
manuscript submitted to Earth’s Future 

 

1 
Applying global warming levels of emergence to highlight the increasing 2 

population exposure to temperature and precipitation extremes 3 

 4 

David Gampe1, Clemens Schwingshackl1, Andrea Böhnisch1, Magdalena Mittermeier1, 5 
Marit Sandstad2, Raul R. Wood1,3,4 6 

1 Dept. of Geography, Ludwig-Maximilians-Universität München 7 
2 CICERO Center for International Climate Research, Oslo, Norway 8 
3 WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland 9 
4 Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 10 
Davos Dorf, Switzerland 11 

 12 

Corresponding author: David Gampe (d.gampe@lmu.de) 13 

 14 

 15 

 16 

Key Points: 17 

• Global warming levels of emergence represent a viable concept to communicate climate 18 
change impacts at policy-relevant temperature targets. 19 

• Every fraction of a degree matters as the population exposure to new climate states of 20 
minimum and maximum temperatures increases sharply. 21 

• Applying multiple SMILEs to robustly quantify the joint emergence of new climate states 22 
and their scaling with global warming.  23 
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Abstract 24 

Global temperatures exceeded pre-industrial conditions by 1.1°C during the decade 2011-2020 25 
and further warming is projected by climate models. An increasing number of climate variables 26 
exhibit significant changes compared to the past decades, even beyond the noise of internal 27 
climate variability. To determine the year when climate change signals can be detected, the 28 
concept of time of emergence (ToE) is well established. Additionally, climate projections are 29 
communicated increasingly frequently through global warming levels (GWLs) rather than time 30 
horizons. Yet, ToE and GWL have barely been combined so far. Here, we apply five Single 31 
Model Initial-condition Large Ensembles (SMILEs) to derive global warming levels of 32 
emergence (GWLoE) of four temperature and precipitation indices. We show that the concept of 33 
GWLoE is particularly promising to constrain temperature projections and proves a viable tool to 34 
communicate scientific results. We find that >75% of the global population is exposed to 35 
emerged signals for nighttime temperatures at a GWL of 1.5°C, increasing to >95% at 2.0°C. 36 
Daily maximum temperature follows a similar, yet less pronounced path. Emerged signals for 37 
mean and extreme precipitation start appearing at current GWLs and increase steadily with 38 
further warming (~20% population exposed at 2.0°C). Related probability ratios for the 39 
occurrence of extremes indicate a strong increase where temperature extremes reach widespread 40 
saturation (extremes occur every year) particularly in (sub)tropical regions below 2.5°C 41 
warming. These results indicate that current times are a critical period for climate action as every 42 
fraction of additional warming substantially increases the adverse effects on human wellbeing. 43 

 44 

Plain Language Summary 45 

Climate change represents a major challenge for humankind in the 21st century as human activity 46 
has caused and continues to cause global temperatures to rise. However, weather and climate are 47 
both characterized by fluctuations that occur naturally even without climate change. We use a 48 
special suite of climate models – named Single Model Initial-condition Large Ensembles 49 
(SMILEs) – to determine if and also when climate change is detectable beyond these natural 50 
fluctuations, that is the time of emergence. The communication of warming targets (e.g., limiting 51 
global warming to 1.5°C or 2.0°C) is well accepted and policy-relevant. We therefore translate 52 
the time of emergence to the global warming prevalent in the corresponding year of emergence, 53 
which then yields the global warming level of emergence. We show that already under the 54 
defined warming target of 1.5°C large parts of the global population and land area are confronted 55 
with extreme temperatures altered by climate change. This exposure shows a sharp increase for 56 
higher global warming levels. Additionally, precipitation starts to show clear climate change 57 
effects at 1.5°C – 2.0°C global warming. Our results highlight the urgent need for further climate 58 
policies to reduce negative impacts of climate change on human wellbeing. 59 

1 Introduction 60 

The sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 61 
repeatedly confirmed that the recent global warming is unequivocally caused by anthropogenic 62 
activity (Masson-Delmotte et al. 2021). The latest decade (2011-2020) saw 1.1°C higher global 63 
temperatures compared to pre-industrial times (1850-1900) and warming is projected to continue 64 
in the future under current climate policies (IPCC 2022). To prevent adverse and potentially 65 
catastrophic impacts of very high warming rates, the Paris Agreement urges to hold global 66 
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warming “well below 2.0°C above pre-industrial levels”, ideally limiting it to 1.5°C (UNFCCC, 67 
2015). However, a warming of 1.5°C will already impose negative impacts on ecosystems and 68 
human wellbeing (Masson-Delmotte et al. 2018), and a growing body of literature highlights the 69 
adverse consequences of even higher warming rates (e.g., Hoegh-Guldberg 2019, Schwingshackl 70 
et al. 2021). Many studies have elaborated on the benefits of limiting global warming to 1.5°C 71 
compared to 2°C, showing, among others, substantially less area affected by desertification (Park 72 
et al. 2018), less population exposed to extreme daily temperatures (Harrington,2021, King & 73 
Karoly 2017), a lower reduction in water availability and a smaller increase in dry spell length 74 
(Schleussner et al. 2016), as well as a less pronounced increase in drought risk and risk of 75 
consecutive drought years (Lehner et al. 2017a). Given the current warming rate and the 76 
expected severe impacts if exceeding 1.5°C of warming, it is essential to estimate the 77 
consequences of warming levels beyond political targets at incremental steps. 78 

