References
1. F. Fresno, A. Iglesias-Juez, J.M. Coronado, Photothermal Catalytic
CO2 Conversion: Beyond Catalysis and Photocatalysis, Topics in
current chemistry (Cham), 2023; 381(4):
21.https://doi.org/10.1007/s41061-023-00430-z.
2. C.H. Huang, J.X. Huang, Y.H. Chiao, C.M. Chang, W.S. Hung, S.J. Lue,
C.F. Wang, C.C. Hu, K.R. Lee, H.H. Pan, J.Y. Lai, Tailoring of a
Piezo-Photo-Thermal Solar Evaporator for Simultaneous Steam and Power
Generation, Adv. Funct. Mater., 2021; 31(17):
11.https://doi.org/10.1002/adfm.202010422.
3. Y.M. Li, Y.Y. Shi, H.W. Wang, T.F. Liu, X.W. Zheng, S.M. Gao, J. Lu,
Recent advances in carbon-based materials for solar-driven interfacial
photothermal conversion water evaporation: Assemblies, structures,
applications, and prospective, Carbon Energy, 2023;
42.https://doi.org/10.1002/cey2.331.
4. H.W. Liu, B.C. Chen, Y.L. Chen, M.N. Zhou, F.W. Tian, Y.Z. Li, J.J.
Jiang, W.T. Zhai, Bioinspired Self-Standing, Self-Floating 3D Solar
Evaporators Breaking the Trade-Off between Salt Cycle and Heat
Localization for Continuous Seawater Desalination, Adv. Mater.,
2023; 14.https://doi.org/10.1002/adma.202301596.
5. P. Xiao, J. He, F. Ni, C. Zhang, Y. Liang, W. Zhou, J.C. Gu, J.Y.
Xia, S.W. Kuo, T. Chen, Exploring interface confined water flow and
evaporation enables solar-thermal-electro integration towards clean
water and electricity harvest via asymmetric functionalization strategy,Nano Energy, 2020;
6810.https://doi.org/10.1016/j.nanoen.2019.104385.
6. Y. Zhou, T.P. Ding, M.M. Gao, K.H. Chan, Y. Cheng, J.Q. He, G.W. Ho,
Controlled heterogeneous water distribution and evaporation towards
enhanced photothermal water-electricity-hydrogen production, Nano
Energy, 2020; 777.https://doi.org/10.1016/j.nanoen.2020.105102.
7. X.M. Geng, D.D. Zhang, Z.M. Zheng, G.M. Ye, S.M. Li, H.Y. Tu, Y.F.
Wan, P. Yang, Integrated multifunctional device based on Bi2S3/Pd:
Localized heat channeling for efficient photothermic vaporization and
real-time health monitoring, Nano Energy, 2021;
8213.https://doi.org/10.1016/j.nanoen.2020.105700.
8. X.D. Sun, S.Y. Jiang, H.W. Huang, H. Li, B.H. Jia, T.Y. Ma, Solar
Energy Catalysis, Angew. Chem.-Int. Edit., 2022; 61(29):
18.https://doi.org/10.1002/anie.202204880.
9. S. Sun, M. Li, X.L. Shi, Z.G. Chen, Advances in Ionic
Thermoelectrics: From Materials to Devices, Adv. Energy Mater.,
2023; 13(9): 45.https://doi.org/10.1002/aenm.202203692.
10. G. Wang, Z.D. Tang, Y. Gao, P.P. Liu, Y. Li, A. Li, X. Chen, Phase
Change Thermal Storage Materials for Interdisciplinary Applications,Chem. Rev. , 2023; 72.https://doi.org/10.1021/acs.chemrev.2c00572.
11. Y.F. Zhao, W. Gao, S.W. Li, G.R. Williams, A.H. Mahadi, D. Ma,
Solar-versus Thermal-Driven Catalysis for Energy Conversion,Joule , 2019; 3(4):
920.https://doi.org/10.1016/j.joule.2019.03.003.
12. M.F. Dupont, D.R. MacFarlane, J.M. Pringle, Thermo-electrochemical
cells for waste heat harvesting - progress and perspectives, Chem.
Commun. , 2017; 53(47): 6288.https://doi.org/10.1039/c7cc02160g.
13. L. Huang, S.Z. Lin, Z.S. Xu, H. Zhou, J.J. Duan, B. Hu, J. Zhou,
Fiber-Based Energy Conversion Devices for Human-Body Energy Harvesting,Adv. Mater. , 2020; 32(5):
20.https://doi.org/10.1002/adma.201902034.
