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Key Points: 7 

• We estimate changes in the cumulative probability distribution of annual Potomac River 8 
flows based on an ensemble of climate projections. 9 

• Although long-term average flow is projected to increase, annual flow decreases in an 10 
extreme drought year in most of our scenarios.  11 

• Our method can provide annual flow scaling factors which can be used to construct 12 
inputs for water supply planning models. 13 

(The above elements should be on a title page) 14 
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Abstract 16 

We propose a new nonparametric approach for assessing future changes in annual stream flows 17 
in extreme drought years based on an ensemble of climate projections. We apply the method to 18 
the Potomac River basin, investigating whether future flows in the river may be impacted by “hot 19 
drought”, that is, increasing severity of hydrological drought caused by rising temperatures 20 
coupled with variability in precipitation. Long time series representative of annual climate in 21 
time periods of interest are constructed by pooling and concatenating shorter time series sampled 22 
from an ensemble of bias corrected and spatially downscaled climate projections, where the K-23 
nearest neighbor method is used to select pool members. The pooled time series are of sufficient 24 
length to allow estimation of the probability distribution of a full range of future annual flows, 25 
including 1st percentile values, indicative of flow in an extreme drought year. An empirically 26 
derived climate response function for annual mean flow is used as this study's simple hydrologic 27 
model. The resulting set of cumulative probability distributions can be used to compute scaling 28 
factors for future annual Potomac River flow which demonstrate the disparate impacts of climate 29 
change on high flow, average flow, and low flow years. For most scenarios considered, results 30 
indicate that though long-term mean precipitation and river flow will increase modestly in future 31 
years, annual flows in an extreme drought year will decrease. This new approach can provide 32 
multi-model consensus inputs for water supply planning models to support decision-making 33 
regarding new infrastructure for climate resilience. 34 

Plain Language Summary 35 

The Potomac River, located in the Mid-Atlantic region of the United States, is the primary 36 
source of drinking water for the Washington, DC, metropolitan area. Climate change is expected 37 
to bring moderately wetter conditions, on average, to the Potomac basin, but year to year 38 
variations in rainfall combined with rising temperatures could result in years in which river flows 39 
are lower than ever experienced in the past, termed by some as “hot drought”. We propose an 40 
approach to better understand future changes in river flows that distinguishes the disparate 41 
impacts of climate change on wet years, average years, and dry years. Teams of scientists around 42 
the world have built computer models to simulate future climate conditions, and because it's not 43 
possible to determine which of these models produces the best predictions, our approach 44 
incorporates results from many global climate models. We examine results for a number of 45 
scenarios which reflect uncertainty in future global carbon emissions and uncertainty in the 46 
physical response of watershed processes to rising temperatures. We find that for most of the 47 
future scenarios we consider, river flows will fall in extreme drought years while increasing in 48 
average and in wet years. 49 

1 Introduction 50 

 Extreme events are key drivers in the development of water management strategies, and 51 
water supply planners need tools to help better understand the effects of climate change on future 52 
extreme drought (Ehsani et al., 2017; Watts et al., 2012; Zeff et al., 2016). Projected changes in 53 
long-term average precipitation and streamflow can provide a first look at a region’s water 54 
availability under future climate, and global studies indicate that increases are likely to be 55 
experienced in some regions and decreases in others (P. C. D. Milly et al., 2005; Tang & 56 
Lettenmaier, 2012). But projected increases in meteorological and hydrological variability, at 57 
multiple time scales, will potentially lead to more severe and frequent flooding and also to 58 
increases in extreme drought (Fowler et al., 2003; Kay et al., 2021; Tebaldi et al., 2006). At the 59 
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regional scale, where projections for long-term mean precipitation may vary widely or even 60 
indicate that modest increases are to be expected, studies show that hydrological droughts may 61 
become more severe due to natural variability in precipitation coupled with increasing 62 
temperatures (Hayhoe et al., 2007; McCabe et al., 2017; Xue & Ullrich, 2022), threatening to 63 
result in serious events which have been characterized as “hot drought” (Udall & Overpeck, 64 
2017). 65 
 A look at projected changes over time of the cumulative probability distributions of 66 
climatologic and hydrologic variables can give a more complete picture of how future climate 67 
will impact water resources, with the lower tails of precipitation and flow distributions providing 68 
information on drought severity and the upper tails indicating changes in wet weather events. At 69 
the global scale, spatial patterns of changes in statistics representing low flow conditions have 70 
been found to differ from patterns of average values (Arnell & Gosling, 2013; Döll & Schmied, 71 
2012; Hirabayashi et al., 2008). Hayhoe et al. (2007) examined the probability distribution of 72 
annual streamflows as part of their study on the impact of climate change in the northeast United 73 
States and found that the two tails of the distribution exhibited opposite trends, with flows 74 
increasing in medium to high flow years, represented by the 50th and 95th percentiles, and flows 75 
decreasing in low flow years, represented by the 25th and 5th percentiles.  76 
 The Washington, DC, metropolitan area (WMA) relies on the Potomac River as its 77 
primary water source, and there are indications that average conditions in the Potomac basin will 78 
become wetter. Basin-wide drought is relatively infrequent, with two severe droughts occurring 79 
in 1930 and 1966 and two moderate droughts in 1999 and 2002. Reservoir storage for the WMA 80 
system is sufficient to meet supply needs and environmental requirements during moderate or 81 
short-term drought, and planning decisions are to a large degree driven by the risk of future 82 
extreme drought (Ahmed et al., 2020). The Potomac River basin is in the United States' Mid-83 
Atlantic region and situated within the larger Chesapeake Bay watershed. Projections of future 84 
precipitation for the Chesapeake Bay region have varied widely (Najjar et al., 2009; Pyke & 85 
Najjar, n.d.), with more recent projections indicating that long-term average precipitation will 86 
increase (Shenk et al., 2021) while there continues to be uncertainty regarding the sign of change 87 
in future stream flows (Hinson et al., 2022). Analyses of historical data indicate that the Potomac 88 
basin has been in a transition region with respect to changes in climate and hydrology over the 89 
past century. Trend analyses of observed precipitation in areas along the eastern coastal region of 90 
the United States generally show increases to the north of the basin and decreases to the south 91 
(Yang et al., 2015). Historical trends in streamflow metrics in the Chesapeake Bay watershed 92 
indicate that both annual mean flows and low flows are increasing in most areas north of the 93 
Potomac basin and decreasing in most areas south of the basin (Fleming et al., 2021; Rice & 94 
Hirsch, 2012) .  95 
 In a changing climate where the assumption of stationarity is no longer valid (P. C. D. 96 
Milly et al., 2008), new tools are needed to characterize trends in extreme quantile values, for 97 
example, values in the lower tails of the cumulative probability distributions of streamflow 98 
associated with extreme hydrologic drought. Trends in long-term climatological and 99 
hydrological statistics are typically investigated based on results computed from time periods 100 
that are several decades in length. But this approach is limited by sample sizes too small to 101 
compute, for example, the 0.01 quantile value (1st percentile value) of annual streamflow, whose 102 
magnitude has a probability of one percent of not being exceeded. This value of annual 103 
streamflow is indicative of an extreme drought event in the Potomac basin which in the past, 104 
based on the assumption of an unchanging climate, would have been associated with a 100-year 105 
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return period and referred to as a "100-year drought". Parametric approaches are sometimes used 106 
to estimate extreme quantile values , but these rely on assumptions about the probability 107 
distributions which may or may not be valid. 108 
 To investigate future trends in extreme hydrologic drought, we propose a new 109 
nonparametric approach based on an ensemble of downscaled climate projections which 110 
provides multi-model consensus estimates of the cumulative probability distribution of future 111 
annual river flow. We begin with a multi-model ensemble of downscaled climate projections 112 
derived from General Circulation Models (GCMs). For a given time window of interest, we 113 
select multiple time series of annual temperature and precipitation from the ensemble and 114 
concatenate them to create long pooled climate time series representative of conditions in the 115 
window. The pooled time series are of sufficient length to allow investigation of trends in 116 
statistics indicative of the severity of future extreme drought. The K-nearest neighbor (K-NN) 117 
method is used in the selection process. K-NN is a nonparametric classification method used in 118 
many fields, including pattern recognition (Cover & Hart, 1967; Fix & Hodges, 1951) and 119 
machine learning (see review by Weinberger and Saul, 2009), with applications in climatology 120 
and hydrology including rainfall-runoff forecasting (Karlsson & Yakowitz, 1987), stochastic 121 
weather and climate generation models (Groves et al., 2008; Rajagopalan & Lall, 1999; Sharif & 122 
Burn, 2006; Yates et al., 2003), and generation of synthetic streamflow time series (Lall & 123 
Sharma, 1996; Prairie et al., 2006). K-NN has been used to produce long duration daily time 124 
series by resampling output from a single regional climate model (Leander & Buishand, 2007), 125 
but not by sampling time series from an ensemble of models, as is proposed in our study. 126 
Combining results from multiple global climate models and from multiple runs of a single global 127 
model is common in weather and seasonal climate forecasting, where it has been found that 128 
multi-model consensus forecasts can provide superior performance and skill over predictions 129 
derived from single models (Hagedorn et al., 2005; Krishnamurti et al., 1999), with similar 130 
conclusions reached in studies on streamflow forecasting (Baker et al., 2021; Block et al., 2009; 131 
Georgakakos et al., 2004; Regonda et al., 2006). It has been argued that this is because multiple 132 
model ensembles not only better reflect uncertainty in initial conditions (Toth & Kalnay, 1993), 133 
but also may improve forecasts by incorporating variations in model physics and numerics into 134 
consensus forecasts (Fritsch et al., 2000; Hagedorn et al., 2005). Multi-model ensembles have 135 
also been used to estimate future changes in long-term statistics related to drought (Rashid et al., 136 
2020). 137 
 A climate response function (CRF) for the Potomac River watershed is used in this study 138 
as a simple hydrologic model to predict annual stream flow from projections of annual climate. 139 
The CRF was developed using multiple regression analyses of historic streamflow, temperature 140 
and precipitation (P. Milly et al., 2018; Revelle & Waggoner, 1983; Risbey & Entekhabi, 1996). 141 
CRFs have also been developed by perturbing the inputs of land surface or other hydrologic 142 
models to predict changes in long-term mean streamflow for a range of future climate scenarios 143 
(Nash & Gleick, 1991; Schaake, 1990; Vano et al., 2012). Use of a simple CRF allows the 144 
processing of a large number of climate projections, thus providing the computational efficiency 145 
to support a risk-based multi-model analysis (Brown et al., 2012). Sample sets of annual flow 146 
time series can thus be constructed by using the pooled climate time series as inputs to the CRF. 147 
Statistics for these sample sets are computed by successive time windows covering the 148 
simulation period to examine trends in the severity of extreme drought.  149 
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2 Study Area 150 

