionally, we investigate the system's sensitivity to inputs stochasticity. This analysis 238 

allows us to understand how uncertainties in the initial conditions, atmospheric forcing and internal 239 

physics affect the assimilation results when large ensembles are used. 240 

By considering these various factors, we aim to delve into the underlying reasons behind the 241 

observed improvements and degradations across different experimental settings. This analysis will 242 

provide valuable insights into the behavior of the assimilation system and contribute to a 243 

comprehensive understanding of its performance. 244 

4.1. Computational costs 245 

KAUST is home to SHAHEEN-II [Hadri et al., 2015], a Cray XC40 supercomputer with 6,174 246 

dual-socket compute nodes, each powered by 32 core Intel Haswell processors clocked at 2.3 GHz. 247 

Each node is equipped with 128GB of DDR4 memory running at 2300MHz. With a total of 197,568 248 
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processor cores and 790TB of aggregate memory, SHAHEEN-II can achieve a performance of 249 

7.2Pflop/s in double precision. All experiments were conducted on this supercomputer, utilizing 250 

ROCOTO, a workflow manager to streamline our processes. This allowed us to take full advantage 251 

of SHAHEEN-II’s capabilities and achieve optimal results. 252 

To evaluate the computational costs, we present a comparison in Table 3 between the 5000-253 

member and standard 50-member ensemble experiments, focusing on the two primary components: 254 

model integration using MITgcm and assimilation step using DART. For each ensemble member, 255 

running the 4km-resolution MITgcm to generate three days of forecasts requires three minutes with 256 

3 nodes. Concurrently running 50 MITgcm instances necessitates 150 nodes. The standard 50-257 

member ensemble DART process utilizes 8 nodes and takes approximately 5 minutes to assimilate 258 

all observations. In contrast, the 5000-member ensemble DART occupies 590 nodes to meet its 259 

large internal memory demand and takes around 30 minutes to finish the task. However, running 260 

the entire 5000 MITgcm instances simultaneously exceeds the available resources of SHAHEEN-261 

II, requiring 15,000 nodes. Consequently, the 5000-member ensemble experiments demand a 262 

considerable amount of time to complete a single assimilation cycle. The computational cost for the 263 

5000-member ensemble experiment to complete one assimilation cycle reaches 33,440 core hours, 264 

approximately 130 times higher than that of the standard 50-member ensemble experiment (261 265 

core hours). Furthermore, the large number of input/output (IO) operations required for the 5000-266 

member ensemble experiments significantly increases the time needed to complete a full 267 

assimilation cycle. This, in turn, increases the overall computational cost and makes it challenging 268 

to conduct various sensitivity experiments at this ensemble size. As a result, achieving optimal 269 

results can be challenging, especially that Shaheen-II is in production mode with many other users 270 

and different applications and workloads.  271 



13 
 

4.2. Comparisons against observations 272 

Figure 1 illustrates the time series of the root-mean-square difference (RSMD) between the 273 

assimilation experiments and satellite observations for (a) SST and (b) SSH. All assimilation 274 

experiments outperform the Fexp baseline, consistent with the findings of Toye et al. (2020). 275 

Incorporating localization in the assimilation process improves the estimation of SST and SSH, with 276 

a slight enhancement observed as the ensemble size increases. However, there is a saturation point 277 

(at about 250 members) beyond which further increases in ensemble size yield marginal 278 

improvements, in agreement with Toye et al. (2020). Strikingly, not applying localization 279 

significantly degrades the assimilation solution, even with a 5000-member ensemble. This is 280 

especially notable in SSH, where the accuracy loss exceeds 3cm. 281 

In order to gain deeper insights into these results, we analyzed the latitude-wise differences 282 

in temperature and salinity profiles between the model and independent in-situ observations, as 283 

depicted in Figure 2. The assimilation experiments without localization experience substantial 284 

deteriorations, particularly in the upper 120 m layers, with temperature differences exceeding 1°C 285 

and salinity differences exceeding 0.4psu. However, the differences between ensemble DA runs 286 

with and without localization become negligible in the deeper layers. This can be attributed to the 287 

limited observational data coverage and limited influence of atmospheric forcing ensemble and 288 

perturbed internal physics in those deeper layers, resulting in minimal analysis increments and 289 

ensemble spread (see Figure 3) at depth. 290 

 To further investigate the aforementioned results, we conducted an analysis of the ocean 291 

state estimates from various assimilation experiments: Atm_A500exp_loc, Atm_A500exp, 292 