The time of emergence (ToE) is a well-established concept to estimate whether and when 79 
a climate change signal is detectable (e.g., Lehner et al. 2017b, Hawkins and Sutton 2012). ToE 80 
indicates the time when the considered climate variable changes into a new state. This is 81 
generally estimated by testing whether the distribution of this variable is significantly different 82 
from the distribution that the variable should have in a world without climate change. While 83 
expressing ToE in distinct years is illustrative and easy to communicate, uncertainties of climate 84 
projections make a precise estimation challenging (Hawkins et al. 2014). Climate projections are 85 
subject to three major sources of uncertainty: uncertainty due to internal variability of the climate 86 
system, structural uncertainty introduced by different model parameterizations, and scenario 87 
uncertainty reflecting differences in potential future socioeconomic and related emission 88 
pathways (Hawkins & Sutton, 2009; Lehner et al. 2020). Various methods have been developed 89 
to quantify, distinguish and constrain the different types of uncertainty (Lehner et al. 2023). 90 

To disentangle a robust climate change signal from the background noise of internal 91 
climate variability Single Model Initial-condition Large Ensembles (SMILEs) are widely used 92 
(e.g., Deser et al. 2020, Maher et al. 2021). SMILEs constitute numerous independent, yet 93 
equally probable climate simulations, created by running a single climate model multiple times 94 
under the same external forcing (e.g., same emission scenario) but with marginally changed 95 
initial conditions (Kay et al. 2015, Maher et al. 2019). Due to the resulting large sample size, 96 
SMILEs allow for a robust assessment of extremes by extensively sampling the tails of the 97 
distribution (Suarez-Gutierrez et al. 2020, Wood et al. 2021). Moreover, SMILEs are ideal tools 98 
to estimate ToE due to their ability to provide both statistically robust forced signals and a 99 
quantification of internal climate variability via the spread across ensemble members 100 
(Schlunegger et al. 2019). This is particularly relevant as internal climate variability can advance 101 
or delay the emergence of the forced signal by up to several decades (Hawkins et al. 2014). The 102 
increasing number and availability of SMILEs over recent years (Deser et al. 2020) makes it 103 
possible to additionally address structural uncertainty. Merging the information of multiple 104 
SMILEs to assess the corresponding joint time of emergence should thus allow for an even more 105 
robust detection of ToE, as internal variability and model uncertainty can both be assessed. 106 

In recent years, future climate projections have been expressed increasingly frequently 107 
through global warming levels (GWLs) instead of fixed time horizons (e.g., the period 2071-108 
2100) (Seneviratne et al. 2021). This approach constrains scenario uncertainty by the question of 109 
which GWL will be reached and expresses future climate projections in a more policy-relevant 110 
way. Recently, first studies combined GWL and ToE to provide global warming levels of 111 
emergence (GWLoE) instead of ToE (Abatzoglou et al. 2019, Kirchmeier-Young et al. 2019, 112 
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Raymond et al. 2020). Yet, GWLoE remains a rarely applied concept in general as well as in the 113 
context of using SMILEs in particular. 114 

We thus expand the current literature by presenting the joint GWLoE of selected 115 
temperature and precipitation indices using multiple SMILEs from the Coupled Model 116 
Intercomparison Project Phase 6 (CMIP6) and further aim to promote the concept of GWLoE. 117 
We quantify the exposure of population and land area to emerged climate indices as a function of 118 
GWL. Further, we relate incremental changes in GWL to changes in the exposure to temperature 119 
and precipitation extremes by estimating increases in their probability ratios for each 0.1°C 120 
warming. 121 

2 Materials and Methods 122 

2.1 SMILEs and climate indices 123 

We use five different SMILEs from the CMIP6 archive (ACCESS-ESM1-5, CanESM5, EC-124 
Earth3, MIROC6, and MPI-ESM1-2LR; see Tab. 1) with a comparable ensemble size, and 125 
sufficient ensemble members (30-50) for representing internal climate variability (Milinski et al. 126 
2020, Tebaldi et al. 2021). A sufficiently large ensemble size is particularly relevant for 127 
precipitation variability, for which the ensemble should comprise at least 30 members (Wood et 128 
al. 2021). We selected four temperature and precipitation indices compiled by the Expert Team 129 
on Climate Change Detection and Indices (ETCCDI) that have been frequently applied in 130 
previous studies (e.g. Sillmann et al. 2013, Deng et al. 2022): yearly maximum of daily 131 
maximum temperature (TXx), yearly maximum of daily minimum temperature (TNx), total 132 
annual precipitation (PRCPtot), and yearly maximum 1-day precipitation (Rx1day). After 133 
calculating the indices, all models were remapped using a conservative remapping approach to 134 
match the spatial resolution of the coarsest grid (CanESM5, ~2.8°x2.8°; Tab. 1). 135 