 The Potomac River is the primary source of drinking water for Washington, DC, and its 151 
adjacent suburbs in Maryland and Virginia, providing on average 78% of the water demand of 152 
the region's three major water suppliers (Ahmed et al., 2020), who participate in a cooperative, 153 
interstate system of drought planning and management (Hagen et al., 2005; Sheer, D.P. & Flynn, 154 
K., 1983). The Potomac basin is in the Mid-Atlantic region of the United States, covering parts 155 
of the states of Maryland, Pennsylvania, Virginia, and West Virginia, as well as the District of 156 
Columbia. Land use is relatively undeveloped, with 53% forest and 26% agriculture (Moltz et 157 
al., 2020). Flow in the freshwater portion of the Potomac River is measured at the USGS stream 158 
gage at Little Falls dam near Washington, DC, located just below the intakes of the metropolitan 159 
area water suppliers and a few kilometers above the head of tide in the Potomac estuary. With 160 
few major impoundments in the 29,940 km2 drainage area above Little Falls, river flow is largely 161 
unregulated and highly variable (Cummins et al., 2010). Some degree of storage is provided by 162 
the underlying fractured bedrock aquifers, but baseflow recession rates are typically on the order 163 
of months so this storage can be rapidly depleted during periods of low precipitation (Schultz et 164 
al., 2014). Precipitation above Little Falls averages 1024 mm annually, with evapotranspiration 165 
averaging 65%. Precipitation is fairly uniform throughout the year, but river flow exhibits a 166 
pronounced seasonal variation due to higher evapotranspiration rates during the March through 167 
September growing season which reduce both groundwater recharge and runoff (Trainer & 168 
Watkins, 1975). Flow tends to be highest in the month of March, with a long-term mean of 671 169 
m3/s, and lowest in September, with a long-term mean of 110 m3/s. The snowpack that may 170 
accumulate at higher elevations during the winter months slightly increases median river flows in 171 
March and April but does not persist long enough to have a significant impact on summertime 172 
flows (Cummins et al., 2010). Basin-wide drought is fairly infrequent in the Potomac. The most 173 
prolonged severe drought in the historic record began in the summer of 1930 and persisted 174 
through December of that year, with average annual precipitation in the watershed above Little 175 
Falls at just 54% of its long-term mean. The second most serious drought occurred in 1966, when 176 
daily river flow fell to its lowest recorded value. But unlike the drought of 1930, the drought of 177 
1966 as well as two moderate droughts which occurred in 1999 and 2002 all ended in the late 178 
summer/early fall with the onset of weather events related to tropical storms.    179 

3 Data Sources 180 

 Historical annual climate and streamflow time series from 1896 through 2017 are used to 181 
develop the CRF. The flow time series represents “natural” Potomac River flow at the US 182 
Geological Survey’s stream gage near the Washington, DC, Little Falls pump station (Station 183 
No. 01646500), located just downstream of the WMA water supply intakes, and in this paper, 184 
Potomac River flow will refer to natural flow. To estimate natural flows at Little Falls, the 185 
starting point was the USGS’s flow data for Potomac River (adjusted) near Washington, DC 186 
(Station No. 01646502), which is based on observed flows at Little Falls, with adjustments made 187 
to account for water supply diversions near the WMA. Then amounts equal to estimated 188 
upstream consumptive losses were added and estimated effects of two large reservoirs in the 189 
watershed were removed: Savage Reservoir in Alleghany County, Maryland, completed in 1952, 190 
and Jennings Randolph Reservoir, situated between Alleghany County, Maryland, and Mineral 191 
County, West Virginia, completed in 1982. Annual flows for the early years of the Little Falls 192 
time series, February 1895 through February 1930, were reconstructed using data from two 193 
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upstream gages, the Potomac River near Point of Rocks, Maryland (Station No. 01638500) and 194 
the Monocacy River near Frederick, Maryland (Station No. 01642000).  195 
 For the historical climate time series, this study relied on the Precipitation-Elevation 196 
Regression on Independent Slopes (PRISM) model dataset from the PRISM Climate Group at 197 
Oregon State University (Daly et al., 2008). PRISM uses climate observations from a wide range 198 
of monitoring networks and a series of regression models to develop spatially explicit climate 199 
maps at a regional scale. Monthly time series of 4 x 4 km PRISM gridded data for air 200 
temperature and precipitation were downloaded for the time period, 1895-2017 (available at 201 
https://prism.oregonstate.edu/historical/ for 1895-1980 and https://prism.oregonstate.edu/recent/ 202 
for 1981-2017). Values were spatially averaged over the Potomac River drainage area above 203 
Little Falls to create time series of monthly basin-wide averages of temperature and precipitation. 204 
In the initial development of the CRF, results obtained using PRISM were compared with those 205 
obtained using a second dataset: the CLIMGRID dataset from NOAA’s National Centers for 206 
Environmental Information (NCEI) (Vose et al., 2014). The CLIMGRID dataset is derived from 207 
NOAA’s Global Historical Climatology Network (GHCN) and is recommended for calculations 208 
of regional climate trends. Gridded 5km GHCN-Daily Temperature and Precipitation Dataset 209 
(nClimGrid/CLIMGRID), version 1 (available at https://data.nodc.noaa.gov/cgi-210 
bin/iso?id=gov.noaa.ncdc:C00332) were downloaded for the period 1895-2013. To obtain the 211 
Potomac basin CRF (see below), regression results were computed from both PRISM and 212 
nClimGrid data and compared. The best-performing regression model was obtained from the 213 
PRISM set of annual (calendar year) precipitation and temperature time series. For this model, 214 
the Nash-Sutcliffe efficiency (NSE) is 0.77, compared with 0.55 for the model derive from the 215 
nClimGrid dataset. Because of its stronger performance in the Potomac basin, the historical 216 
PRISM climate dataset was relied upon in this study. 217 
 The climate projections used in this study are derived from the Coupled Multi-model 218 
Intercomparison Project, Phase 5 (CMIP5), statistically downscaled using monthly bias-219 
correction and spatial disaggregation (BCSD) (Reclamation, 2013), available from the 220 
“Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections” archive (available at 221 
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html). The BCSD data are 222 
monthly time series for precipitation and air temperature extending from 1950 through 2099 for a 223 
grid of 1∕8 degree by 1∕8 degree, providing a spatial resolution of approximately 12 x 12 km. An 224 
ensemble of 231 BCSD projections, clipped and spatially averaged over the drainage area of the 225 
Potomac basin upstream of the USGS stream gage at Little Falls Pump station near Washington, 226 
DC (38.9375 degrees north and -77.1875 degrees west), were downloaded from the archive. The 227 
ensemble included runs from 36 global climate models for four representative concentration 228 
pathways: RCP 2.6 (53 members), RCP 4.5 (71 members), RCP 6.0 (37 members), and RCP 8.5 229 
(70 members).  230 
 As a verification and filtering step, the nonparametric Kolmogorov-Smirnov test was 231 
applied to compare the empirical distribution function (ecdf) of observed and simulated climate 232 
in the Potomac basin for each BCSD ensemble member in the reference period, 1950-1979, and 233 
also for the subsequent 30-year period, 1980-2009, where the observed distributions were 234 
calculated from PRISM data. For 1950-1979, there were no significant differences in observed 235 
versus simulated distributions of annual precipitation or annual temperature for any of the 231 236 
ensemble members at the p = 0.05 significance level. But for 1980-2009 there were significant 237 
differences in the case of 86 ensemble members. After discarding these, 145 members remained 238 
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in the filtered BCSD ensemble: RCP 2.6 (33 members), RCP 4.5 (46 members), RCP 6.0 (25), 239 
and RCP 8.5 (41 members).  240 

4 Methods 241 

 We present a new nonparametric approach to investigating future trends in extreme 242 
values of annual climatic and hydrologic variables by sampling and combining time series from 243 
an ensemble of annual climate projections. For a given time window several decades in length, 244 
longer "pooled" time series of annual climate are constructed by concatenating multiple 245 
ensemble member projections selected using the K-NN method. K-NN is used to sample multi-246 
decadal climate sequences in a manner that treats sequences from different GCMs or different 247 
runs of a single GCM as different possible realizations of the climatic future and aims to capture 248 
the potential serial correlation of annual climate in a given time window. A CRF, developed 249 
from a regression analysis of historical data, then serves as a simple hydrologic model to obtain 250 
corresponding long pooled time series of annual streamflow. Each pool is representative of 251 
conditions in the shorter time window, but the length of each pooled time series is sufficient to 252 
allow estimates to be made of extreme quantile values, including values representative of annual 253 
flow in an extreme drought year.  254 

4.1 Construction of pooled annual climate time series 255 

Assume that an ensemble of projections of annual climate has N members that are each Nt years 256 
in length, beginning at year t1 and ending at year tNt, where (tNt - t1 +1) = Nt, and assume this 257 
time period can be divided into W time windows of equal length, L, where L will typically be 258 
several decades. Then Nt = L*W where L and W are positive integers. Let λ be an index which 259 
denotes one of the N ensemble members, that is, λ = 1, 2, ..., N, and P λ

 i and T λ
 i denote annual 260 

precipitation and temperature for ensemble member, λ, in the ith year of the simulation period, ti, 261 
where i = 1, 2, ..., Nt. Let 𝑃෠  λ w

 j and 𝑇෠  λ w
 j denote annual precipitation and temperature in the jth 262 

year of the wth time window, where j = 1, 2, …, L, and 𝜔 = 1, 2, ..., W. Then 263 𝑃෠ λ ω
 j = P λ t0 + L*(ω -1) + j - 1 264 𝑇෠ λ ω
 j = T λ t0 + L*(ω -1) + j – 1  265 

Equation 1 266 

Define 𝑌෠  λ w
 j to be the 2-dimensional vector of annual precipitation and temperature in the jth 267 

year of the wth time window from ensemble member, λ, that is, 268 𝑌෠λ ω
 j = (𝑃෠ λ ω j , 𝑇෠  λ ω j )  269 