Init_A500exp_loc, and Init_A500exp. These experiments share a similar configuration to 293 

A500exp_loc and A500exp, with the main difference being the systematic reduction of ensemble 294 
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stochasticity by limiting the sources of uncertainty. Figure 4 illustrates the temporal evolution of 295 

the difference in RMSD in SST and SSH between the assimilation experiments with and without 296 

localization, compared against satellite observations. Positive values indicate improved 297 

performance with localization. In Figure 5, we focus on salinity differences between the model and 298 

in-situ observations, specifically for the Atm_A500exp_loc, Atm_A500exp, Init_A500exp_loc, and 299 

Init_A500exp experiments. The assimilation results of Atm_A500exp_loc and Atm_A500exp 300 

demonstrate significant deterioration when localization is not applied, particularly evident in SSH 301 

(Figure 4b) and salinity (Figures 5c-d), consistent with the findings discussed earlier for 302 

A500exp_loc and A500exp. Conversely, the results of Init_A500exp_loc and Init_A500exp do not 303 

exhibit a consistent pattern across the variables. SSTs degrade without localization, while SSH 304 

(Figure 4b) and salinity (comparing Figure 5a and 5b) show improvements. However, the 305 

differences between observations and estimated salinity in both Init_A500exp_loc and Init_A500exp 306 

(Figures 5a-b) are considerable, raising concerns about the suitability of employing EnKF DA 307 

systems that neglect important sources of uncertainty. It is worth mentioning that the ocean state 308 

estimates from the DA system are significantly improved when uncertainties in atmospheric forcing 309 

are accounted for by integrating the ocean model with an ensemble of atmospheric forcing 310 

(comparing Figures 5a-b with Figures 5c-d). Furthermore, considering uncertainties in internal 311 

physics (Figures 5c-d vs Figures 2l-m) further enhances the quality of system outputs, albeit to a 312 

lesser extent, in line with the findings reported by Sanikommu et al. (2020).  313 

The deterioration in the assimilation system performance after the removal of localization, 314 

even at the largest ensemble size, indicate that there are potential sources of sampling errors other 315 

than the size of the ensemble.  316 

4.3. Long-range ensemble correlations 317 
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To assess the deteriorations associated with the removal of localization in the assimilation 318 

experiments, we analyzed the long-range correlations in the forecast ensembles of different 319 

assimilation experiments. Figures 6a-d depict the spatial cross-correlations on October 1st, 2011, 320 

between sea surface salinity (SSS) at a location in the northern Red Sea (NRS) and sea surface 321 

temperature (SST) in the rest of the domain for A50exp_loc, A500exp_loc, A500exp, and A5000exp. 322 

Figures 6e-h show the same cross-correlations for another location in the southern Red Sea (SRS). 323 

These locations were selected based on prominent salinity differences observed in the assimilation 324 

experiments without localization (Figure 2m, 2n, and 5d). Overall, increasing the ensemble size 325 

from 50 to 500 smoothens the long-range correlations in the ensemble DA experiments with 326 

localization, consistent with previous studies on localization-related error covariance inflation. The 327 

differences in correlations between A500exp_loc and A500exp are notable, despite being driven by 328 

the same perturbed physics and atmospheric forcing. All ensemble data assimilation experiments 329 

indicate the presence of long-range correlations, even with 5000 ensemble members. However, 330 

some of these correlations appear to be spurious. For example, SSS in the NRS exhibits a strong 331 

correlation with SST in the Gulf of Aden (GoA) while showing weaker local correlations (Figure 332 

6d). Similarly, SSS in the SRS strongly correlates with isolated patches of SST in the NRS, with 333 

less significant local correlations (Figure 6h). 334 

To investigate whether these spurious long-range correlations have the potential to generate 335 

predominant increments, we conducted various single-data assimilation runs using the forecast 336 

ensemble of A500exp on October 1st, 2011, and examined the resulting analysis increments. 337 

Comparing the results obtained from A500exp (Figure 7a), SSHrun (Figure 7b), and SSTrun (Figure 338 

7c), we observed that the salinity increments are primarily influenced by the assimilation of SST 339 

observations rather than SSH observations. For example, A500exp shows strong negative salinity 340 

analysis increments (up to 0.2psu) in the northeastern parts of the RS and moderate positive salinity 341 
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analysis increments in the western parts of the RS and the GoA. The spatial patterns and magnitudes 342 

of salinity increments closely resemble those obtained from SSTrun compared to SSHrun. In Figure 343 

