Synthesis of spiro[isochroman-3,1’-isoindoline]-1,3’,4-trione (6)
i) 2’-(5-methoxyquinolin-8-yl)spiro[isochroman-3,1’-isoindo- line]-1,3’,4-trione (4r , 87 mg, 0.2 mmol) was placed in a 10 mL two-necked reaction flask, which was filled with nitrogen by using the standard Schlenk technique. DCM (1.0 mL) was sequentially injected via a syringe. To the suspension was added BBr3 (0.24 mL, 1M in THF, 0.24 mmol) at 0 °C (ice-water bath). The mixture was stirred at 0 °C (ice-water bath) for 5 min and then allowed to warm to room temperature for 18 h. The resulting mixture was quenched with water at 0 °C and extracted with ethyl acetate three times. The combined organic layer was washed with water and dried over anhydrous Na2SO4.
ii) The crude product dissolved in MeCN/H2O (MeCN/H2O = 4:1, 2 mL), Ce(NH4)2(NO3)6(CAN, 658 mg, 1.2 mmol) was added to the mixture with a portion at room temperature, and the mixture was stirred for 12 h at 60 °C (oil bath). After the reation completed, H2O (5 mL) was added and the mixture was extracted with ethyl acetate (3 mL ×3). Combined organic phase was dried over anhydrous Na2SO4, filtered through Celite and the filtrate was concentrated. The crude residue was purified by flash chromatography in petroleum ether:ethyl acetate= 1:1 to give 6 as white soild (25 mg, 45%).
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
We are grateful to the National Natural Science Foundation of China (22101075, U2004189), Central Plains Science and Technology Innovation Leader Project (224200510009), Postdoctoral Research Grant in Henan Province (202103085), Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, and 111 Project (D17007) for financial support.
References
  1. (a) Zheng, Y.; Tice, C. M.; Singh, S. B. The Use of Spirocyclic Scaffolds in Drug Discovery, Bioorg. Med. Chem. Lett.2014, 24, 3673–3682. (b) Smith, L. K.; Baxendale, I. R. Total Syntheses of Natural Products Containing Spirocarbocycles,Org. Biomol. Chem. 2015, 13, 9907–9933. (c) Zheng, Y. J.; Tice, C. M. The Utilization of Spirocyclic Scaffolds in Novel Drug Discovery. Expert. Opin. Drug. Dis. 2016,11, 831–834. (d) Hiesinger, K.; Dar’in, D.; Proschak, E.; Krasavin, M. Spirocyclic Scaffolds in Medicinal Chemistry. J. Med. Chem. 2021, 64, 150–183.
  2. (a) Sharma, S.; Oh, Y.; Mishra, N. K.; De, U.; Jo, H.; Sachan, R.; Kim, H. S.; Jung, Y. H.; Kim, I. S. Rhodium-Catalyzed [3 + 2] Annulation of Cyclic N-Acyl Ketimines with Activated Olefins: Anticancer Activity of Spiroisoindolinones. J. Org. Chem.2017, 82, 3359–3367. (b) Wrobel, J.; Dietrich, A.; Woolson, S. A.; Millen, J.; McCaleb, M.; Harrison, M. C.; Hohman, T. C.; Sredy, J.; Sullivan, D. Novel SpiroSuccinimides with Incorporated Isoindolone and Benzisothiazole 1,1-Dioxide Moieties as Aldose Reductase Inhibitors and Antihyperglycemic Agents. J. Med. Chem. 1992, 35, 4613–4627. (c) Chia, Y. C.; Chang, F. R.; Wu, C. C.; Teng, C. M.; Chen, K. S.; Wu, Y. C. Effect of Isoquinoline Alkaloids of Different Structural Types on Antiplatelet Aggregation in vitro. Planta Med. 2006, 72, 1238–1241. (d) Wang, J.; Chen, F.; Liu, Y.; Liu, Y.; Li, K.; Yang, X.; Liu, S.; Zhou, X.; Yang, J. Spirostaphylotrichin X From a Marine-Derived Fungus as an Anti-influenza Agent Targeting RNA Polymerase PB2. J. Nat. Prod. 2018, 81, 2722–2730.
  3. (a) Ding, A.; Meazza, M.; Guo, H.; Yang, J. W.; Rios, R. New Development in the Enantioselective Synthesis of Spiro Compounds.Chem. Soc. Rev. 2018, 47, 5946–5996. (b) Alves, A. J. S.; Alves, N. G.; Soares, M. I. L.; Melo, T. M. V. D. P. Strategies and Methodologies for the Construction of Spiro-γ-lactams: An Update. Org. Chem. Front. 2021, 8, 3543–3593.