We aim at analyzing a wide range of potential GWLs to identify the impact of 136 
incremental changes of global warming on selected indices and the related emerging risks. 137 
Hence, we selected SMILEs under the historical scenario and the high-end climate change 138 
scenario SSP5-8.5, which projects an increase in radiative forcing of 8.5 W/m2 by the end of the 139 
21st century (Gidden et al. 2019). The choice of this rather extreme scenario allows us to analyze 140 
high warming levels (above 3.5°C) compared to pre-industrial conditions (1850-1900; Fig. 1). In 141 
contrast, some of the lower emission scenarios might not even reach GWLs of 1.5°C to 2°C by 142 
the end of the century despite an already observed global warming of more than 1.1°C in the 143 
recent decade (2011-2020; Fig. 1). Overall, the range of GWLs projected by the five selected 144 
SMILEs for the end of the 21st century (3.8°C – 7.1°C; Fig. 1) is in general agreement with the 145 
full spread of the current CMIP6 climate model ensemble projections (Tebaldi et al. 2021). 146 

Tab.1: Overview of the five Single Model Initial-condition Large Ensembles (SMILEs) applied in this 147 
study. The CMIP6 historical and SSP5-8.5 scenarios (in total covering the period 1850-2100) were 148 
considered for all SMILEs. All models were conservatively remapped to the coarsest model grid 149 
(CanESM5) for further analysis. The values for Equilibrium Climate Sensitivity (ECS) stem from Meehl et 150 
al. (2020) and provide an estimate of the climate sensitivity of each SMILE. 151 

SMILE Ensemble size
(n members) 

Original 
resolution 
(lat x lon grid) 

ECS (°C) Reference 
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that the tested time series was drawn from a different distribution than the reference data. For 165 
each ensemble member, we define ToE as the tenth year of the first 20-year window where the p-166 
value of the KS-test determines significance in changes in the mean. We further require that 167 
changes in the mean of all subsequent periods remain significant as well. The climate signal is 168 
considered as not emerged by the end of the 21st century if the KS-test for the last 20-year 169 
window (2081-2100) does not yield significant differences. The calculations are carried out for 170 
each index and each SMILE member on the grid cell level. The ToE of a given SMILE is then 171 
assigned to the year when at least 90% of the ensemble members show emerged climate signals 172 
(similar to Martel et al. 2018). 173 

To transfer ToE into Global Warming Level of Emergence (GWLoE), we calculate GWL 174 
as the change in the area-weighted global average annual surface air temperature (GSAT) in each 175 
moving 20-year window relative to the pre-industrial period following the approach by Hauser et 176 
al. (2019) as used in IPCC AR6 (Seneviratne et al. 2021). The GSAT changes are assigned to the 177 
tenth year of each 20-year period and define the GWL for that year in each member of each 178 
SMILE. The GWL of a SMILE is defined as the mean across all ensemble members (i.e., the 179 
forced response). To derive GWLoE, we assign the corresponding GWL to the previously 180 
calculated year of climate signal emergence (ToE), thus replacing the time axis with GWL. 181 

To further increase the robustness of the GWLoE estimates, we calculate the joint 182 
emergence of the climate signal across all five SMILEs, defined as the median GWLoE of the 183 
five SMILEs, for each index at the grid cell level. We additionally conclude that SMILEs agree 184 
in signal emergence if at least four SMILEs indicate an emergence within the 21st century. 185 
Finally, we cap the GWLoE at 4°C as not all SMILEs reach that warming level by 2100 (Fig. 1). 186 

2.3 Exposure of Population and Land Area to Emerged Climate Signals 187 

For each of the four climate indices (TXx, TNx, PRCPtot, Rx1day), we quantify the fraction of 188 
population and the land area fraction affected by emerged climate signals. We use historical 189 
population data from ISIMIP2b (Frieler et al., 2017) and future population scenarios according to 190 
the different SSPs (SSP1-SSP5; Jones & O'Neill, 2016, Samir & Lutz, 2017). For each of these 191 
datasets we calculate the population density and remap it to the coarsest common grid 192 
(CanESM5 grid; see Section 2.1) using conservative remapping. As SSP population data are 193 
available in 10-year intervals we interpolate linearly in time to obtain yearly resolution. To 194 
estimate the time-dependent population exposure to emerged climate signals the population of all 195 
respective grid cells are aggregated. We express the result as percentage of (time-dependent) 196 
global population. Similarly, we calculate the fraction of global land area, on which a climate 197 
signal emerges, using the (time-invariant) land area fraction of CanESM5. The exposures of 198 
population and land area to emerged climate signals are finally expressed as a function of GWL. 199 

