Code, Data, and Materials Availability
No, the manuscript does not have associated code. No datasets were generated or analyzed during the present study. No materials were used for the analysis.
Reference
  1. Montagna W. The structure and function of skin[M]. Elsevier, 2012.
  2. Liu T, Qiu C, Lu H, et al. A novel recombinant human collagen hydrogel as minced split-thickness skin graft overlay to promote full-thickness skin defect reconstruction[J]. Burns, 2023, 49(1): 169-181.
  3. Current therapeutic interventions remain far from ideal repair.
  4. Khalkhal E, Razzaghi M, Rostami-Nejad M, et al. Evaluation of laser effects on the human body after laser therapy[J]. Journal of Lasers in Medical Sciences, 2020, 11(1): 91.
  5. Wang Z, Zhang B, Liu J, et al. Recent developments in mid-infrared fiber lasers: Status and challenges[J]. Optics & Laser Technology, 2020, 132: 106497.
  6. Mussttaf R A, Jenkins D F L, Jha A N. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review[J]. International journal of radiation biology, 2019, 95(2): 120-143.
  7. Khalkhal E, Rezaei-Tavirani M, Zali M R, et al. The evaluation of laser application in surgery: a review article[J]. Journal of lasers in medical sciences, 2019, 10(Suppl 1): S104.
  8. Ahluwalia J, Avram M M, Ortiz A E. Lasers and energy‐based devices marketed for vaginal rejuvenation: A cross‐sectional analysis of the MAUDE database[J]. Lasers in surgery and medicine, 2019, 51(8): 671-677.
  9. Salem U, Kumar V A, Madewell J E, et al. Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT)[J]. Cancer Imaging, 2019, 19(1): 1-13.
  10. Bianchi L, Cavarzan F, Ciampitti L, et al. Thermophysical and mechanical properties of biological tissues as a function of temperature: A systematic literature review[J]. International Journal of Hyperthermia, 2022, 39(1): 297-340.
  11. Mohammadi A, Bianchi L, Asadi S, et al. Measurement of ex vivo liver, brain and pancreas thermal properties as function of temperature[J]. Sensors, 2021, 21(12): 4236.
  12. Sur A, Mondal S, Kanoria M. Influence of moving heat source on skin tissue in the context of two-temperature memory-dependent heat transport law[J]. Journal of Thermal Stresses, 2020, 43(1): 55-71.
  13. Sur A, Mondal S, Kanoria M. Influence of moving heat source on skin tissue in the context of two-temperature Caputo–Fabrizio heat transport law[J]. Journal of Multiscale Modelling, 2020, 11(02): 2050002.
  14. Prawatborisut M, Jiang S, Oberländer J, et al. Modulating Protein Corona and Materials–Cell Interactions with Temperature‐Responsive Materials[J]. Advanced Functional Materials, 2022, 32(2): 2106353.
  15. Zuev V M, Kalinina E A, Kukushkin V I, et al. Innovative laser technologies in the diagnosis and treatment of the endometrium of concern in reproductive medicine[J]. Obstetrics and Gynecology, 2020 (4): 157-165.
  16. Digesu G A, Tailor V, Preti M, et al. The energy based devices for vaginal “rejuvenation,” urinary incontinence, vaginal cosmetic procedures, and other vulvo‐vaginal disorders: An international multidisciplinary expert panel opinion[J]. Neurourology and urodynamics, 2019, 38(3): 1005-1008.
  17. Hu T, Lo A C Y. Collagen–Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences[J]. Polymers, 2021, 13(11): 1852.
  18. Yang X, Deng H, Lv J, et al. Comparison of changes in adipokine and inflammatory cytokine levels in patients with newly diagnosed type 2 diabetes treated with exenatide, insulin, or pioglitazone: a post-hoc study of the CONFIDENCE trial[J]. 2023.
  19. Zhou R, Bu W, Fan Y, et al. Dynamic Changes in Serum Cytokine Profile in Rats with Severe Acute Pancreatitis[J]. Medicina, 2023, 59(2): 321.
  20. Alanazi R S, Laref A. Monte Carlo Simulations of the photo-thermal cancer therapy of melanin[J]. Indian Journal of Physics, 2021, 95(12): 2589-2605.
  21. Zhang B, He J, Shi M, et al. Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration[J]. Chemical Engineering Journal, 2020, 400: 125994.
  22. Chen C, Xi Y, Weng Y. Progress in the Development of Graphene-Based Biomaterials for Tissue Engineering and Regeneration[J]. Materials, 2022, 15(6): 2164.
  23. Hobiny A, Alzahrani F, Abbas I, et al. The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation[J]. Symmetry, 2020, 12(4): 602.
  24. Luke A M, Mathew S, Altawash M M, et al. Lasers: A review with their applications in oral medicine[J]. Journal of lasers in medical sciences, 2019, 10(4): 324.
  25. Yu L, Hao L, Meiqiong T, et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges[J]. RSC advances, 2019, 9(17): 9354-9363.
  26. Huang J, Chen Y, Chen Z, et al. Effects of scanning paths on laser welding[J]. Optics and Lasers in Engineering, 2020(130),106078.
  27. Li C, Huang J, Wang K, et al. Optimization of processing parameters of laser skin welding in vitro combining the response surface methodology with NSGA-II[J]. Infrared Physics & Technology, 2019, 103: 103067.
  28. Li C, Huang J, Wang K, et al. Investigation on thermal damage model of skin tissue in vitro by infrared laser welding[J]. Optics and Lasers in Engineering, 2020, 124: 105807.