14. C. Liu, Q.K. Li, S.J. Wang, W.S. Liu, N.X. Fang, S.P. Feng, Ion
regulation in double-network hydrogel module with ultrahigh thermopower
for low-grade heat harvesting, Nano Energy , 2022;
929.https://doi.org/10.1016/j.nanoen.2021.106738.
15. S.R. Pu, Y.T. Liao, K.L. Chen, J. Fu, S.L. Zhang, L.R. Ge, G. Conta,
S. Bouzarif, T. Cheng, X.J. Hu, K. Liu, J. Chen, Thermogalvanic Hydrogel
for Synchronous Evaporative Cooling and Low-Grade Heat Energy
Harvesting, Nano Lett. , 2020; 20(5):
3791.https://doi.org/10.1021/acs.nanolett.0c00800.
16. J.J. Shen, Y.L. Ma, C.H. Yang, S.X. Liu, J. Li, Z.J. Chen, B. Tian,
S.J. Li, Boosting solar-thermal-electric conversion of
thermoelectrochemical cells by construction of a
carboxymethylcellulose-interpenetrated polyacrylamide network, J.
Mater. Chem. A , 2022; 10(14): 7785.https://doi.org/10.1039/d2ta00025c.
17. A. Taheri, D.R. MacFarlane, C. Pozo-Gonzalo, J.M. Pringle,
Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting
using a Cobalt Redox Couple, ChemSusChem , 2018; 11(16):
2788.https://doi.org/10.1002/cssc.201800794.
18. T.Y. Cao, X.L. Shi, Z.G. Chen, Advances in the design and assembly
of flexible thermoelectric device, Prog. Mater. Sci. , 2023;
13158.https://doi.org/10.1016/j.pmatsci.2022.101003.
19. J.H. Chen, L. Zhang, Y.Y. Tu, Q. Zhang, F. Peng, W. Zeng, M.Q.
Zhang, X.M. Tao, Wearable self-powered human motion sensors based on
highly stretchable quasi-solid state hydrogel, Nano Energy , 2021;
888.https://doi.org/10.1016/j.nanoen.2021.106272.
20. Y. Wang, L. Yang, X.L. Shi, X. Shi, L.D. Chen, M.S. Dargusch, J.
Zou, Z.G. Chen, Flexible Thermoelectric Materials and Generators:
Challenges and Innovations, Adv. Mater. , 2019; 31(29):
47.https://doi.org/10.1002/adma.201807916.
21. L. Zhang, X.L. Shi, Y.L. Yang, Z.G. Chen, Flexible thermoelectric
materials and devices: From materials to applications, Mater.
Today , 2021; 4662.https://doi.org/10.1016/j.mattod.2021.02.016.
22. M. Tan, W.D. Liu, X.L. Shi, Q. Sun, Z.G. Chen, Minimization of the
electrical contact resistance in thin-film thermoelectric device,Appl. Phys. Rev. , 2023; 10(2):
9.https://doi.org/10.1063/5.0141075.
23. C.H. Tian, C.H. Bai, T. Wang, Z.F. Yan, Z.Y. Zhang, K. Zhuo, H.L.
Zhang, Thermogalvanic hydrogel electrolyte for harvesting biothermal
energy enabled by a novel redox couple of SO4/3 2-ions, Nano
Energy , 2023; 1068.https://doi.org/10.1016/j.nanoen.2022.108077.
24. Y.W. Zhang, Y. Dai, F. Xia, X.J. Zhang, Gelatin/polyacrylamide ionic
conductive hydrogel with skin temperature-triggered adhesion for human
motion sensing and body heat harvesting, Nano Energy , 2022;
10411.https://doi.org/10.1016/j.nanoen.2022.107977.
25. C.H. Bai, X.B.A. Li, X.J. Cui, X.R. Yang, X.R. Zhang, K. Yang, T.
Wang, H.L. Zhang, Transparent stretchable thermogalvanic PVA/gelation
hydrogel electrolyte for harnessing solar energy enabled by a binary
solvent strategy, Nano Energy , 2022;
1008.https://doi.org/10.1016/j.nanoen.2022.107449.
26. P.H. Yang, K. Liu, Q. Chen, X.B. Mo, Y.S. Zhou, S. Li, G. Feng, J.
Zhou, Wearable Thermocells Based on Gel Electrolytes for the Utilization
of Body Heat, Angew. Chem.-Int. Edit. , 2016; 55(39):
12050.https://doi.org/10.1002/anie.201606314.