7d and 7e, we present salinity increments obtained from the assimilation of SST observations at two 344 

different locations: one in the northern RS and another in the GoA. The results from these runs 345 

indicate that the salinity increments are prominent not only in the nearby region of the SST 346 

observation location but also in farther regions. For instance, SSTnrsrun yields large salinity 347 

increments in the GoA, while SSTsrsrun generates larger salinity increments in the NRS. These 348 

findings clearly indicate that the spurious long-range cross-correlations indeed have the potential to 349 

generate predominant increments, thereby confirming that the presence of these spurious long-range 350 

correlations is behind the deteriorations observed in ensemble DA runs without localization. 351 

4.3.1 The sources of spurious long-range ensemble correlations  352 

Previous studies have noted that the perturbed atmospheric forcing ensemble from ECMWF 353 

contains non-Gaussianity and long-range correlations due to its low rank [Bertossa et al., 2021]. 354 

When such atmospheric ensemble is used to force complex nonlinear systems like the ocean model, 355 

the non-Gaussianity is expected to amplify [Miyoshi et al., 2014]. Additionally, the nonlinear nature 356 

of the model itself can generate non-Gaussianity even when perturbing linear model physics 357 

parameters [Sura and Hannachi, 2015].  358 

To assess any systematic increase in the long-range correlations associated with atmospheric 359 

ensemble forcing and non-linearity of the perturbed model physics, we examined the forecast 360 

ensembles of Init_A500exp, Atm_A500exp, and A500exp (Figure 8, 6g and Table 4). Figure 8 shows 361 

cross-correlations between SSS at a location in the SRS and SST in the rest of the domain for the 362 

ensemble of (a) Init_A500exp, and (b) Atm_A500exp. In the ensemble of Init_A500exp, the 363 

correlations are limited to the local neighborhoods, similar to previous findings of Toye et al. (2018) 364 
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with 1000-member ensemble. On the other hand, the ensemble of Atm_A500exp exhibits long-range 365 

correlations, with SSS in the SRS correlating more strongly with SST in the NRS than with its 366 

closer neighborhoods (Figure 8b). The long-range correlations in the ensemble of A500exp are even 367 

more prominent (Figure 6g).  368 

To examine non-Gaussianity, we analyzed skewness (s) and kurtosis (k) of the Probability 369 

Density Function (PDF) of the forecast ensemble from Init_A500exp, Atm_A500exp, and A500exp.  370 

Table 4 summarizes the percent occurrence of non-Gaussianity in the whole domain for different 371 

variables based on the ensembles of Init_A500exp, Atm_A500exp, and A500exp. The PDF is 372 

considered non-Gaussian when |s| > 0.3 or |k| > 0.6. The presence of non-Gaussianity is relatively 373 

low for sea surface height (SSH) across all experiments. However, for SST and SSS, non-374 

Gaussianity is notable. It is around 14% in Init_A500exp, but increases to 38% in Atm_A500exp and 375 

86% in A500exp. A similar systematic increase in non-Gaussianity is observed for SST as well. 376 

To illustrate how the bimodality and long-range correlations in the forecast ensemble caused 377 

deteriorations independently from each other, we present the scatter between SST and SSS (Figure 378 

9). The scatter plot between SST in the GoA and SSS in the NRS (Figure 9a) suggests a prominent 379 

bimodality in the SST ensemble, with distinct warm and cold groups. The correlations computed 380 

for each of these groups within the same ensemble vary significantly from each other, indicating 381 

that the bimodal correlations cannot be well described by linear correlations commonly used in 382 

Kalman-like updates [Anderson et al., 2001; Hoteit et al., 2015]. In contrast, the long-range 383 

correlation between SST in the NRS and SSS in the SRS (Figure 9b) is strong without clear signs 384 

of bimodality. Note that the magnitude of the long-range correlation is stronger than the local 385 

correlations between SST and SSS in the SRS (Figure 6h). This result suggests that there are 386 
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instances/places where degradations were resulted only from the spurious long-rage correlations 387 

too. 388 

Be it influenced by spurious features arising from the size-constrained atmospheric forcing 389 

ensemble or the non-Gaussian effects introduced by stochastic perturbations, our EnKF-based 390 

assimilation system's utilization of long-range correlations may prove unreliable. Consequently, the 391 

necessity for localization remains, even when the system is implemented large ensembles. Ensemble 392 

data assimilation systems that account for uncertainties in atmospheric forcing and internal physics 393 

have been shown to be beneficial. To further enhance performance of the DA systems, more 394 