 2.4 Changes in Probability Ratio of Climate Index Extremes 200 

We further quantify how the probability of extreme values of the four climate indices changes 201 
with global warming. We define extremes as the 95th percentile (equivalent to a return period of 202 
20 years of high temperature and heavy precipitation events; conceptual Supplementary Fig. 203 
S1a) of the corresponding climate index distribution in the reference period 1850-1900. To 204 
estimate how extremes alter with global warming, we calculate the change in probability ratio 205 𝑃𝑅 for each 20-year period given by 206 
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(1) 𝑃𝑅  =   ೙೑ೠ೟೤೑ೠ೟∙೘೑ೠ೟೙ೝ೐೑೤ೝ೐೑∙೘ೝ೐೑  207 

where 𝑛 is the event frequency during the reference (ref) and future (fut) periods pooled across 208 
all members, 𝑦 the period length (20 years for fut, 51 years for ref) and 𝑚 the number of 209 
ensemble members. Probability ratios above (below) 1 indicate an increase (decrease) in event 210 
occurrence relative to the reference period 1850-1900. By definition, the occurrence probability 211 
equals 0.05 in the reference period when considering the 95th percentile threshold. Therefore, the 212 
theoretical maximum probability ratio is PR=20 and indicates that pre-industrial thresholds are 213 
exceeded every year in every SMILE member. We examine the GWL of this saturation effect for 214 
the four selected extreme indices with respect to the defined 20-year return periods. Furthermore, 215 
to derive the change in probability ratios as a function of GWL we linearly regress the 216 
probability ratio against GWL using the least-squares approach. We account for scaling that is 217 
not constant across the considered GWL range by performing the linear regression piecewise for 218 
three global warming intervals: 1°C to 2°C, 2°C to 3°C, and 3°C to 4°C (see conceptual 219 
Supplementary Fig. S1b). The estimated regression coefficients indicate how strongly the 220 
probability ratios change with every tenth of a degree (0.1°C) of additional global warming. To 221 
account for inter-SMILE differences, we average the regression coefficients, weighted by the 222 
number of SMILE members, and mask out areas where less than four model agree in the 223 
direction of PR change. 224 
 The 0.1°C GWL step we apply is finer than the steps used by other studies to investigate 225 
frequency changes at distinct GWL thresholds (e.g., GWLs of 1.5°C or 2.0°C related to the Paris 226 
Agreement). Those studies commonly employ distinct GWLs or increments of 0.5°C or 1°C to 227 
obtain statistically robust change signals (Perkins-Kirkpatrick & Gibson 2017; King et al. 2018; 228 
Fischer & Knutti 2015). However, our setup with five SMILEs, each based on 30-50 ensemble 229 
members (220 members in total), ensures robust assessments also at finer incremental GWLs. 230 
Analyzing GWL steps of 0.1°C allows us to evaluate the contribution of incremental warming 231 
steps to increases in extreme event frequency with particular focus on different warming 232 
intervals. 233 

3 Results 234 

 3.1 Global warming level of emergence for temperature and precipitation indices 235 

The joint emergence of the four considered indices (TXx, TNx, PRCPtot, and Rx1day) across all 236 
SMILEs shows distinct patterns in terms of GWLoE (Fig. 2). In particular, the temperature 237 
indices show widespread emergence at low GWLs with substantial emergence occurring at 238 
present-day GWL, indicating that many regions have already transitioned into a new climate 239 
state for the corresponding index. Emergences of TXx are particularly prevalent in the Southern 240 
Hemisphere, including large parts of Africa and South America, as well as Southern Europe, 241 
Central America, and the Arabian Peninsula (Fig. 2a). In all other regions, TXx is projected to 242 
emerge between a GWL of 1.0°C and 2.0°C except for a few small regions showing emergences 243 
only at higher GWLs. TNx shows even more widespread emergence at present-day warming 244 
with almost all regions showing emergence at 1°C (except Antarctica), reflecting that climate 245 
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change has already impacted the temperature indices across the globe (Fig. 2b). The model 246 
agreement for the emergence of the temperature indices is very high (no areas are hatched in Fig. 247 
2a, b). While the joint emergence of all SMILEs provides an estimate of GWLoE based on the 248 
median GWLoE across the five SMILEs, individual models emerge at lower or higher GWLs. 249 
Thus, the range of GWLoE across SMILEs provides additional information on the robustness of 250 
the results. The robustness is particularly high for TNx, as indicated by a narrow range of 251 
GWLoE across SMILEs (Supplementary Fig. S2). While the range yields a generally high 252 
agreement also for TXx, the patterns are more diverse, manifested by a larger range in eastern 253 
North America, eastern Europe, Central Africa and parts of South America (Supplementary Fig. 254 
S2).  255 