Equation 2 270 

and define 𝑌෠  λ w to be paired precipitation and temperature time series of length L from ensemble 271 
member, λ, which we view as an instance of climate conditions and annual variability 272 
representative of the wth time window, that is, 273 

 𝑌෠  λ ω
  = (𝑌෠  λ ω

 1, 𝑌෠  λ ω
 2, …, 𝑌෠  λ ω

 L) 274 
Equation 3 275 

Because of the nonstationarity of the climate time series, depending on the time series length, L, 276 
it may be preferable to detrend the time series in each time window of interest before 277 
constructing the 𝑌෠ఒభ ఠ.  278 
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 Long pooled climate time series are created by concatenating multiple time series from 279 
ensemble members, each representative of conditions in a shorter window of time. That is, to 280 
create a pooled time series representative of conditions in a given time window w, of length L, M 281 
ensemble members are concatenated as follows. First a member, λ1, is randomly selected from 282 
the ensemble of annual climate projections, where λ1 has an L-year climate time series, 𝑌෠ఒభ ఠ, in 283 
time interval, w. Then a second ensemble member, λ2, is selected using a weighted random 284 
sampling process from the K nearest neighbors of λ1 and concatenated with λ1. This process is 285 
continued until (M-1) additional time segments from the time window, w, have been selected and 286 
concatenated, forming the time series (𝑌෠ఒభ ன , 𝑌෠ఒమ ன , . . ., 𝑌෠ఒಾ ன ), which is of length, M*L years, 287 
and where each ensemble member time segment, λi , has been selected from the nearest 288 
neighbors of the preceding segment, λi-1 . In this manner, a sample set of Np climate pools, 𝑍መ  ν w , 289 
can be created for a given time window, w, where ν = 1, 2, …, Np. Each climate pool, 𝑍መ  ν w, is a 290 
time series L*M years in length consisting of a concatenation of M of the L-year time series, that 291 
is, M instances of climate conditions representative of the period, w, selected from the ensemble 292 
members. Thus 293 𝑍መν ω  =  (𝑌෠ఒഌభ ன , 𝑌෠ఒഌమ ன , . . .,   𝑌෠ఒഌಾ ன ) 294 

Equation 4 295 

 To use the K-NN method in the selection process described above, we follow Lall and 296 
Sharma (1996), and identify nearest neighbors by first defining a feature vector and a successor 297 
vector for each ensemble member, where the feature vector provides a forecast of the successor 298 
vector. For a given L-year climate time series, 𝑌෠  λ w

 ,  for ensemble member, λ, and time window, 299 
w, the feature vector, xλ w, is chosen to be the annual climate in the last year of the time window, 300 
that is, 𝑌෠  λ w

 L , and the successor vector is annual climate in the first year of the next time 301 
window, that is, 𝑌෠  λ w+1

 1. Because the aim of the concatenation process is to follow a climate time 302 
series, 𝑌෠  λ w, with a succeeding time series, 𝑌෠  λ' w, in a manner that preserves temporal 303 
correlations, nearest neighbors, λ', are defined as ensemble members which have similar values 304 
of precipitation and temperature in the last year of the preceding time window, (w -1), that is, 305 
based on the feature vectors, xλ' w-1. In this way, if there are serial correlations present in the 306 
climate time series, the last year of climate conditions in the preceding time window will have 307 
some ability to forecast climate in the first year of time window, w, and a concatenation of the 308 
two climate time series should to some degree reflect any correlations expected between annual 309 
climate in the last year of 𝑌෠ ఒ ఠ and the first year of 𝑌෠ ఒᇲ ఠ.  310 
 Thus, the feature vector, xλ w, for ensemble member, λ, and time window, w, is the two-311 
dimensional vector of annual precipitation and temperature in the last, that is the Lth year of the 312 
time window, that is, 313 

x λ w = ൬ ௉෠ಽഊ ഘఙು  ഘ  , ෠்ಽഊ ഘఙ೅  ഘ൰ 314 

Equation 5 315 

standardized by dividing by standard deviations. Nearest neighbors, λ', are identified based on 316 
Euclidean distances between the feature vectors of the current and preceding time windows, 317 ‖𝒙ఒ ఠ  − 𝒙ఒᇱ ఠିଵ‖, as discussed above. For a given pool, 𝑍መ  ν w, the first time series, 𝑌෠ఒഌభ ன  , is 318 
selected from ensemble members via random sampling. The second series, 𝑌෠ఒഌమ ன ,  is selected 319 
by random sampling from K nearest neighbors of 𝑌෠ఒഌభ ன  using a weighted sampling algorithm. 320 
The third series, 𝑌෠ఒഌయ ன  is selected from the K nearest neighbors of 𝑌෠ఒഌమ ன. We use the common 321 
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approach of setting K as the square root of the sample size, that is, of the number of ensemble 322 
members in the sample. Successive series used in the concatenation are selected using the same 323 
procedure. Sampling weights, W, are assigned by defining the kernel as, 324 𝑊௞ =  ቀ1𝑘ቁ ∑ 1𝑘௄௞ୀଵ൙  

Equation 6 325 

 326 
where k denotes the indices of an ordered set of K nearest neighbors, and where we note that the 327 
sum of the K weights equals 1.  328 

4.2 Climate response function 329 

 An empirical climate response function (CRF) was developed, based on historical data, to 330 
serve as this study’s simple hydrological model for predicting annual mean river flow from 331 
climate projections. The CRF was constructed using multiple regression analysis applied to time 332 
series of historic streamflow and climate, using a form of a regression equation similar to that of 333 
Milly et al. (2018), with annual mean precipitation and air temperature as predictor variables and 334 
including a lagged flow term to simulate interannual storage (P. Milly & Dunne, 2002). The 335 
resulting CRF for Potomac River flow successfully simulates the historic record and serves as 336 
this study’s simple hydrologic model for annual mean flow.  For a given simulation year i, 337 
Potomac River annual natural flow at Little Falls (Qi) is predicted as a function of annual 338 
watershed average precipitation (Pi), annual watershed average air temperature (Ti), and previous 339 
year’s mean flow. The regression equation differs from Milly et al. in that it includes a quadratic 340 
precipitation term to capture potential nonlinear effects (Risbey & Entekhabi, 1996): 341 (𝑄௜ − 𝑄ത)𝑄ത  =   𝛽ଵ  (𝑄௜ିଵ − 𝑄ത)𝑄ത  + 𝛽ଶ (𝑇௜ −  𝑇ത)  +  𝛽ଷ  (𝑃௜ − 𝑃ത)𝑃ത  +   𝛽ସ  ቆ𝑃௜ − 𝑃ത𝑃ത ቇଶ +   𝜀௜ 

Equation 7 342 

where 𝑄ത, 𝑇ത, and 𝑃ത are long term average values computed over the historical period used in the 343 
analysis, 1896 – 2017.  344 

5 Results 345 

 We apply the approach described above to the Potomac River basin above Little Falls 346 
dam. To characterize projected changes in climate and river flow over the 150-year period of the 347 
BCSD data, 1950 to 2099, we divide the simulation period into five successive 30-year time 348 
windows. That is, according to the formalism presented above, we set W=5 and L=30, where 349 
Nt=150 = L*W. We define the study "baseline period" to be the first 30-year time interval, 1950-350 
1979, and note that this period represents pre-climate change conditions in the Potomac basin 351 
reasonably well. The baseline period is important because in later sections, baseline results will 352 
be a starting point to evaluate projected changes in natural annual Potomac River flow. Observed 353 
mean precipitation during the baseline period, 992 mm, is essentially equal to mean precipitation 354 
over the historic record, 1896-1979, 991 mm, based on PRISM data. Similarly, observed mean 355 
temperatures for the baseline versus the longer historic period are similar: 11.04 versus 11.19 °C, 356 
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a difference of 0.15 °C. Finally, mean observed natural Potomac River flow for the baseline 357 
period is 342 mm, which differs by only 1.5% from the mean flow over the historic record, 358 
which is 337 mm.  359 
 Trends in climate and flow statistics are investigated by RCP. For each RCP, five sample 360 
sets of pooled climate time series representative of the five successive 30-year time windows are 361 
constructed. Each pool is 180 years in length, formed by concatenation of six 30-year time series 362 
selected from the BCSD ensemble by the method described above (that is, M=6), and each pool 363 
set contains 100 pools, that is, Np = 100. Results discussed below showed little sensitivity to 364 
values of M and Np. Before concatenation, each of the 30-year temperature and precipitation 365 
time series is detrended using linear regression. To apply the K-NN nearest neighbor sampling 366 
method, the value of K is set at the square root of the number of members in the RCP sub-367 
ensemble, following Lall and Sharma (1996). Then for each pooled climate time series, a 368 
corresponding time series of river flow can be computed by means of the CRF, Eq. 7. An 369 
example of a pooled time series is shown in Figure 1: a 180-year time series of annual 370 
temperature representing conditions in the period, 2080-2099, constructed by concatenating six 371 
30-year time series for 2080-2099, all selected from the sub-ensemble of RCP 4.5 climate 372 
projections. This graph also shows values of components of the feature vectors used in the K-NN 373 
selection process (Equation 5), that is, the value of annual temperature in the last year of the time 374 
window of interest (in this case, ω=5) and of the preceding time window (ω=4) where nearest 375 
neighbors are identified based on Euclidean distances between the feature vectors of the current 376 
and preceding time windows.  377 

 378 
Figure 1: Example of a pool representative of annual temperature in the 30-year window, 2080-2099, where each segment was 379 
selected from the RCP 4.5 sub-ensemble. This graph also shows values of the feature vector used in the K-NN selection method - 380 
the last value of a 30-year segment (circles) and the last value of the previous window of the next segment (triangles). 381 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