advanced assimilation schemes that account for non-Gaussianity and mitigate long-range 395 

correlations should be incorporated. 396 

5. Summary and future directions 397 

This study focused on conducting large ensemble experiments using a real ocean data assimilation 398 

system implemented in the Red Sea. The ensemble sizes ranged from 50 to 5000 members, which 399 

significantly increased the computational cost by 130 times compared to smaller ensembles. By 400 

utilizing these large ensembles, we aimed to gain insights into the validity of the Gaussian 401 

assumption in the Ensemble Kalman Filter (EnKF) and evaluate the relative importance of 402 

addressing uncertainties in different inputs versus mitigating long-range correlations through the 403 

utilization of a large ensemble. Another objective was to examine the system's sensitivity to 404 

ensemble size and the significance of localization in a large ensemble context. Through these 405 

investigations, we aimed to enhance our understanding of the behavior and performance of the data 406 

assimilation system under different conditions. 407 

Our results indicate that increasing the ensemble size leads to improved ocean state 408 

estimates and reduced long-range correlations. However, we observed that the these improvements 409 
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seize well below an ensemble size of 500 members. Localization continues to play a crucial role 410 

even in the context of large ensembles. We also observed that accounting for uncertainties in various 411 

inputs yields more benefits than simply increasing the ensemble size, despite the presence of 412 

amplified long-range correlations and non-Gaussianity. 413 

The presence of non-Gaussianity and long-range correlations even in large ensembles 414 

underscores the ongoing need for localization. Interestingly, our results are not in full agreement 415 

with previous studies [Kondo and Miyoshi, 2016; Toye et al., 2018], which suggested that large 416 

ensembles lead to smoother correlations and improved assimilation solutions while being less 417 

reliant on localization. Thus, the findings presented in this study can change scientific perspectives 418 

regarding the benefit of large ensembles in data assimilation. 419 

Based on the improvements in the ensemble DA experiments achieved after incorporating 420 

uncertainties in atmospheric forcing and internal physics, we envision that their capabilities could 421 

be further enhanced by employing more sophisticated non-Gaussian data assimilation schemes. 422 

Increasing the rank of the atmospheric forcing ensemble and implementing non-Gaussian ensemble 423 

filters such as ensemble Gaussian Mixture filters (Anderson 2010; Hoteit et al., 2008, 2012, 2015; 424 

Fletcher et al., 2023) are potential avenues to explore. As computational power advances, 425 

increasing the rank of the atmospheric and oceanic ensembles will become more affordable in the 426 

future. KAUST is acquiring its new supercomputing system SHAHEEN-III which is set to be 20 427 

times faster than the current supercomputer SHAHEEN-II thanks to its more efficient computing 428 

resources. This will offer us new perspectives to develop and test non-Gaussian ensemble data 429 

assimilation schemes for improved ocean analyses and forecasting.  430 
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Tables   694 

Table 1. Summary of the experiments conducted. In the table “Unperturbed” refers to the default 695 

configuration adopted from the deterministic model.  “Perturbed” model physics refers to the use of 696 

a time-varying ensemble of physics during the model integration of each ensemble member for 697 

forecasting. 698 

Experiment Initial 
ensemble 

Atmospheric  
Ensemble 

Model 
physics Assimilation Localization 

Fexp Unperturbed Unperturbed Unperturbed NA NA 
A50exp_loc 50 50 Perturbed Yes 300km 

A100exp_loc 100 100 Perturbed Yes 300km 

A250exp_loc 250 250 Perturbed Yes 300km 

A500exp_loc 500 500 Perturbed Yes 300km 

A500exp 500 500 Perturbed Yes Not used 

A5000exp 5000 5000 Perturbed Yes Not used 

Atm_A500exp_loc 500 500 Unperturbed Yes 300km 

Atm_A500exp 500 500 Unperturbed Yes Not used 

Init_A500exp_loc 500 Unperturbed Unperturbed Yes 300km 

Init_A500exp 500 Unperturbed Unperturbed Yes Not used 
 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 
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Table 2. Summary of the single-DA cylce EAKF runs conducted using the forecast ensemble of 709 

A500exp on 1st October, 2011. In the table, NRS, SRS, and GoA corresponds to observations in the 710 

entire northern RS (32°E-38°E & 24°N-30°N), southern RS (38°E-42°E & 12°N-18°N), and Gulf-711 

of-Aden (42°E-50°E & 12°N-16°N), respectively.  712 

Assimilation Experiment SSH SST T&S profiles 

SSHrun Yes; whole domain No No 

SSTrun No Yes; whole domain No 

SSTnrsrun No Yes; only in the NRS No 

SSTsrsrun No Yes; only in the SRS No 

SSTgoarun No Yes;only in the GoA No 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 
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Table 3. Computational costs for one assimilation cycle in 50-member and 5000-member ensemble 727 

experiments, where assimilation is performed after integrating model for 3 days. The total core hours are 728 

calculated based on 32 cores per node. 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