The precipitation indices emerge over smaller areas and at higher GWLs than the 256 
temperature indices (Fig. 2c, d). PRCPtot emerges at a GWL of around 2°C in the Northern high 257 
latitudes, central Asia, and parts of tropical Africa and South America (Fig. 2c). For these 258 
regions, a general increase in annual precipitation is projected, except for South America (IPCC, 259 
2021). Rx1day is generally projected to increase over land due to dynamical and 260 
thermodynamical adjustments (Seneviratne et al. 2021). However, the Rx1day signal only 261 
emerges in parts of Africa and South America for GWL <2.0°C (Fig. 2d). For the rest of the 262 
globe, PRCPtot and Rx1day do not emerge until a GWL of 3°C or higher, with some areas 263 
(particularly desert regions) showing no emergence in the data sets  at all. In addition to high 264 
internal variability, the inter-model range in GWLoE for precipitation indices is larger than for 265 
temperature indices, partly explaining that the precipitation indices only emerge at higher GWLs 266 
(Supplementary Fig. S2). Regions with a narrower GWLoE range predominantly correspond to 267 
grid cells where the signals emerged in less than four SMILEs (North America, the 268 
Mediterranean, southern Africa and Australia). The narrow range in these regions is thus based 269 
on a smaller SMILE sample and does not necessarily indicate increased robustness. 270 
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Fig. 3: Fraction of land area exposed to emerged climate indices in dependence of global warming level (GWL). 305 
The respective land area fraction is presented for emerged signals of TXx (a), TNx (b), PRCPtot (c), and Rx1day (d). 306 
Different colors represent the five applied SMILEs (with equilibrium climate sensitivity (ECS) increasing from blue 307 
to red). 308 

We further estimate the percentage of global population that is exposed to emerged 309 
climate signals considering the different population scenarios SSP1 to SSP5 (Fig. 4). In general, 310 
the patterns of population exposure are similar to the patterns of land area exposure, with large 311 
shares of the global population being affected by emergences of TXx and TNx at low GWLs. In 312 
contrast, PRCPtot and Rx1day will emerge at higher GWLs and consequently affect fewer 313 
people. For TXx, the exposure under present-day climate shows a rather large spread (affecting 314 
35-65% of global population) but converges towards 100% under higher GWLs (Fig. 4a). 315 
Regarding TNx, already 60-85% of the global population is exposed to emerged signals under 316 
present-day climate, with model agreement being higher than for TXx (Fig. 4b). This percentage 317 
is projected to increase to 75-95% at 1.5°C, and at 2.0°C almost the entire population (more than 318 
95% in four out of the five SMILEs) will be exposed to a new climate state of TNx (Fig. 4b). 319 
Under present-day warming the highest exposure to TNx emergence can be found in North 320 
America, Central & South America, Africa, and Europe where more than four out of five people 321 
already experience an emerged climate signal for TNx (Supplementary Fig. S5). For PRCPtot we 322 
find lower exposure where up to a GWL of 2.0°C only a small but steadily increasing fraction of 323 
the population (5-16%) will experience a new climate state for PRCPtot (except for MPI-ESM1-324 
2-LR, which yields larger fractions). For Rx1day, the exposed population starts to steadily 325 
increase at a GWL of 1.0°C but remains below 20% up to 2.0°C. The projections of the different 326 
SMILEs diverge at higher GWLs with EC-Earth3 showing the largest and CanESM5 the 327 
smallest increases. Particularly pronounced increases in exposure to Rx1day are found in South 328 
America and Africa (Supplementary Fig. S5). 329 

The different population scenarios of the SSPs only play a secondary role for the 330 
projected fraction of population exposed to emerged signals. For TXx and TNx, the differences 331 
across models clearly dominate the uncertainty of the exposed population (Fig. 4a, b) and the 332 
population scenario only slightly influences the results. Similarly, for PRCPtot and Rx1day 333 
differences across models also dominate but the population scenarios also partly influence the 334 
projected exposures (Fig. 4c, d). In particular, a population development following SSP1 leads to 335 
substantially lower population exposure to emergences of PRCPtot and Rx1day compared to the 336 
other SSPs. This is evident for all SMILEs despite differences in the GWL range where this 337 
effect is most pronounced. 338 
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Africa, the Himalaya region, and – for Rx1day – parts of South America. These regions also 364 
emerge as hotspots for even more extreme events (99th percentile; Supplementary Fig. S7). For 365 
PRCPtot, several regions show a decrease in the probability ratio of down to -0.25 per 0.1°C 366 
warming (Central and South America, southern Africa, the Mediterranean region, and parts of 367 
Australia), indicating a decrease of precipitation in these regions in line with findings of the 368 
recent IPCC report (IPCC, 2021). Regions with decreasing probability ratio show lower model 369 
agreement than regions with increasing probability ratio. In contrast to the temperature indices, 370 
the change patterns of probability ratio for PRCPtot and Rx1day remain similar across GWL 371 
ranges, indicating that they are less dependent on the state of global warming. 372 