  29. Wick M R. The hematoxylin and eosin stain in anatomic pathology—An often-neglected focus of quality assurance in the laboratory[C]//Seminars in diagnostic pathology. WB Saunders, 2019, 36(5): 303-311.
  30. Foot N C. The Masson trichrome staining methods in routine laboratory use[J]. Stain technology, 1933, 8(3): 101-110.
  31. Rich L, Whittaker P. Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution[J]. Journal of morphological sciences, 2017, 22(2): 0-0.
  32. Mendes J J, Leandro C I, Bonaparte D P, et al. A rat model of diabetic wound infection for the evaluation of topical antimicrobial therapies[J]. Comparative medicine, 2012, 62(1): 37-48.
  33. Butler J E. Enzyme-linked immunosorbent assay[J]. Journal of immunoassay, 2000, 21(2-3): 165-209.
  34. Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling[J]. Endodontic Topics, 2011, 24(1): 94-129.
  35. Utsunomiya H, Tilakaratne W M, Oshiro K, et al. Extracellular matrix remodeling in oral submucous fibrosis: its stage‐specific modes revealed by immunohistochemistry and in situ hybridization[J]. Journal of oral pathology & medicine, 2005, 34(8): 498-507.
  36. Bertolotti E, Malagoli D, Franchini A. Skin wound healing in different aged Xenopus laevis[J]. Journal of morphology, 2013, 274(8): 956-964.
  37. Lucas T, Waisman A, Ranjan R, et al. Differential roles of macrophages in diverse phases of skin repair[J]. The Journal of Immunology, 2010, 184(7): 3964-3977.
  38. Enoch S, Leaper D J. Basic science of wound healing[J]. Surgery (Oxford), 2008, 26(2): 31-37.
  39. Amadeu T P, Seabra A B, de Oliveira M G, et al. Nitric oxide donor improves healing if applied on inflammatory and proliferative phase[J]. Journal of Surgical Research, 2008, 149(1): 84-93.
  40. Tang J, Liu H, Gao C, et al. A small peptide with potential ability to promote wound healing[J]. PloS one, 2014, 9(3)
  41. Hong Y K, Lee Y C, Cheng T L, et al. Tumor endothelial marker 1 (TEM1/Endosialin/CD248) enhances wound healing by interacting with platelet-derived growth factor receptors[J]. Journal of Investigative Dermatology, 2019, 139(10): 2204-2214.
  42. Yang Y, Yu C, Le Y, et al. Angiopoietin-like 4 promotes the proliferation and migration of epidermal stem cells and contributes to the re-epithelialization of cutaneous wounds[J]. bioRxiv, 2023,729672.
  43. Solan A, Mitchell S, Moses M, et al. Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel[J]. Tissue engineering, 2003, 9(4): 579-586.
  44. Gemmiti C V, Guldberg R E. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage[J]. Tissue engineering, 2006, 12(3): 469-479.
  45. Hallock G G, Merkel J R, Rice D C, et al. The ontogenetic transition of collagen deposition in rat skin[J]. Annals of plastic surgery, 1993, 30(3): 239-243.
  46. Savani R C, Hou G, Liu P, et al. A role for hyaluronan in macrophage accumulation and collagen deposition after bleomycin-induced lung injury[J]. American journal of respiratory cell and molecular biology, 2000, 23(4): 475-484.
  47. Lu Q L, Zheng Z X, Ye Y H, et al. Macrophage migration inhibitory factor takes part in the lumbar ligamentum flavum hypertrophy[J]. Molecular Medicine Reports, 2022, 26(3): 1-9.
  48. Xu Y, Deng M, Cai Y, et al. Cell-free fat extract increases dermal thickness by enhancing angiogenesis and extracellular matrix production in nude mice[J]. Aesthetic surgery journal, 2020, 40(8): 904-913.
  49. Liu X, Wu H, Byrne M, et al. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development[J]. Proceedings of the National Academy of Sciences, 1997, 94(5): 1852-1856.
  50. Fleischmajer R, Perlish J S, Burgeson R E, et al. Type I and type III collagen interactions during fibrillogenesis[J]. Annals of the New York Academy of Sciences, 1990, 580: 161-175.
  51. Structure and function of collagen types[M]. Elsevier, 2012.
  52. Bornstein P, Sage H. Structurally distinct collagen types[J]. Annual review of biochemistry, 1980, 49(1): 957-1003.
  53. Böhm S, Strauß C, Stoiber S, et al. Impact of source and manufacturing of collagen matrices on fibroblast cell growth and platelet aggregation[J]. Materials, 2017, 10(9): 1086.
  54. Xu Z, Chen D, Hu Y, et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns[J]. Nature, 2022, 601(7891): 118-124.
  55. Mascharak S, Longaker M T. Fibroblast heterogeneity in wound healing: hurdles to clinical translation[J]. Trends in molecular medicine, 2020, 26(12): 1101-1106.
  56. Oh E J, Gangadaran P, Rajendran R L, et al. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions[J]. Stem Cells, 2021, 39(3): 266-279.
  57. Abbasi S, Sinha S, Labit E, et al. Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing[J]. Cell stem cell, 2020, 27(3): 396-412.
  58. Shabestani Monfared G, Ertl P, Rothbauer M. An on-chip wound healing assay fabricated by xurography for evaluation of dermal fibroblast cell migration and wound closure[J]. Scientific reports, 2020, 10(1): 16192.