Experiment 
Ensemble of 

Models Assimilation Total core 
hours Nodes  Wall time  Nodes  Wall time  

A50exp_loc 150 3 minutes 8 5 minutes 261 

A5000exp 15000 3 minutes 590 30 minutes 33440 
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Table 4. The percentage occurrence of non-Gaussianity resulted from different experiments in 750 

different surface variables.  751 

  SST SSS SSH 

Init_A500exp 26 14 4 

Atm_A500exp 27 38 3 
A500exp 59 86 4 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 
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 767 

 768 
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 770 
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Figures 771 

 772 

Figure 1. Time series of RMSD for daily averaged (a) SST (°C), and (b) SSH (cm) from Fexp (red), 773 

A50exp_loc (green), A100exp_loc (green thin line) A250exp_loc (blue thin line), A500exp_loc (blue), 774 

A500exp (magenta), A5000exp (pink). RMSDs of SST and SSH are computed by collocating the 775 

daily averaged model forecasts onto level-3 GHRSST, and level-3 altimeter observations, 776 

respectively. 10-day smoothing is applied to better visualize the differences amongst the reanalyses. 777 
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 778 

Figure 2. Collocated (in space and time) subsurface temperature (a) and salinity (b) differences 779 

between the model outputs and in-situ CTD observations collected during the KAUST/WHOI 780 

summer cruise conducted from 15th September – 8th October 2011. Panels a-b, c-d, e-f, g-h, i-j, k-l, 781 

and m-n show results for Fexp, A50exp_loc, A100exp_loc, A250exp_loc, A500exp_loc, A500exp, and 782 

A5000exp, respectively. Temperature and salinity observations are smoothed by 1° in the latitudinal 783 

direction and 10m in the vertical to emphasize subsurface features. Latitudes corresponding to 784 

observation locations are indicated as black vertical dashes at the top of each panel.  785 
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 786 

Figure 3. Maximum ensemble salinity spread in the (a-d) upper 120m and (e-h) below 120m. Results 787 

are shown for (a,e) A50exp_loc, (b,f) A500exp_loc, (c,g) A500exp, (d,h) A5000exp on 1st October, 788 

2011.  789 
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 790 

Figure 4. (a) Difference in SST RMSD (°C) between non-localization and localization experiments. 791 

Results from six different experiments are represented; Init_A500exp - InitA500exp_loc (orange), 792 

Atm_A500exp - Atm_A500exp_loc (green), A500exp - A500exp (maroon). Panel b is same as that of 793 

a except for SSH (cm). 794 



40 
 

 795 

Figure 5. Same as Figure 2 except that the results are shown only for salinity. The salinity differences 796 

are between (a) Atm_A500exp_loc and observations, (b) Atm_A500exp and observations, (c) 797 

Init_A500exp_loc and observations, (d) Init_A500exp and observations.  798 

 799 

 800 

 801 
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 802 

Figure 6: Ensemble cross-correlations, between SST and SSS at a point location, in (a,e) A50exp_loc, 803 

(b,f) A500exp_loc, (c,g) A500exp, (d,h) A5000exp on 1st October, 2011. The cross-correlations are 804 

shown for two different point locations (indicated as a solid black dot), one in the NRS (upper panels) 805 

and another in the SRS (bottom panels).   806 

 807 
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 808 

Figure 7. Analysis corrections of salinity (psu) at 30m depth on 1st October, 2011, as resulted from (a) 809 

A500exp, (b) SSTrun (c) SSHrun, (d) SSTnrsrun, (e) SSTsrsrun, and (f) SSTgoarun. 810 

 811 

 812 

 813 

 814 

 815 
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 816 

Figure 8. Ensemble cross-correlations, between SST and SSS at a point location in the SRS for (a) 817 

Init_A500exp and (b) Atm_A500exp. 818 

 819 

 820 
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 821 

Figure 9. Scatter between SST and SSS in the A500exp ensemble corresponds to 1st October 2011. 822 

Scatter is between (a) SST in the GoA and SSS in the NRS, and (b) SST in the NRS and SSS in the 823 

SRS.  824 
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