27. K.K. Liu, J.C. Lv, G.D. Fan, B.J. Wang, Z.P. Mao, X.F. Sui, X.L.
Feng, Flexible and Robust Bacterial Cellulose-Based Ionogels with High
Thermoelectric Properties for Low-Grade Heat Harvesting, Adv.
Funct. Mater. , 2022; 32(6): 12.https://doi.org/10.1002/adfm.202107105.
28. S. Li, Q. Zhang, Ionic Gelatin Thermoelectric Generators,Joule , 2020; 4(8):
1628.https://doi.org/10.1016/j.joule.2020.07.020.
29. D. Zhang, Y. Mao, F. Ye, Q. Li, P.J. Bai, W. He, R.J. Ma,
Stretchable thermogalvanic hydrogel thermocell with record-high specific
output power density enabled by ion-induced crystallization,Energy Environ. Sci. , 2022; 15(7):
2974.https://doi.org/10.1039/d2ee00738j.
30. Z.A. Akbar, J.W. Jeon, S.Y. Jang, Intrinsically self-healable,
stretchable thermoelectric materials with a large ionic Seebeck effect,Energy Environ. Sci. , 2020; 13(9):
2915.https://doi.org/10.1039/c9ee03861b.
31. C. Cho, B. Kim, S. Park, E. Kim, Bisulfate transport in hydrogels
for self-healable and transparent thermoelectric harvesting films,Energy Environ. Sci. , 2022; 15(5):
2049.https://doi.org/10.1039/d2ee00341d.
32. Y.H. Guo, J. Bae, Z.W. Fang, P.P. Li, F. Zhao, G.H. Yu, Hydrogels
and Hydrogel-Derived Materials for Energy and Water Sustainability,Chem. Rev. , 2020; 120(15):
7642.https://doi.org/10.1021/acs.chemrev.0c00345.
33. C. Xu, Y. Sun, J.J. Zhang, W. Xu, H. Tian, Adaptable and Wearable
Thermocell Based on Stretchable Hydrogel for Body Heat Harvesting,Adv. Energy Mater. , 2022; 12(42):
9.https://doi.org/10.1002/aenm.202201542.
34. T.J. Abraham, D.R. MacFarlane, J.M. Pringle, High Seebeck
coefficient redox ionic liquid electrolytes for thermal energy
harvesting, Energy Environ. Sci. , 2013; 6(9):
2639.https://doi.org/10.1039/c3ee41608a.
35. A. Taheri, D.R. MacFarlane, C.P. Pozo-Gonzalo, J.M. Pringle,
Flexible and non-volatile redox active quasi-solid state ionic liquid
based electrolytes for thermal energy harvesting, Sustain. Energ.
Fuels , 2018; 2(8): 1806.https://doi.org/10.1039/c8se00224j.
36. J. Wu, J.J. Black, L. Aldous, Thermoelectrochemistry using
conventional and novel gelled electrolytes in heat-to-current
thermocells, Electrochim. Acta , 2017;
225482.https://doi.org/10.1016/j.electacta.2016.12.152.
37. Y. Wang, J.P. Park, S.H. Hong, H. Lee, Biologically Inspired
Materials Exhibiting Repeatable Regeneration with Self-Sealing
Capabilities without External Stimuli or Catalysts, Adv. Mater. ,
2016; 28(45): 9961.https://doi.org/10.1002/adma.201603290.
38. Y.L. Zhang, R.N. Xu, W.Y. Zhao, X.D. Zhao, L.Q. Zhang, R. Wang, Z.F.
Ma, W.B. Sheng, B. Yu, S.H. Ma, F. Zhou, Successive
Redox-Reaction-Triggered Interface Radical Polymerization for Growing
Hydrogel Coatings on Diverse Substrates, Angew. Chem.-Int. Edit. ,
2022; 61(39): 7.https://doi.org/10.1002/anie.202209741.
39. L.W. Yang, L.L. Han, J. Ren, H.L. Wei, L.Y. Jia, Coating process and
stability of metal-polyphenol film, Colloid Surf. A-Physicochem.
Eng. Asp. , 2015; 484197.https://doi.org/10.1016/j.colsurfa.2015.07.061.
40. H.D. Graham, Stabilization of the Prussian blue color in the
determination of polyphenols, Journal of Agricultural and Food
Chemistry , 1992; 40(5): 801.https://doi.org/10.1021/jf00017a018.