 5.1 Performance of the pooled climate time series 382 

 To evaluate the performance of the pooled time series, we compare long-term statistics of 383 
annual temperature and precipitation characterizing 30-year windows of the simulation period 384 
computed directly from the filtered ensemble members and computed from the pooled time 385 
series. Selected statistics are computed for each 30-year ensemble member time series (n=30) 386 
and for each 180-year pooled time series (n=180). The algorithm associated with the Weibull 387 
plotting position is used for computing quantiles (type=6 in the quantile function of the R 388 
scripting language) because it provides an unbiased estimator (Vogel & Fennessey, 1995), not 389 
affected by sample size. For a given 30-year window and a given RCP, this provides sample sets 390 
of statistics for 100 pools and for 25 to 46 ensemble members, depending on the size the RCP 391 
sub-ensemble. We compare statistics computed from the 30-year time series versus the longer 392 
pooled time series first by looking at boxplots of quantile values, showing medians and 393 
interquartile ranges, for all RCPs, and then by looking at sample set means of time series means, 394 
standard deviations, and Kendall's tau. Figures 2 and 3 show boxplot comparisons for 395 
precipitation and temperature of five different quantile values: 0.05, 0.25, 0.50, 0.75, and 0.95. 396 
Increases over the simulation period, 1950-2099, are evident for both precipitation and 397 
temperature for all displayed quantiles for all RCPs. From the data underlying Figures 2 and 3, 398 
the increases in median (0.50 quantile) precipitation from the baseline period, 1950-1979, to the 399 
last 30-year window, 2070-2099, range from 11% for RCP 2.6 to 16% for RCP 8.5. Increases in 400 
median temperature range from 2.0 degrees C for RCP 2.6 to 5.1 degrees C for RCP 8.5. In 401 
Figures 2 and 3, there is a good match between the boxplots in most cases, with an overlap in the 402 
range of uncertainty of the median values, as indicated by the boxplot "notches". Exceptions are 403 
the somewhat lower pool set values in some of the 0.95 quantile results for precipitation, 404 
representative of conditions in very wet years, and conversely, some of the pool set values for the 405 
lowest two temperature quantiles, 0.05 and 0.25, which tend to be lower, especially in the case of 406 
RCP 8.5. Finally, there is a noticeable difference in the interquartile ranges of the boxplots, with 407 
the smaller interquartile ranges of the pool set boxplots indicating that there is more similarity 408 
between the pools than between the original ensemble member time series. This is consistent 409 
with the fact that the RCP sub-ensembles sampled to create the pools are relatively small: 410 
ranging from just 25 members for RCP 6.0 to 46 members for RCP 4.5. This means that in a 411 
100-pool sample set, where each pool consists of a concatenation of M=6 sub-ensemble 412 
members, there is repetition in the use of sub-ensemble members, leading to some similarity in 413 
the pools. It can be verified that for smaller M's the interquartile range of the pool sets increases 414 
and for larger M's it decreases. 415 
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 416 
Figure 2: Boxplots of annual precipitation quantile values, 0.05, 0.25, 0.50, 0.75, and 0.95, for the sample sets of the ensemble 417 
member time series (n=30) and the pooled time series (n=180), by RCP, where the labels on the x-axis denote midpoints of the 418 
30-year windows. 419 

 420 
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 421 
Figure 3: Boxplots of annual temperature quantile values, 0.05, 0.25, 0.50, 0.75, and 0.95, for the sample sets of the ensemble 422 
member time series (n=30) and the pooled time series (n=180), by RCP, where the labels on the x-axis denote midpoints of the 423 
30-year windows. 424 

 425 
 Table 1 provides a more detailed look at trends in selected long-term statistics computed 426 
from the ensemble time series and the pooled time series. Results are shown for RCP 4.5, but 427 
they are illustrative of results for all four RCPs in terms of the match between the two sets of 428 
values. For each 30-year window, ensemble set means of ensemble member time series means 429 
(n=30) are very close to pool set means of the pooled time series means (n=180), with 430 
differences of less than a half a percent for precipitation and less than 0.1 degrees C for 431 
temperature. Ensemble set means of the standard deviations of annual precipitation and 432 
temperature ensemble member time series (n=30) grow over time in the case of precipitation and 433 
remain relatively constant in the case of temperature. However, pool set means of the pooled 434 
time series standard deviations (n=180) are up to 7% larger than the corresponding ensemble 435 
means of standard deviations in the case of precipitation and up to 0.2 degrees C in the case of 436 
temperature, with the largest discrepancies occurring in the 2070-2099 window. These results 437 
indicate that the variability of the pooled time series exceeds that of the original ensemble time 438 
series, especially in the later years. An explanation of this is provided by the remaining statistics 439 
in Table 1 - the standard deviations of the time series means. These also grow with time in the 440 
case of the ensemble statistics, and to a lesser degree for the pool statistics. For example, the 441 
standard deviation of long-term mean temperature in the 2070-2099 window is 0.6 degrees C. 442 
Thus, the long-term means of ensemble members differ more and more over the course of the 443 
simulation period. Because ensemble member time series are being sampled and combined to 444 
form the pools, some pools are concatenations of ensemble members with very different 30-year 445 
means, especially in the case of temperature, as is visible in the example of a pooled temperature 446 
time series shown in Figure 1. In short, in a given pool there may be a considerably wider range 447 
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of temperatures than in a given ensemble window, due to the variability of the 30-year ensemble 448 
means superimposed on the annual variability. On the other hand, it should be noted that multi-449 
decadal variability in climatic conditions in the Potomac basin is not necessarily unrealistic. 450 
Paleo reconstructions of Potomac River flow from tree ring chronologies indicate that prior to 451 
the instrumental record, considerable multidecadal variability was present (Maxwell et al., 2011; 452 
Torbenson & Stagge, 2021). 453 
 The K-NN sampling approach used in this study aims to preserve serial correlations that 454 
may be present in the original time series of projected climate as they are concatenated into 455 
longer pooled time series, as described above. Table 1 provides comparisons of a non-parametric 456 
measure of serial correlation, Kendall's tau, for both the sub-ensemble time series and the pooled 457 
time series. The value of Kendall's tau for observed climate over the historical period, 1896-458 
2017, is -0.01 for annual precipitation, indicating no significant serial correlation, and 0.11 for 459 
annual temperature, indicating serial correlation at the 0.10 significance level. In the case of 460 
annual precipitation, the results in Table 1 are consistent with the historical results, with no serial 461 
correlation detected in either the n=30 ensemble time series or the n=180 pooled time series for 462 
both historical periods and future periods. In the case of annual temperature, neither the original 463 
ensemble time series nor the pooled time series indicate the presence of serial correlation for the 464 
two historical time windows, 1950-1979 and 1980-2009. However, Kendall tau values for the 465 
later three time windows do indicate significant serial correlation of annual temperature in many 466 
of the pools. A review of results for individual pools in the 2070-2099 window shows that this 467 
effect is related to the increase in the annual standard deviations of long-term temperature means, 468 
discussed above. Individual pools that are a concatenations of ensemble members with very 469 
different 30-year temperature means have both high standard deviations and high Kendall's tau 470 
for annual temperature whereas pools constructed from ensemble members with similar 30-year 471 
temperature means have low standard deviations and low Kendall's tau.  472 
 473 
Table 1: Ensemble versus pool set means and standard deviations of ensemble member climate time series statistics (n=30) 474 
versus pooled climate time series statistics (n=180). Results shown are for RCP 4.5. 475 

  1950-1979 1980-2009 2010-2039 2040-2069 2070-2099 
Mean of long-term 
precipitation means (mm) 

n=30 986 1011 1062 1093 1107 
n=180 983 1012 1069 1091 1114 

Mean of annual 
precipitation standard 
deviations (mm) 

n=30 136 139 152 160 152 

n=180 132 141 159 169 163 

Standard deviation of 
long-term precipitation 
means (mm) 

n=30 18 26 37 48 57 

n=180 7 10 14 21 17 

Mean of Kendall's tau for 
annual precipitation time 
series 

n=30 -0.07 -0.01 0.01 -0.07 -0.05 

n=180 -0.04 0.00 0.03 0.01 0.03 

Mean of long-term 
temperature means (°C) 

n=30 11.0 11.4 12.5 13.6 14.1 
n=180 11.0 11.4 12.6 13.4 14.0 

Mean of annual 
temperature standard 
deviations (°C) 

n=30 0.6 0.6 0.6 0.6 0.6 

n=180 0.6 0.6 0.6 0.7 0.7 

Standard deviation of 
long-term temperature 
means (°C) 

n=30 0.1 0.1 0.3 0.6 0.7 

n=180 0.0 0.0 0.2 0.4 0.3 

Mean of Kendall's tau for n=30 0.03 0.06 -0.01 -0.03 0.00 
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annual temperature time 
series n=180 0.05 0.05 0.11 0.23 0.23 

 5.2 Climate response function 476 

 The coefficients of the CRF, Eq. 7, were computed using a multiple regression analysis 477 
of observed annual flow, precipitation, and temperature data extending from 1896 through 2017. 478 
Two different definitions of year were used to convert monthly values to annual values and 479 
compared in an effort to obtain the best CRF: calendar year (January 1 through December 31) 480 
and USGS water year (October 1 through the following September 30). The best-performing 481 
regression model was from the PRISM-calendar time series, resulting in a Nash-Sutcliffe 482 
efficiency (NSE) of 0.77, compared with 0.69 for the model derived from the water year 483 
datasets. The model coefficients are given in Table 2, along with their standard errors and p-484 
values. The coefficient of determination is 0.76 and the standard error of the prediction is 0.16. A 485 
comparison of observed annual Potomac River flow and flow predicted by the regression model 486 
is shown in Figure 2. 487 
Table 2: Annual flow regression model coefficients. 488 

Coefficient β1 β2 β3 β4 

Value 0.14 -0.054 1.845 1.027 
Standard Error 0.04 0.025 0.114 0.336 
p-value 0.002 0.017 4.45E-32 0.003 
 489 
 In Table 2, the value of the coefficient, ß1 is 0.14, representing the portion of annual flow 490 
provided by storage from the previous year, and is close to the median, 0.16, of values obtained 491 
by Milly et al. (2018) resulting from a similar regression analysis for 2673 basins around the 492 
world.  The sensitivity of flow to precipitation can be compared with other studies if Eq. 7 is first 493 
differentiated and the values for ß3 and ß4 are substituted into the result, giving   494 𝜕 ቌ(𝑄௜ − 𝑄ത) 𝑄ത൘ ቍ