  4. (a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Q. Palladium-Catalyzed Transformations of Alkyl C−H Bonds. Chem. Rev. 2017, 117, 8754–8786. (b) Rej, S.; Chatani, N. Rhodium-Catalyzed C(sp2)−or C(sp3)−H Bond Functionalization Assisted by Removable Directing Groups. Angew. Chem., Int. Ed.2019, 58, 8304–8329. (c) Wu, Y.; Pi, C.; Wu, Y.; Cui, X. Directing Group Migration Strategy in Transition-Metal-Catalysed Direct C−H Functionalization. Chem. Soc. Rev. 2021,50, 3677–3689.
  5. (a) Su, B.; Cao, Z. C.; Shi, Z. J. Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. Acc. Chem. Res. 2015, 48, 886–896. (b) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Methods Utilizing First-Row Transition Metals in Natural Product Total Synthesis. Chem. Rev. 2017, 117, 11680–11752. (c) Li, Y.; Hu, Y.; Wu, X. F. Non-Noble Metal-Catalysed Carbonylative Transformations. Chem. Soc. Rev. 2018, 47, 172–194. (d) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann. L. 3d Transition Metals for C−H Activation. Chem. Rev. 2019, 119, 2192–2452.
  6. (a) Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C−H Activation. ACS Catal. 2016, 6, 498–525. (b) Kommagalla, Y.; Chatani, N. Cobalt(II)-Catalyzed CAH Functionalization Using an N, N’-Bidentate Directing Group. Coord. Chem. Rev.2017, 350, 117–135. (c) Cizikovs, A.; Lukasevics, L.; Grigorjeva, L. Cobalt-Catalyzed C−H Bond Functionalization Using Traceless Directing Group. Tetrahedron 2021,93, 132307. (d) Banjare, S. K.; Nanda, T.; Pati, B. V.; Biswal, P.; Ravikumar, P. C. O-Directed C−H Functionalizationvia Cobaltacycles: A Sustainable Approach for C−C and C-Heteroatom Bond Formations. Chem. Commun. 2021,57, 3630–3647.
  7. (a) Xiang, Y.; Wang, C.; Ding, Q.; Peng, Y. Diazo Compounds: Versatile Synthons for the Synthesis of Nitrogen Heterocycles viaTransition Metal-Catalyzed Cascade C−H Activation/Carbene Insertion/Annulation Reactions. Adv. Synth. Catal.2019, 361, 919–944. (b) Nunewar, S.; Kumar, S.; Talakola, S.; Nanduri, S.; Kanchupalli, V. Co(III), Rh(III) & Ir(III)-Catalyzed Direct C−H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chem. Asian J. 2021, 16, 443–459. (c) Solovyev, I.; Eremeyeva, M.; Zhukovsky, D.; Dar’in, D.; Krasavin, M. Cyclic Diazo Compounds in the Construction of Spirocyclic Scaffolds. Tetrahedron Lett. 2021, 62, 152671. (d) Kumar, S.; Nunewar, S.; Oluguttula, S.; Nanduri, S.; Kanchupalli, V. Recent Advances in Rh(III)/ Ir(III)-Catalyzed C−H Functionalization/Annulation via Carbene Migratory Insertion.Org. Biomol. Chem. 2021, 19, 1438–1458.
  8. (a) Berger, M.; Chauhan, R.; Rodrigues, C. A. B.; Maulide, N. Bridging C−H Activation: Mild and Versatile Cleavage of the 8-Aminoquinoline Directing Group. Chem. -Eur. J. 2016, 22, 16805–16808. (b) Deguchi, T.; Xin, H. L.; Morimoto, H.; Ohshima, T. Direct Catalytic Alcoholysis of Unactivated 8-Aminoquinoline Amides.ACS Catal. 2017, 7, 3157–3161. (c) Fitzgerald, L. S.; O’Duill, M. L. A Guide to Directing Group Removal: 8-Aminoquinoline. Chem. -Eur. J. 2021, 27, 8411–8436. (d) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B. F. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp3)−H Bonds.Chem. Rev. 2021, 121, 14957–15074.
  9. Xu, M. R.; Yuan, Y.; Wang, Y.; Tao, Q. H.; Wang, C. Y.; Li, Y. Z. Controllable α- or β-Functionalization of α-Diazoketones with Aromatic Amides via Cobalt-Catalyzed C−H Activation: A Regioselective Approach to Isoindolinones. Org. Lett. 2019, 21, 6264–6269.