In several regions probability ratios level off at high GWLs (Fig. 5), indicating that the 373 
maximum possible exceedance probability is reached. This GWL of saturation is generally much 374 
lower for TXx and TNx (Fig.6), with saturation being reached below 2°C in South and Southeast 375 
Asia, and large parts of Africa and tropical South America. Parts of North America and northern 376 
Australia reach saturation between 2°C and 3°C (Fig. 6). In contrast, the precipitation indices 377 
(PRCPtot and Rx1day) reach saturation in much fewer grid cells and at much higher GWLs, with 378 
the Mediterranean, and parts of South America being the only regions reaching saturation for 379 
PRCPtot. 380 
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climate states. Limiting global warming to 2.0°C would keep the population and land fraction 408 
exposed to emergences of Rx1day and PRCPtot below 20%. Beyond 2.0°C the exposure to 409 
emergences of these indices will rapidly increase. The current policies, which put the world on 410 
track to reach a warming of 2.8°C (Liu & Raftery, 2021), would thus expose a considerable 411 
fraction of population and land to new precipitation regimes and most of the population and land 412 
area to new temperature regimes (Supplementary Fig. S3 & S5) potentially outside the human 413 
climate niche (Lenton et al. 2023). Additionally, the spatial patterns of exposure rates and the 414 
frequency of future extremes show a strong regional heterogeneity, which might lead to 415 
increased socioeconomic inequality, especially in poorer regions of the world (King & 416 
Harrington, 2018). 417 

4.2 Non-linearities and saturation of probability ratios 418 

The responses of precipitation and temperature extremes to global warming appear to follow a 419 
non-linear path (Fig. 3 & 4). However, this does not directly speak to the linear or non-linear 420 
growth of extremes. Rather, in each grid cell the distribution of a given variable crosses the 421 
threshold of emergence at a distinct GWL (schematic Supplementary Fig. S1a). The contribution 422 
of this grid cell to the fraction of emerged land is zero before the crossing, and equal to the 423 
fractional area of the grid cell afterwards. This continues simultaneously across all grid cells, 424 
forming the distribution of emerged grid cells in dependence of the GWL. The increase in 425 
emerged land fraction (or population) is particularly steep until the majority of grid cells passed 426 
the threshold and flattens out afterwards. Once the thresholds are exceeded in all grid cells, the 427 
fraction of emerged grid cells reaches 100% and can no longer increase.  428 

Our results show a very rapid initial growth (i.e., a large fraction of grid cells emerge at 429 
similar GWLs) particularly for TNx and (slightly less pronounced) for TXx, in line with 430 
saturation patterns corresponding to the non-linear growth seen for CMIP5 models (Fischer & 431 
Knutti, 2015). For precipitation, the fraction of emerged land increases more slowly, in line with 432 
a more linear growth as seen also in the CMIP5 results of Fischer & Knutti (2015). The 433 
respective trajectories of precipitation and temperature extremes are nevertheless alarming. First, 434 
the sharp increase of emerged temperature extremes will strongly increase the human exposure 435 
to extremely hot temperatures. Second, regional preparedness to future temperature events might 436 
be insufficient in case of unexpectedly rapid changes in the occurrence of extremes (King et al. 437 
2018). The usage of small GWL increments (e.g., 0.1°C as used in this study) thus seems 438 
imperative, as an assessment across large increments (e.g., 0.5-1.0°C) might undersample the 439 
temperature axis and potentially mask changes in the slope of the underlying distribution. 440 

Probability ratios of the temperature indices increase considerably up to a GWL of 2.0°C 441 
with widespread saturation reached at a GWL of 2.0°C. This would imply unprecedented heat 442 
conditions in Southern Asia, northern Africa, and northern South America for most years even if 443 
the 2.0°C target of the Paris Agreement was met (Fig. 5). Precipitation indices reach saturation 444 
only at higher GWLs, which points towards more inert adjustments of precipitation to changing 445 
climate. It is important to emphasize that the interpretation of saturation levels (which are 446 
reached in widespread regions particularly for temperature indices) should not be overly 447 
generalized. They are subject to the considered index and the related distribution and additionally 448 
depend on the applied threshold (here 95th percentile; see Supplementary Figs. S8-S10 for other 449 
percentiles) and the defined reference period (here pre-industrial conditions) (Harrington & Otto, 450 
2018). Considering this though, they can be used as a tool to indicate that events considered 451 
“extreme” under pre-industrial conditions occur on a yearly basis once saturation occurs and thus 452 
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become the new normal state. Reaching the saturation level of exceedance, however, should not 453 
be confused with reaching a ’safe’ state and does not impede further changes in the magnitude 454 
and intensity of extremes (Harrington & Otto, 2018). Instead, the exceedance of greater extremes 455 
(i.e., higher thresholds) likely continues to rise and even hotter temperatures and heavier 456 
precipitation events are expected to occur at higher GWLs (Supplementary Fig. S1a). 457 