𝜕 ቌ(𝑃௜ − 𝑃ത) 𝑃ത൘ ቍ  =   1.845 +   1.027 ቆ𝑃௜ − 𝑃ത𝑃ത ቇ 

Equation 8 495 

Thus Eq. 8, with coefficients from Table 2, captures the rising sensitivity of flow to precipitation 496 
with increasing precipitation (P. Milly et al., 2018; Revelle & Waggoner, 1983). For the range of 497 
values of 𝑃௜ 𝑃ത⁄  in the historic record used in this study, 0.54 to 1.55, the percent change in flow 498 
from a 1% change in precipitation from Eq. 8 ranges from 0.9% to 3.0%. For the interquartile 499 
range of values of 𝑃௜ 𝑃ത⁄ , 0.92 to 1.08, the percent change in flow is 1.7% to 2.0%, which is very 500 
similar to results in other studies. Sankarasubramanian and Vogel (Sankarasubramanian & 501 
Vogel, 2003) used a nonparametric estimator to compute the ratio of change in flow to change in 502 
precipitation for 1337 basins in the United States and found that values generally ranged from 503 
1.0 to 2.5. Finally, the value of the temperature coefficient in Table 2, ß2 = -0.054, indicates that 504 
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a 1° C increase in annual mean temperature decreases mean annual flow in the Potomac River by 505 
5.4%. 506 
 The sensitivity of flow to change in temperature is a crucial factor in determining the 507 
impact of climate change on water availability, since projections of future precipitation tend to 508 
vary widely in the Potomac, as in many other regions, but future temperatures rise significantly 509 
in all projections. Temperature sensitivity affects the degree to which future increases in 510 
precipitation can counteract future increases in temperature, and it determines the severity of 511 
future hot droughts. But there is debate about the degree to which temperature sensitivity can be 512 
accurately estimated. Some studies have indicated that variability in flow is almost completely 513 
explained by variability in precipitation, and that the role of temperature is small (Gleick, 1986; 514 
Karl & Riebsame, 1989; McCabe & Wolock, 2011). Others point to the significant differences in 515 
estimates of temperature sensitivity in widely studied regions such as the upper Colorado River 516 
Basin (CRB), where estimates have ranged from -2 percent to -15 percent (P. C. Milly & Dunne, 517 
2020). Recent work for the upper CRB supports the importance of temperature in determining 518 
river flow, indicating that the impact of rising temperature is now evident in the instrumental 519 
record (McCabe et al., 2017; Udall & Overpeck, 2017; Woodhouse et al., 2016). In the results 520 
section below, we explicitly take into account the uncertainty in the sensitivity of flow to 521 
changes in temperature by considering three different temperature sensitivity scenarios based on 522 
the range of values of the temperature coefficient, β2, defined by ± one standard error, that is, -523 
2.9% to – 7.9%. 524 
 525 

 526 
Figure 4: Observed annual Potomac River observed flows compared with flows simulated using the CRF and historical climate. 527 

 5.3 Performance of the pooled flow time series 528 

 Projected future flows in the Potomac basin are computed by using the climate time 529 
series discussed above as inputs to the CRF, Eq. 7, with the regression coefficients given in 530 
Table 2. Here we examine long-term statistics for flows in the 30-year windows, comparing 531 
results for flows computed directly from the filtered ensemble members (n=30) with those 532 
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computed from the pooled time series (n=180). We expect that the variability of annual flows in 533 
the Potomac basin will increase because of the increasing variability of precipitation. The 534 
competing effects of rising precipitation and temperature, as reflected in Eq. 7, can be expected 535 
to further increase flow variability.  536 
 To investigate trends in projected annual flows, long-term statistics representing the 30-537 
year windows, by RCP, are computed for each pool in the 100-member flow pool set and are 538 
compared with those computed for 30-year time intervals from the filtered sub-ensemble 539 
representing the RCP. Figure 5 compares box plots of annual flow percentile values obtained by 540 
these two methods, ranging from the 5th to the 95th percentile values, by RCP and by successive 541 
30-year time interval. Each “30-year” boxplot characterizes percentile values computed for the 542 
sample of sub-ensemble members for each RCP (ranging from N=25 for RCP 6.0 to N=46 for 543 
RCP 4.5), each of length n=30. Each corresponding “180-year” boxplot characterizes percentile 544 
values computed from a sample of size Np=100 of pooled time series, each of length n=180.  545 
 There is a reasonably good match between the pairs of boxplots in Figure 5, indicating 546 
that using the methods proposed in this study, probability distributions of annual flows 547 
characteristic of given 30-year time intervals can be constructed that are consistent with those 548 
obtained using the conventional method of relying on 30-year time series to estimate long-term 549 
statistics. The medians of the sets of annual flow quantile values tend to be slightly higher for the 550 
n=180 time series than the n=30 time series in the case of drought years (0.05 quantile), for all 551 
30-year windows, and slightly lower in the case of high flow years (0.95 quantile). This is 552 
consistent with the fact that the n=180 time series tend to slightly over-estimate precipitation in 553 
very dry years and slightly under-estimate precipitation in very wet years (see Figure 3). 554 
 Table 3 provides a more detailed comparison of selected long-term statistics for annual 555 
flow computed using the two methods. Again, results are only shown for RCP 4.5, but are 556 
illustrative of those obtained for all four RCPs. Long-term means are very similar for all 30-year 557 
windows, differing by at most 2%. Sample set means of long-term standard deviations are 558 
somewhat higher for the n=180-year time series, by up to 10% for 2070-2099. Again, we 559 
attribute this to the fact that standard deviations of long-term flow means are quite significant for 560 
the n=30 sample set, reflecting the fact that the flow time series were computed from sets of 561 
climate time series which in many cases exhibit considerable multi-decadal variability, as 562 
discussed above. Finally, Table 3 gives sample set means of Kendall tau values, which range 563 
from 0.03 to 0.09 for the n=30 sample sets and from 0.05 to 0.12 for the n=180 sample sets. The 564 
Kendall tau for a historical time series of annual flows extending from 1896 through 2017 is 0.06 565 
with a p-value of 0.29, indicating no serial correlation.     566 
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 567 
Figure 5: Boxplots of annual fractional flow change quantile values, 0.05, 0.25, 0.50, 0.75, and 0.95, for the sample sets of the 568 
ensemble member time series (n=30) and the pooled time series (n=180), by RCP, where the labels on the x-axis denote 569 
midpoints of the 30-year windows.  570 

 571 
Table 3: Ensemble versus pool set means and standard deviations of ensemble member flow time series statistics (n=30) versus 572 
pooled flow time series statistics (n=180). Results shown are for RCP 4.5. 573 

  1950-1979 1980-2009 2010-2039 2040-2069 2070-2099 
Mean of long-term flow 
means (mm) 

n=30 349 353 371 377 376 
n=180 343 356 375 378 383 

Mean of annual flow 
standard deviations (mm) 

n=30 100 109 119 129 122 
n=180 102 109 127 134 134 

Standard deviation of 
long-term flow means 
(mm) 

n=30 18 22 39 40 48 

n=180 7 8 14 16 19 

Mean of Kendall's tau for 
annual flow time series 

n=30 0.03 0.07 0.09 0.05 0.07 
n=180 0.05 0.09 0.12 0.10 0.10 

 574 
 5.4 Future trends in the probability distribution of annual flows 575 
 Studies from around the world indicate that a warming climate will lead to increasing 576 
severity of both wet weather and dry weather events. The methodology proposed above allows 577 
quantitative predictions to be made for future changes in river flows at the annual time scale, 578 
throughout the empirical cumulative probability distributions, including the extreme lower and 579 
upper tails. The annual time scale is relevant to water supply planning studies, since for many 580 
municipal systems droughts that stress water supply resources are those that persist one or more 581 
years. The annual time scale is less relevant for flood risk analyses, where increases in daily 582 
precipitation variability play a key role.  583 
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 To examine trends in annual flow 584 
quantiles, we begin with the 100-member 585 
sample sets of pooled 180-year annual climate 586 
time series, which have been constructed for 587 
each of the five successive 30-year time 588 
windows covering the period, 1950-2099, by 589 
RCP. A flow time series can be computed 590 
from each pooled climate time series, 591 
providing a sample of annual flows of size 592 
n=180 from which quantile statistics can be 593 
calculated. Pool sample set means can then 594 
computed, providing a multi-model consensus 595 
ecdf of flow quantile values. 596 

 Figure 6 shows the ecdf of simulated flows, reported as fractional change from the 597 
historical mean flow, over the baseline period, 1950-1979, compared with observed values 598 
during the baseline period and the longer historic period, 1897-1979. The simulated flows are for 599 
the RCP 4.5 multi-model sample set, but results for other RCPs are very similar. This graph 600 
indicates that the ecdf of observed annual flows for the baseline period matches the distribution 601 
for the longer historic period quite well, supporting use of the 30-year baseline, 1950-1979, as a 602 
good approximation to pre-climate change flow conditions. In addition, Kolmogorov-Smirnov 603 
tests on the distributions indicate that they do not differ at the 5% significance level. 604 

Figure 7 shows the change over time of ecdf's of annual flows, by RCP, where flows 605 
were computed assuming three different sensitivities of flow to temperature change. Results for 606 
"medium" temperature sensitivity used annual flows computed using Eq. 7 and the regression 607 
coefficients in Table 2, where the temperature coefficient is ß2 = -0.054. Flows for the "low" and 608 
"high" temperature sensitivity results were computed in the same way except that the 609 
temperature coefficients used are the regression analysis value plus or minus one standard error, 610 

that is, ß2 = -0.054 ± 0.025 = -0.029 and -0.079, respectively. 611 
 The graphs in Figure 7 demonstrate the profound uncertainty in future river flows 612 
stemming from the physical response of watershed hydrologic processes to rising temperatures 613 
and uncertainty in future global carbon emissions. The four graphs in the top row of Figure 7, 614 
computed under the assumption that the sensitivity of river flows to a 1 deg C rise in temperature 615 
is low, -2.9%, all indicate that future flows will be higher even in extreme drought years and that 616 
climate change will not have an adverse impact on water supplies in the Potomac basin. The four 617 
graphs in the middle row of Figure 7, computed under the assumption that the response of flows 618 
to temperature is medium, -5.4%, indicate that future extreme droughts will likely be more 619 
severe than the historical drought of record even though flows will be higher in medium and high 620 
flow years. Examining in more detail the data used to create the four middle row graphs, the 621 
analysis predicts that annual Potomac River flows during an extreme drought year, that is, a year 622 
in which annual flow does not exceed its first quantile value, will change as follows: in the 623 
period, 2040-2069, by -14%, -13%, +4%, and -19% for RCPs 2.6, 4.5, 6.0, and 8.5, respectively, 624 
and by +1%, -11%, -11%, and -46% by the period, 2070-2099. Finally, the four graphs in the last 625 
row of Figure 7, computed under the assumption that the sensitivity of Potomac River flow to 626 
temperature is high, -7.9%, indicate that there will be a substantial decrease in Potomac River 627 
flows in future extreme drought years.  628 
 629 