  10. Li, M. H.; Si, X. J.; Zhang, H.; Yang, D. D.; Niu, J. L.; Song, M. P. Directed Cobalt-Catalyzed C−H Activation to Form C−C and C−O Bonds in One Pot via Three-Component Coupling. Org. Lett. 2021,23, 914–919.
  11. (a) Guo, C.; Li, B.; Liu, H.; Zhang, X.; Fan, X. Synthesis of Fused or Spiro Polyheterocyclic Compounds via the Dehydrogenative Annulation Reactions of 2-Arylindazoles with Maleimides. Org. Lett. 2019, 21, 7189–7193. (b) Li, B.; Guo, C. H.; Shen, N. N.; Zhang, X. Y.; Fan, X. S. Synthesis of Maleimide Fused Benzocarbazoles and Imidazo[1,2-a]pyridines via Rhodium(III)-Catalyzed [4 + 2] Oxidative Cycloaddition. Org. Chem. Front. 2020, 7, 3698–3704. (c) Li, H.; Shen, M. Y.; Li, B.; Zhang, X. Y.; Fan, X. S. Solvent-Dependent Selective Synthesis of CF3-Tethered Indazole Derivatives Based on Multiple Bond Activations. Org. Lett. 2023,25, 720–725. (d) Song, X.; Wang, K. L.; Zhang, X. Y.; Fan, X. S. Unsymmetrical Relay C−H Alkenylation and [2 + 2] Cycloaddition of N-Arylsydnones with Allenyl Acetates Leading to Quinoline-Fused Cyclobutanes. Org. Chem. Front. 2023,10, 1191–1197.
  12. (a) Li, B.; Zhang, B. B.; Zhang, X. Y.; Fan, X. S. Regio-selective Synthesis of Diversely Substituted Benzo[a]carbazoles through Rh(III)-Catalyzed Annulation of 2-Arylindoles with α-Diazo Carbonyl Compounds. Chem. Commun. 2017, 53, 1297–1300. (b) Li, B.; Shen, N. N.; Zhang, X. Y.; Fan, X. S. Synthesis of Fused Imidazo[1,2-a]pyridines Derivatives through Cascade C(sp2)−H Functionalizations.Org. Biomol. Chem. 2019, 17, 9140–9150. (c) Li, B.; Shen, N. N.; Yang, Y. J.; Zhang, X. Y.; Fan, X. S. Synthesis of Naphtho[1’,2’:4,5]imidazo- [1,2-a]pyridinesvia Rh(III)-Catalyzed C−H Functionalization of 2-Arylimidazo[1,2-a]pyridines with Cyclic 2-Diazo-1,3-diketones Featuring with a Ring Opening and Reannulation.Org. Chem. Front. 2020, 7, 919–925. (d) Li, B.; Shen, N. N.; Yang, Y. J.; Zhang, X. Y.; Fan, X. S. Tunable Synthesis of Indeno[1,2-c]furans and 3-Benzoylindenones via FeCl3-Catalyzed Carbene/Alkyne Metathesis Reaction ofo-Alkynylbenzoyl Diazoacetates. Org. Lett.2021, 23, 388–393. (e) Li, B.; Shen, N. N.; Wang, K. L.; Fan, X. S.; Zhang, X. Y. Rh(III)-Catalyzed Reaction of 2-Aryl-3-acyl-1H-indoles with α-Diazo Carbonyl Compounds: Synthesis of 5-Carbonyl Substituted Benzo[a]carbazolesvia [5 + 1] Annulation. Asian J. Org. Chem.2022, 11, e202100710.
  13. (a) Lian, X. L.; Lei, H.; Quan, X. J.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Oxidation of 2-Arylindoles for Synthesis of 2-Arylbenzoxazinones with Oxone as the Sole Oxidant. Chem. Commun. 2013,49, 8196–8198. (b) Yamashita, M.; Iida, A. Copper-Mediated Oxidative Tandem Reactions with Molecular Oxygen: Synthesis of 2-Arylbenzoxazinone Derivatives from Indoles. Tetrahedron Lett.2014, 55, 2991–2993. (c) Feng, Y. D.; Li, Y. D.; Cheng, G. L.; Wang, L. H.; Cui, X. L. Copper-Catalyzed Synthesis of 2-Arylquinazolinones from 2-Arylindoles with Amines or Ammoniums.J. Org. Chem. 2015, 80, 7099–7107.