4.3. Dependence of climate signal emergence on remapping sequencing 458 

To combine and display climate data with different spatial resolution, remapping is essential. In 459 
this study, we remapped the data to the grid of the coarsest model (CanESM5) after calculating 460 
the climate indices (TXx, TNx, PRCPtot, Rx1day). This sequencing takes advantage of model 461 
diversity by preserving the precipitation and temperature fields of the models with higher spatial 462 
resolution when calculating the indices. It yields a local representation of the considered extreme 463 
indices, similar to what observational data sets would deliver (de Vries et al. 2023). 464 
Alternatively, climate data can be remapped before calculating the climate indices. This 465 
sequencing would lead to more harmonized model results but removes the fine scale information 466 
provided by models with higher spatial resolution. For studies analyzing model performance and 467 
focusing on model comparison, the latter approach would be preferable.  468 

The impact of the processing order on the resulting fields is expected to be more 469 
substantial for daily precipitation extremes (such as Rx1day) than for temperature or total annual 470 
precipitation. When these precipitation extremes are calculated on the individual grid cells of the 471 
finer grid, they might occur on different days and would then be aggregated to form the larger 472 
grid cells of the remapped data. Regridding before the calculation of the extreme indices would 473 
keep the time integrity but results in a dilution of the precipitation extremes that often occur 474 
more locally.  475 

For our study, the former approach (remapping after calculating the indices) is 476 
advantageous, as we aim to investigate local emergences of climate change signals and the 477 
related exposure of population. Moreover, we focus on relative changes in the indices (assessed 478 
via ToE, GWLoE, PR) rather than changes in their absolute values. We find only negligible 479 
difference between both remapping orders for TXx, TNx and PRCPtot for the land area fraction 480 
exposed to emerged signals (Supplementary Fig. S11 & S12). However, we identify a substantial 481 
divergence for the emergence of Rx1day. Focusing on local level extremes (remapping after 482 
calculating Rx1day) yields earlier Rx1day emergences compared to the approach that 483 
harmonizes model results (remapping before calculating Rx1day). Additionally, the latter 484 
approach reduces the model spread in case Rx1day emergences are expressed as function of 485 
GWL (Supplementary Fig S12), while the spread remains unchanged if emergences are 486 
expressed as function of time (Supplementary Fig. S11). This indicates that most of the model 487 
spread for Rx1day emergences expressed as function of GWL can be explained by model 488 
resolution, whereas the different ECS seems to play a secondary role (Fig. 3d, Supplementary 489 
Fig. S12d, Tab. 1). The high sensitivity of ToE/GWLoE for Rx1day (and presumably also for 490 
similar precipitation indices) to the selected remapping order highlights that this sequencing is of 491 
great importance for quantifying related emergences. The decision on performing the remapping 492 
before or after the calculation the desired index should thus always be tailored to the focus of the 493 
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study. Our results highlight that this is crucial not only for the investigation of changes in 494 
absolute values but also when ToE or GWLoE are of interest. 495 

4.4 The concept of GWLoE as a tool to communicate climate change impacts 496 

Combining the concept of time of emergence with global warming levels supports a more policy-497 
relevant communication of the emergence of climate signals given that global policies are very 498 
much based on warming levels (e.g., 1.5 or 2.0°C targets of the Paris Agreement). We find that 499 
GWLoE provides a feasible tool to constrain model uncertainty, particularly for temperature 500 
variables and temperature-related indices. We generally find a higher model agreement for TNx 501 
and TXx if emergence is expressed as a function of GWL (Supplementary Fig. S3, S5, S13) 502 
instead of time (Supplementary Fig. S4, S6, S14). However, regional differences remain. For 503 
PRCPtot and Rx1day, in contrast, we find better agreement across SMILEs when expressing 504 
emergence as a function of time. This indicates that precipitation changes are not only impacted 505 
by thermodynamics but also by other processes, such as aerosol forcing  (Lin et al. 2016; Lehner 506 
& Coats 2021), which are characterized as a function of time rather than GWL. In that regard, 507 
precipitation changes are more dependent on the scenario pathway and thus more prone to 508 
scenario uncertainties in some regions (Maher et al. 2019). Additionally, precipitation changes 509 
are more affected by small-scale processes and thus model resolution, which contributes to the 510 
larger model spread for precipitation than temperature indices as discussed above.  511 