Figure 6: Comparison of observed and simulated annual flow 
ecdf's for this study's pre-climate change record, 1896 – 
1979, and baseline period,1950 – 1979, with simulated flows 
from the RCP 4.5 sub-ensemble. 
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 630 
Figure 7: Changes in the ecdf for annual river flow for successive 30-year time windows beginning with the baseline period, 631 
1950-1979, computed from pooled time series by RCP, for three flow-temperature sensitivities: Low (ß2 = -2.9%,), Medium (ß2 = 632 
-5.4%,), and High (ß2 = -7.9%,). 633 

 5.5 Developing inputs for water supply planning models 634 

 Projections of annual flow distributions are valuable for water supply planning studies 635 
because they provide quantitative estimates of the disparate impacts of climate change on low 636 
flow, medium flow, and high flow years. This is particularly important for regions like the 637 
Potomac River basin, where the possibility of future severe drought may be discounted in the 638 
face of evidence that the basin is getting wetter. But results from the current study indicate that 639 
though future Potomac River flows will increase in average years and in high flow years they 640 
may diminish in extreme drought years. Below we demonstrate how the methods described 641 
above, which integrate results from multi-model ensembles of climate projections, can be used to 642 
construct daily river flow time series. Such flow time series are often key inputs of water supply 643 
planning models.  644 
 Beginning with ecdf's characterizing annual flow in future time periods, quantile scaling 645 
can be applied, similar to its use with rainfall projections (Johnson & Sharma, 2011). This 646 
approach captures the changes in interannual variability present in the projections. Following 647 
Johnson and Sharma, scaling factors, Ffuture, for a given quantile, q, of annual flow are computed 648 
as the ratios of future and baseline quantile values, that is, 649 𝐹௤௙௨௧௨௥௘  =   𝑄௤௙௨௧௨௥௘𝑄௤௕௔௦௘௟௜௡௘  

Equation 9 650 
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These annual flow scaling factors can then be used to project the impact of climate change on the 651 
historic record by multiplying by observed daily flows,  652 ൫𝑄௜௙௨௧௨௥௘൯ொௌ  =  𝑄௜ ௤௢௕௦𝐹௤௙௨௧௨௥௘ 

Equation 10 653 

where 𝑄௜ ௤௢௕௦ is the observed daily flow on Julian day, i, with q denoting its quantile in the historic 654 
record of annual flows. A similar method of nonparametric scaling was used by Nowak et al. 655 
(Nowak et al., 2010) in their method of multisite disaggregation of annual to daily streamflows. 656 
This approach is particularly well-suited to the need of Potomac basin water supply planning 657 
models because it preserves the relationship between daily flows at upstream and downstream 658 
locations, enabling use of flow forecasting techniques in simulations of the performance of the 659 
WMA water supply system under future climate change.  660 
 In Table 4, annual flow scaling factors for selected quantiles are shown for two time 661 
periods of interest to planners in the Potomac basin, 2040-2069 and 2070-2099, where change is 662 
computed from the "pre-climate change" baseline period, 1950-1979. Such scaling factors can be 663 
computed from ecdf's for any multi-model ensemble, or even from individual pooled time series, 664 
but the results shown below are from the RCP 4.5 subset of the BCSD ensemble. The uncertainty 665 
in the response of flow to change in temperature is significant, as illustrated in Figure 7, and the 666 
scaling factors in Table 4 were computed for three different temperature sensitivity scenarios 667 
determined by a range of plus or minus one standard error around ß2, the temperature coefficient 668 
in the CRF.  669 
Table 4: Projected scaling factors for flow from baseline period, 1950-1979 (pool sample set means of annual flow quantiles, 670 
RCP 4.5 only). 671 

 Sensitivity of annual flow to annual temperature 
Annual 

flow 
quantile 

Low 
(β2 = -0.029) 

Medium 
(β2 = -0.054) 

High 
(β2 = -0.079) 

 2040-2069 2070-2099 2040-2069 2070-2099 2040-2069 2070-2099 
0.01 1.07 1.12 0.87 0.89 0.66 0.64 
0.05 1.10 1.13 0.97 0.97 0.84 0.81 
0.10 1.11 1.15 1.00 1.01 0.90 0.87 
0.25 1.13 1.17 1.05 1.06 0.96 0.96 
0.50 1.15 1.20 1.08 1.10 1.01 1.02 
0.75 1.18 1.21 1.13 1.14 1.07 1.07 
0.90 1.21 1.24 1.16 1.17 1.11 1.11 
0.95 1.24 1.26 1.19 1.20 1.14 1.14 
0.99 1.30 1.29 1.26 1.24 1.22 1.19 

Of particular interest to planners in the Potomac basin are the factors in Table 4 for the 0.01 672 
quantile, representing projected change in annual flow in an extreme drought year. These are 673 
0.87 and 0.89, respectively, for the medium temperature sensitivity scenarios. These results 674 
indicate that if extreme drought strikes the region in the period, 2040-2069, annual river flow 675 
will be 13 percent less than flows in a corresponding historical drought, and 11 percent less in 676 
the period, 2070-2099, based on the projections of the RCP 4.5 sub-ensemble. In contrast, annual 677 
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flows in an extremely high flow year (0.99 quantile) are projected to rise by 26% and 24% in 678 
these same two future periods. 679 

6 Summary and Conclusions 680 

 In the Potomac River basin, the major water supply source of the Washington, DC, 681 
metropolitan area, there is a growing expectation that climate change will bring increased 682 
precipitation. But because variability is also expected to increase, it's important that water supply 683 
planners investigate the risk that future extreme drought may be more severe than droughts in the 684 
past due to increased precipitation variability coupled with rising temperatures, termed by some 685 
as hot drought. Common assessment approaches that can capture this risk include detailed 686 
hydrologic modeling based on climate inputs from a subset of available GCMs projections 687 
(Arnell and Delaney, 2006; Manning et al., 2009; Matonse et al., 2013; O’Hara and 688 
Georgakakos, 2008; Paton et al., 2014) and vulnerability assessments exploring a wide range of 689 
possible future climates to aid planners in understanding what mitigation options need to be “on 690 
the table” (Brown et al., 2011; Steinschneider et al., 2015). But studies based on a limited 691 
number of climate projections or worst-case scenarios from vulnerability assessments may not be 692 
enough to compel decision makers to move forward in cases where the need for costly 693 
infrastructure projects is indicated.  694 
 Trends in climate and hydrology are typically investigated by comparing conditions in 695 
successive time windows, each several decades in length. Our proposed approach provides a 696 
method of constructing annual climate and flow time series representative of a given time 697 
window that are of sufficient length to compute statistics indicative of the severity of extreme 698 
drought, for example, a drought severity with a probability of exceedance of just 1%. Applying 699 
this approach to the Potomac River, pooled time series, each 180 years in length, were created to 700 
characterize climatic conditions in 30-year time windows, and these were then used as input into 701 
the CRF to compute corresponding annual flow time series. Each pair of pooled temperature-702 
precipitation time series incorporates information from multiple climate models and could be 703 
used individually to investigate the range of conditions expected in a future climate. In this 704 
study, we added an averaging step: we created a large sample set of pools and took means of 705 
quantile and other statistics computed from individual pools. Comparisons of quantile values in 706 
the range, 0.05 to 0.95, computed from the pools and from the original ensemble member time 707 
series indicate that means of quantile values computed from the sample set of pools provide 708 
reasonably good estimates of those computed from shorter time series, lending confidence to this 709 
study's results for more extreme quantiles. We did note that standard deviations were 710 
considerably higher for the pooled temperature time series and to a lesser degree for the pooled 711 
flow time series, and also Kendall's tau values for temperature, and attributed these differences to 712 
the multi-decadel variability introduced by concatenating multiple 30-year temperature time 713 
series from multiple GCM's. 714 
 Our results for the Potomac basin indicate that future declines in river flow in extreme 715 
drought years may become more severe even as long-term mean flows increase, reflective of 716 
processes indicative of hot drought. Twelve future scenarios were considered to investigate the 717 
competing influences of rising precipitation and rising temperatures, based on four scenarios for 718 
future global emissions and three scenarios for the sensitivity of flow to temperature change. For 719 
all of the high and three out of four of the medium flow-temperature sensitivity scenarios, the 720 
0.01 quantile value of annual flow decreases in both the 2040-2069 and the 2070-2099 planning 721 
periods. Our results for future trends in flow quantiles are consistent with those obtained by 722 
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Hayhoe et al. (2007) for the US northeast, showing that climate change will increase annual 723 
flows in the upper tail of the cumulative distribution function and decrease annual flows in the 724 
lower tail. But our proposed methodology provides quantitative information on changes in 725 
extreme drought, as represented by the 0.01 quantile, whereas standard empirical nonparametric 726 
approaches, because of sample size, are limited to changes in a more moderate drought.  727 
 The proposed approach can be useful for water supply planning studies, especially in the 728 
case of systems with significant reservoir storage where the annual time scale may be appropriate 729 
for investigation of future changes in water availability. It provides a method for constructing 730 
long time series of annual climate, incorporating projections from multiple GCMs, that are 731 
representative of shorter time intervals of interest. Applicability to a given watershed depends on 732 
whether a multiple regression analysis indicates a significant relationship between annual flow 733 
and annual temperature and precipitation, allowing the development of a CRF. If so, ecdf's for 734 
annual flow can be constructed, as described above, and scaling factors for annual flow, as a 735 
function of annual flow quantile, can easily be computed. These factors can be applied, via 736 
quantile scaling, to historic monthly or daily time series to create inputs to water supply planning 737 
models that reflect projected impacts of climate change. Alternatively, annual flow scaling 738 
factors could be applied to flow time series that have been synthetically generated based on 739 
historic data. In the current study, risk is explored via a scenario approach, by considering four 740 
representative pathways for future greenhouse gas concentrations and three scenarios for the 741 
sensitivity of flow to temperature change. For practical applications, planners could generate a 742 
single scenario for use in their planning models by first determining the level of risk appropriate 743 
for their study, that is, an RCP and an assumption of the sensitivity of flow to temperature 744 
change, or alternatively, generate results for a set of scenarios of their choice. 745 

Acknowledgments 746 

Support for this work was from the Section for Cooperative Water Supply Operations on the 747 

Potomac of the Interstate Commission on the Potomac River Basin, with funding provided by the 748 

CO-OP water suppliers: Fairfax Water, WSSC Water, and the Washington Aqueduct Division of 749 

the U.S. Army Corps of Engineers.  750 

Open Research 751 

Data Availability Statement 752 

Historical climate datasets used in this study are: 4 x 4 km PRISM gridded monthly air 753 

temperature and precipitation data from the PRISM Climate Group at Oregon State University, 754 

available at https://prism.oregonstate.edu), and 5km GHCN-Daily gridded Temperature and 755 