41. I. Gulcin, F. Topal, S.B.O. Sarikaya, E. Bursal, G. Bilsel, A.C.
Goren, Polyphenol Contents and Antioxidant Properties of Medlar
(Mespilus germanica L.), Rec. Nat. Prod. , 2011; 5(3): 158.
42. J.J. Duan, G. Feng, B.Y. Yu, J. Li, M. Chen, P.H. Yang, J.M. Feng,
K. Liu, J. Zhou, Aqueous thermogalvanic cells with a high Seebeck
coefficient for low-grade heat harvest, Nat. Commun. , 2018;
98.https://doi.org/10.1038/s41467-018-07625-9.
43. Z.Y. Lei, W. Gao, P.Y. Wu, Double-network thermocells with
extraordinary toughness and boosted power density for continuous heat
harvesting, Joule , 2021; 5(8):
2211.https://doi.org/10.1016/j.joule.2021.06.003.
Figure 1. Schematic illustrating the construction of the
PTEH-Interlocking and their potental application for
photo-thermo-electric energy conversion.Figure1.tif
Figure 2. a) Digital photos of TEH and PTEH-Interlocking. b)
Digital photos and SEM image of
PA-PEI-Fe photothermal film. c) The
SEM elemental mapping of PA-PEI-Fe photothermal film. d) FTIR spectra of
PA and PA-PEI-Fe photothermal film. e) O 1s XPS spectra. f) UV-Vis
absorption spectra of PA-PEI aqueous solution,
[Fe(CN)6]3−/[Fe(CN)6]4−aqueous solution and mixture solution of PA-PEI and
[Fe(CN)6]3−/[Fe(CN)6]4−.Figure2.tif
Figure 3. a) Temperature changes of the PA-PEI-Fe photothermal
film consturcted with different proportions of PA (simulated sunlight
intensity is 100 mW cm−2); b) UV diffuse reflection
spectra of PA-PEI-Fe and PA-PEI film; c) Temperature changes of
PA-PEI-Fe, PA-PEI and CNT film (simulated sunlight intensity is 100 mW
cm−2); d) The corresponding infrared images of
PA-PEI-Fe, PA-PEI and CNT film over time; e) Photothermal conversion
efficiency of PA-PEI-Fe, PA-PEI and CNT film; f) Photothermal stability
estimation of PA-PEI-Fe over 10 UV light “on-off” cycles. (g)
Temperature increase of TEH, TEH-CNT and PTEH-Interlocking under the
simulated light of 100 mW cm−2 for 1 h.Figure3.tif
Figure 4. a) schematic illustrating thermoelectric conversion
process of the PTEH-Interlocking; b) The voltage generated by
PTEH-Interlocking and its dependence on temperature differences, as well
as the impact of eliminating these temperature differences between the
two sides. c) Voltages generated by TEH and its dependence on
temperature differences, as well as the impact of eliminating these
temperature differences between the two sides.; d) Seebeck coefficient
of PTEH-Interlocking (red) and TEH (blue); e) The current
density-voltage curves depict the performance of the PTEH-Interlocking
system under varying temperature differences, and the corresponding
power densities are determined for each scenario.; f) output voltages of
PTEH-Interlocking with different proportions of PA; g) Voltage generated
by PTEH-Interlocking after stretching to a strain of 100% and 400%. h)
The thermal conductivity of different structures between
TEH, THE/PA-PEI-Fe,
PTEH-Interlocking; i) The electrical conductivity of different
structures between TEH, THE/PA-PEI-Fe,
PTEH-Interlocking.Figure4.tif
Figure 5. a) Voltage output of solar-driven PTEH-Interlocking
upon simulated sunlight intensity (100, 150 and 200 mW
cm−2); b) The power of solar-driven PTEH-Interlocking
with different simulated sunlight intensity (100, 150 and 200 mW
cm−2); c) Voltage output of solar-driven TEH, THE-CNT
and PTEH-Interlocking on switching on/off simulated solar source at 100
mW·cm-1; d) Voltage output of solar-driven
PTEH-Interlocking for long time at 100 mW cm-1; e)
Voltage output of PTEH-Interlocking for 15 “on-off” cycles of the
simulated sunlight (150 mW cm−2);
f) Schematic diagrams and visual
representations demonstrate the utilization of a solar-driven
PTEH-Interlocking device as an electricity supplier for a motor and LED;
g) Visual depictions showcase the implementation of a solar-driven
PTEH-Interlocking device as the power source for a house alarm system.
Figure5.tif