In particular for the assessment of impacts at low GWLs, i.e., projections of the 512 
upcoming decades, internal climate variability is a large source of uncertainty (Hawkins and 513 
Sutton 2009, Lehner et al. 2020). Due to their increased sample size, SMILEs allow for a robust 514 
signal detection even at these low GWLs (Maher et al. 2020) and thus provide an essential tool to 515 
determine GWLoE. Considering the joint emergence of SMILEs allows for a robust assessment 516 
of GWLoE and constrains both internal variability and model uncertainty across a wide range of 517 
GWLs. Further, the approach considering GWL rather than time to estimate emergence might be 518 
beneficial to overcome the "hot model problem” (Hausfather et al. 2022), i.e., the issue of 519 
selecting climate models that show a higher-than-average equilibrium climate sensitivity (ECS) 520 
to increasing CO2 levels (Suarez-Gutierrez et al. 2021). We find that a time-dependent approach 521 
will generally lead to a model order, where models with high ECS (Tab. 1) usually show the 522 
highest exposure of population and land area to emerged climate signals (Supplementary Fig. S4, 523 
S6, S14). In contrast, our results show that a GWL-centered analysis results in a model ordering 524 
that is largely independent of the models’ ECS (Supplementary Fig. S3, S5, S13). This holds 525 
particularly true for temperature indices and to a lesser degree also for PRCPtot and Rx1day. In 526 
particular for Rx1day model resolution seems to be more impactful than ESC. 527 

Finally, our results are based on the high-end warming scenario SSP5-8.5, which is 528 
considered to project a low-probability high warming for the end of the 21st century, given 529 
current climate policies (Hausfather & Peters, 2020). Analyzing the impacts of high warming 530 
levels (>3.0°C) however, requires the selection of rather extreme warming scenarios (SSP3-7.0 531 
or SSP5-8.5), as these scenarios are the only ones that reach sufficiently high warming 532 
(Meinshausen et al. 2020). Furthermore, temperature and precipitation changes were found to 533 
scale largely linearly across scenarios for moderate GWLs (Seneviratne et al. 2016) and given 534 
that we use a cut-off GWL of 4°C, our results should still be considered robust for the range of 535 
GWLs that we investigate. 536 
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5 Conclusions 537 

In this study, we present the global warming level of emergence (GWLoE) of four temperature 538 
and precipitation indices (TXx, TNx, PRCPtot, and Rx1day) and the related exposure of 539 
population and land area based on the joint emergence of five SMILEs. Under current warming 540 
levels, large parts of the global population and global land area are already exposed to TXx and 541 
TNx emergences, while PRCPtot and Rx1day are about to emerge in several regions. We find 542 
widespread emergence of TXx and TNx at a GWL of 2.0°C and linear increases in the 543 
emergence of PRCPtot and Rx1day over the GWL range 1.0-2.0°C. Emergences of TXx, 544 
PRCPtot, and Rx1day continue increasing beyond 2.0°C. These results confirm that a GWL of 545 
2.0°C should not be misinterpreted as a safe target (Knutti et al. 2016). For higher warming 546 
levels (>2.0°C) strong increases in the fraction of exposed land area and population to emerged 547 
climate signals were identified for precipitation indices (PRCPtot and Rx1day). Further, we 548 
identify a sharp increase in the frequency of temperature extremes (assessed through probability 549 
ratios of TXx and TNx) particularly at lower GWLs. These results highlight that considering 550 
incremental GWL steps for analyzing the emergence of climate change signals is essential. 551 

Given the dominant role of internal variability at low GWLs that are close to present-day 552 
warming we argue that large ensemble simulations are essential. First, to robustly detect the 553 
emergence of climate change signals and second, for their assessment at incremental GWL steps, 554 
particularly for analyses of extreme events. Using GWLs over time to detect the emergence of 555 
climate change signals proofs to be particularly well suited for temperature-based indices. Here, 556 
it substantially reduces the uncertainty of signal emergence compared to a time-based approach. 557 
For precipitation-based indices we find lower uncertainties when expressing their emergence as a 558 
function of time instead of GWL. The decision of whether to apply GWLoE or ToE depends on 559 
the considered climate variable and additionally needs to respect regional specifications as 560 
indicated by the large regional discrepancy in our results. Further, the strong sensitivity of the 561 
emergence of Rx1day on the remapping sequencing highlights the need to tailor the order of 562 
remapping to the individual research focus of each study. 563 

Our results underline the importance of climate mitigation and the imminent need for an 564 
early achievement of net zero emissions (Iyer et al. 2022) to avoid strongly increasing 565 
emergences of temperature and precipitation indices. This urges for the implementation of 566 
policies to ensure that global warming is limited at least to the targets defined in the Paris 567 
agreement. Every fraction of a degree matters to prevent additionally emerging adverse effects of 568 
climate change on human wellbeing. 569 
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