Precipitation Dataset (nClimGrid/CLIMGRID), version 1, from NOAA’s National Centers for 756 

Environmental Information (NCEI) available at https://data.nodc.noaa.gov/cgi-757 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

bin/iso?id=gov.noaa.ncdc:C00332). The climate projections used in this study, downscaled to the 758 

Potomac River basin, are derived from the Coupled Multi-model Intercomparison Project, Phase 759 

5 (CMIP5), bias-correction and spatial disaggregation (BCSD) dataset available at https://gdo-760 

dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html). The annual time series of 761 

historical natural Potomac River flow at Little Falls are available upon request from the 762 

corresponding author. Figures and tables were created with R version 4.3.0 (R Core Team, 2023) 763 

and RStudio version 2023.03.0 (Posit Team, 2023). Code and data for reproduction of results is 764 

available on Github at https://github.com/icprbcoop/cc_br. 765 

References 766 

Ahmed, S. N., Moltz, H. L. N., Schultz, C. L., & Seck, A. (2020). 2020 Washington metropolitan 767 
area water supply reliability study—Demand and resource availability forecast for the year 2050, 768 
ICPRB Report No. 20-3. ICPRB. https://www.potomacriver.org/wp-769 
content/uploads/2020/12/2020-WMA-Water-Supply-study-FINAL-September-2020.pdf  770 

Arnell, N. W., & Delaney, E. K. (2006). Adapting to climate change: Public water supply in 771 
England and Wales. Climatic Change, 78(2–4), 227–255. https://doi.org/10.1007/s10584-006-772 
9067-9 773 

Arnell, N. W., & Gosling, S. N. (2013). The impacts of climate change on river flow regimes at 774 
the global scale. Journal of Hydrology, 486, 351–364. 775 
https://doi.org/10.1016/j.jhydrol.2013.02.010 776 

Baker, S. A., Rajagopalan, B., & Wood, A. W. (2021). Enhancing Ensemble Seasonal 777 
Streamflow Forecasts in the Upper Colorado River Basin Using Multi‐Model Climate Forecasts. 778 
JAWRA Journal of the American Water Resources Association, 57(6), 906–922. 779 
https://doi.org/10.1111/1752-1688.12960 780 

Block, P. J., Souza Filho, F. A., Sun, L., & Kwon, H. (2009). A streamflow forecasting 781 
framework using multiple climate and hydrological models 1. JAWRA Journal of the American 782 
Water Resources Association, 45(4), 828–843. https://doi.org/10.1111/j.1752-1688.2009.00327.x 783 

Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom‐up 784 
vulnerability analysis with climate projections in the water sector. Water Resources Research, 785 
48(9). https://doi.org/10.1029/2011WR011212 786 

Brown, C., Werick, W., Leger, W., & Fay, D. (2011). A Decision‐Analytic approach to 787 
managing climate risks: Application to the upper great lakes 1. JAWRA Journal of the American 788 
Water Resources Association, 47(3), 524–534. https://doi.org/10.1111/j.1752-1688.2011.00552.x 789 

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on 790 
Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964 791 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

Cummins, J., Buchanan, C., Haywood, C., Moltz, H., Griggs, A., Jones, R. C., Kraus, R., Hitt, 792 
N., Bumgardner, R. V., & Branch, A. E. (2010). Potomac basin large river environmental flow 793 
needs. Interstate Commission on the Potomac River Basin. Publication Number ICPRB, 10–03. 794 
https://www.potomacriver.org/wp-content/uploads/2015/02/ICP10-3_Cummins..pdf 795 

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., & 796 
Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and 797 
precipitation across the conterminous United States. International Journal of Climatology: A 798 
Journal of the Royal Meteorological Society, 28(15), 2031–2064. 799 
https://doi.org/10.1002/joc.1688 800 

Döll, P., & Schmied, H. M. (2012). How is the impact of climate change on river flow regimes 801 
related to the impact on mean annual runoff? A global-scale analysis. Environmental Research 802 
Letters, 7(1), 014037. https://doi.org/10.1088/1748-9326/7/1/014037 803 

Ehsani, N., Vörösmarty, C. J., Fekete, B. M., & Stakhiv, E. Z. (2017). Reservoir operations 804 
under climate change: Storage capacity options to mitigate risk. Journal of Hydrology, 555, 435–805 
446. https://doi.org/10.1016/j.jhydrol.2017.09.008  806 

Fix, E., & Hodges, J. L. (1989). Discriminatory Analysis. Nonparametric Discrimination: 807 
Consistency Properties. International Statistical Review / Revue Internationale de Statistique, 808 
57(3), 238–247. https://doi.org/10.2307/1403797 809 

Fleming, B. j., Archfield, S. a., Hirsch, R. m., Kiang, J. e., & Wolock, D. m. (2021). Spatial and 810 
Temporal Patterns of Low Streamflow and Precipitation Changes in the Chesapeake Bay 811 
Watershed. JAWRA Journal of the American Water Resources Association, 57(1), 96–108. 812 
https://doi.org/10.1111/1752-1688.12892  813 

Fowler, H. J., Kilsby, C. G., & O’Connell, P. E. (2003). Modeling the impacts of climatic change 814 
and variability on the reliability, resilience, and vulnerability of a water resource system. Water 815 
Resources Research, 39(8). https://doi.org/10.1029/2002WR001778  816 

Fritsch, J. M., Hilliker, J., Ross, J., & Vislocky, R. L. (2000). Model consensus. Weather and 817 
Forecasting, 15(5), 571–582. https://doi.org/10.1175/1520-818 
0434(2000)015%3C0571:MC%3E2.0.CO;2 819 

Fu, G., Charles, S. P., & Chiew, F. H. (2007). A two‐parameter climate elasticity of streamflow 820 
index to assess climate change effects on annual streamflow. Water Resources Research, 43(11). 821 
https://doi.org/10.1029/2007WR005890 822 

Georgakakos, K. P., Seo, D.-J., Gupta, H., Schaake, J., & Butts, M. B. (2004). Towards the 823 
characterization of streamflow simulation uncertainty through multimodel ensembles. Journal of 824 
Hydrology, 298(1–4), 222–241. https://doi.org/10.1016/j.jhydrol.2004.03.037 825 

Gleick, P. H. (1986). Methods for evaluating the regional hydrologic impacts of global climatic 826 
changes. Journal of Hydrology, 88(1–2), 97–116. https://doi.org/10.1016/0022-1694(86)90199-X 827 

Groves, D. G., Yates, D., & Tebaldi, C. (2008). Developing and applying uncertain global 828 
climate change projections for regional water management planning. Water Resources Research, 829 
44(12). https://doi.org/10.1029/2008WR006964 830 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

Hagedorn, R., Doblas-Reyes, F. J., & Palmer, T. N. (2005). The rationale behind the success of 831 
multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A: Dynamic 832 
Meteorology and Oceanography, 57(3), 219–233. https://doi.org/10.1029/2008WR006964 833 

Hagen, E. R., Holmes, K. J., Kiang, J. E., & Steiner, R. C. (2005). BENEFITS OF ITERATIVE 834 
WATER SUPPLY FORECASTING IN THE WASHINGTON, DC, METROPOLITAN AREA 835 
1. JAWRA Journal of the American Water Resources Association, 41(6), 1417–1430. 836 
https://doi.org/10.1111/j.1752-1688.2005.tb03809.x 837 

Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Sheffield, J., Wood, E., 838 
Anderson, B., Bradbury, J., DeGaetano, A., Troy, T. J., & Wolfe, D. (2007). Past and future 839 
changes in climate and hydrological indicators in the US Northeast. Climate Dynamics, 28(4), 840 
381–407. https://doi.org/10.1007/s00382-006-0187-8  841 

Hinson, K. E., Friedrichs, M. A. M., Najjar, R. G., Herrmann, M., Bian, Z., Bhatt, G., St-842 
Laurent, P., Tian, H., & Shenk, G. (2022). Impacts and uncertainties of climate-induced changes 843 
in watershed inputs on estuarine hypoxia. EGUsphere, 1–46. https://doi.org/10.5194/egusphere-844 
2022-1028  845 

Hirabayashi, Y., Kanae, S., Emori, S., Oki, T., & Kimoto, M. (2008). Global projections of 846 
changing risks of floods and droughts in a changing climate. Hydrological Sciences Journal, 847 
53(4), 754–772. https://doi.org/10.1623/hysj.53.4.754 848 

Johnson, F., & Sharma, A. (2011). Accounting for interannual variability: A comparison of 849 
options for water resources climate change impact assessments. Water Resources Research, 850 
47(4). https://doi.org/10.1029/2010WR009272 851 

Karl, T. R., & Riebsame, W. E. (1989). The impact of decadal fluctuations in mean precipitation 852 
and temperature on runoff: A sensitivity study over the United States. Climatic Change, 15(3), 853 
423–447. https://doi.org/10.1007/BF00240466 854 

Karlsson, M., & Yakowitz, S. (1987). Nearest‐neighbor methods for nonparametric rainfall‐855 
runoff forecasting. Water Resources Research, 23(7), 1300–1308. 856 
https://doi.org/10.1029/WR023i007p01300 857 

Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in hydrology. 858 
Advances in Water Resources, 25(8–12), 1287–1304. https://doi.org/10.1016/S0309-859 
1708(02)00056-8 860 

Kay, A. L., Griffin, A., Rudd, A. C., Chapman, R. M., Bell, V. A., & Arnell, N. W. (2021). 861 
Climate change effects on indicators of high and low river flow across Great Britain. Advances 862 
in Water Resources, 151, 103909. https://doi.org/10.1016/j.advwatres.2021.103909  863 

Krishnamurti, T., Kishtawal, C. M., LaRow, T. E., Bachiochi, D. R., Zhang, Z., Williford, C. E., 864 
Gadgil, S., & Surendran, S. (1999). Improved weather and seasonal climate forecasts from 865 
multimodel superensemble. Science, 285(5433), 1548–1550. 866 
https://doi.org/10.1126/science.285.5433.1548 867 

Lall, U., & Sharma, A. (1996). A nearest neighbor bootstrap for resampling hydrologic time 868 
series. Water Resources Research, 32(3), 679–693. https://doi.org/10.1029/95WR02966 869 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

Leander, R., & Buishand, T. A. (2007). Resampling of regional climate model output for the 870 
simulation of extreme river flows. Journal of Hydrology, 332(3–4), 487–496. 871 
https://doi.org/10.1016/j.jhydrol.2006.08.006 872 

Manning, L., Hall, J., Fowler, H., Kilsby, C., & Tebaldi, C. (2009). Using probabilistic climate 873 
change information from a multimodel ensemble for water resources assessment. Water 874 
Resources Research, 45(11). https://doi.org/10.1029/2007WR006674 875 

Matonse, A. H., Pierson, D. C., Frei, A., Zion, M. S., Anandhi, A., Schneiderman, E., & Wright, 876 
B. (2013). Investigating the impact of climate change on New York City’s primary water supply. 877 
Climatic Change, 116, 437–456. https://doi.org/10.1007/s10584-012-0515-4 878 

Maxwell, R. S., Hessl, A. E., Cook, E. R., & Pederson, N. (2011). A multispecies tree ring 879 
reconstruction of Potomac River streamflow (950–2001). Water Resources Research, 47(5). 880 
https://doi.org/10.1029/2010WR010019  881 

McCabe, G. J., & Wolock, D. M. (2011). Independent effects of temperature and precipitation on 882 
modeled runoff in the conterminous United States. Water Resources Research, 47(11). 883 
https://doi.org/10.1029/2011WR010630 884 

McCabe, G. J., Wolock, D. M., Pederson, G. T., Woodhouse, C. A., & McAfee, S. (2017). 885 
Evidence that Recent Warming is Reducing Upper Colorado River Flows. Earth Interactions, 886 
21(10), 1–14. https://doi.org/10.1175/EI-D-17-0007.1  887 

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, 888 
D. P., & Stouffer, R. J. (2008). Stationarity Is Dead: Whither Water Management? Science, 889 
319(5863), 573–574. https://doi.org/10.1126/science.1151915  890 

Milly, P. C. D., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow 891 
and water availability in a changing climate. Nature, 438(7066), Article 7066. 892 
https://doi.org/10.1038/nature04312  893 

Milly, P. C., & Dunne, K. A. (2020). Colorado River flow dwindles as warming-driven loss of 894 
reflective snow energizes evaporation. Science, 367(6483), 1252–1255. 895 
https://doi.org/10.1126/science.aay9187 896 

Milly, P., & Dunne, K. (2002). Macroscale water fluxes 2. Water and energy supply control of 897 
their interannual variability. Water Resources Research, 38(10), 24–1. 898 
https://doi.org/10.1029/2001WR000760 899 

Milly, P., Kam, J., & Dunne, K. A. (2018). On the sensitivity of annual streamflow to air 900 
temperature. Water Resources Research, 54(4), 2624–2641. 901 
https://doi.org/10.1002/2017WR021970 902 

Moltz, H. L., Wallace, C. W., Sharifi, E., & Bencala, K. (2020). Integrating sustainable water 903 
resource management and land use decision-making. Water, 12(8), 2282. 904 
https://doi.org/10.3390/w12082282 905 

Najjar, R., Patterson, L., & Graham, S. (2009). Climate simulations of major estuarine 906 
watersheds in the Mid-Atlantic region of the US. Climatic Change, 95(1–2), 139–168. 907 
https://doi.org/10.1007/s10584-008-9521-y 908 

Nash, L. L., & Gleick, P. H. (1991). Sensitivity of streamflow in the Colorado Basin to climatic 909 
changes. Journal of Hydrology, 125(3), 221–241. https://doi.org/10.1016/0022-1694(91)90030-L  910 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

Nowak, K., Hoerling, M., Rajagopalan, B., & Zagona, E. (2012). Colorado River basin 911 
hydroclimatic variability. Journal of Climate, 25(12), 4389-4403. https://doi.org/10.1175/JCLI-912 
D-11-00406.1 913 

Nowak, K., Prairie, J., Rajagopalan, B., & Lall, U. (2010). A nonparametric stochastic approach 914 
for multisite disaggregation of annual to daily streamflow. Water Resources Research, 46(8). 915 
https://doi.org/10.1029/2009WR008530 916 

O’Hara, J. K., & Georgakakos, K. P. (2008). Quantifying the urban water supply impacts of 917 
climate change. Water Resources Management, 22, 1477–1497. https://doi.org/10.1007/s11269-918 
008-9238-8 919 

Paton, F. L., Dandy, G. C., & Maier, H. R. (2014). Integrated framework for assessing urban 920 
water supply security of systems with non-traditional sources under climate change. 921 
Environmental Modelling & Software, 60, 302–319. 922 
https://doi.org/10.1016/j.envsoft.2014.06.018 923 

Posit team (2023). RStudio: Integrated Development Environment for R. Posit Software, PBC, 924 
Boston, MA. http://www.posit.co/ 925 

Prairie, J. R., Rajagopalan, B., Fulp, T. J., & Zagona, E. A. (2006). Modified K-NN model for 926 
stochastic streamflow simulation. Journal of Hydrologic Engineering, 11(4), 371–378. 927 
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(371) 928 

Pyke, C. R., & Najjar, R. (n.d.). 2008. Climate Change and the Chesapeake Bay: State-of-the-929 
Science Review and Recommendations. A Report from the Chesapeake Bay Program Science 930 
and Technical Advisory Committee (STAC), Annapolis, MD. 59 pp. 931 
https://www.chesapeake.org/stac/Pubs/climchangereport.pdf 932 

R Core Team (2023). R: A Language and Environment for Statistical Computin. R Foundation 933 
for Statistical Computing, Vienna, Austria. https://www.R-project.org/ 934 

Rajagopalan, B., & Lall, U. (1999). A k‐nearest‐neighbor simulator for daily precipitation and 935 
other weather variables. Water Resources Research, 35(10), 3089–3101. 936 
https://doi.org/10.1029/1999WR900028 937 

Rashid, M. M., Sharma, A., & Johnson, F. (2020). Multi-model drought predictions using 938 
temporally aggregated climate indicators. Journal of Hydrology, 581, 124419. 939 
https://doi.org/10.1016/j.jhydrol.2019.124419 940 

Reclamation, S. (2013). Downscaled CMIP3 and CMIP5 climate and hydrology projections: 941 
Release of downscaled CMIP5 climate projections, comparison with preceding information, and 942 
summary of user needs.  943 

Regonda, S. K., Rajagopalan, B., Clark, M., & Zagona, E. (2006). A multimodel ensemble 944 
forecast framework: Application to spring seasonal flows in the Gunnison River Basin. Water 945 
Resources Research, 42(9). https://doi.org/10.1029/2005WR004653 946 

Revelle, R. R., & Waggoner, P. E. (1983). Effects of a carbon dioxide-induced climatic change 947 
on water supplies in the western United States. In National Research Council. Changing climate: 948 
Report of the carbon dioxide assessment committee (pp. 419-432). Washington, DC: The 949 
National Academies Press. https://doi.org/10.17226/18714 950 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

Rice, K. C., & Hirsch, R. M. (2012). Spatial and temporal trends in runoff at long-term 951 
streamgages within and near the Chesapeake Bay Watershed. Scientific Investigations Report 952 
No. 2012–5151; p. 56. U.S. Geological Survey. http://pubs.usgs.gov/sir/2012/5151 953 

Risbey, J. S., & Entekhabi, D. (1996). Observed Sacramento Basin streamflow response to 954 
precipitation and temperature changes and its relevance to climate impact studies. Journal of 955 
Hydrology, 184(3–4), 209–223. https://doi.org/10.1016/0022-1694(95)02984-2 956 

Rootzén, H., & Katz, R. W. (2013). Design life level: Quantifying risk in a changing climate. 957 
Water Resources Research, 49(9), 5964–5972. https://doi.org/10.1002/wrcr.20425 958 

Sankarasubramanian, A., & Vogel, R. M. (2003). Hydroclimatology of the continental United 959 
States. Geophysical Research Letters, 30(7). https://doi.org/10.1029/2002GL015937 960 

Sankarasubramanian, A., & Vogel, R. M. (2002). Annual hydroclimatology of the United States. 961 
Water Resources Research, 38(6), 19-1. https://doi.org/10.1029/2001WR000619  962 

Sankarasubramanian, A., Vogel, R. M., & Limbrunner, J. F. (2001). Climate elasticity of 963 
streamflow in the United States. Water Resources Research, 37(6), 1771-1781. 964 
https://doi.org/10.1029/2000WR900330 965 

Schaake, J. C. (1990). From climate to flow. Climate Change and US Water Resources., 177–966 
206.  967 

Schaake, J. C., & Liu, C. Z. (1989). Development and application of simple water balance 968 
models to understand the relationship between climate and water resources. In New Directions 969 
for Surface Water Modeling. Proceedings of a Symposium held in Baltimore, Maryland, May 970 
1989. IAHS Publication (No. 181). 971 

Schultz, C., Ahmed, S., Mandel, R., & Moltz, H. (2014). Improvement in HSPF’s Low‐Flow 972 
Predictions by Implementation of a Power Law Groundwater Storage‐Discharge Relationship. 973 
JAWRA Journal of the American Water Resources Association, 50(4), 909–927. 974 
https://doi.org/10.1111/jawr.12144 975 

Serinaldi, F., & Kilsby, C. G. (2015). Stationarity is undead: Uncertainty dominates the 976 
distribution of extremes. Advances in Water Resources, 77, 17–36. 977 
https://doi.org/10.1016/j.advwatres.2014.12.013 978 

Sharif, M., & Burn, D. H. (2006). Simulating climate change scenarios using an improved K-979 
nearest neighbor model. Journal of Hydrology, 325(1–4), 179–196. 980 
https://doi.org/10.1016/j.jhydrol.2005.10.015 981 

Sheer, D.P., & Flynn, K. (1983). Water-Supply. Civil Engineering, 53(6), 50–53.  982 

Shenk, G. W., Bhatt, G., Tian, R., Cerco, C. F., Bertani, I., & Linker, L. C. (2021). Modeling 983 
Climate Change Effects on Chesapeake Water Quality Standards and Development of 2025 984 
Planning Targets to Address Climate Change (CBPO Publication No. 328–21; p. 145). 985 
Chesapeake Bay Program.  986 

Steinschneider, S., McCrary, R., Wi, S., Mulligan, K., Mearns, L. O., & Brown, C. (2015). 987 
Expanded decision-scaling framework to select robust long-term water-system plans under 988 
hydroclimatic uncertainties. Journal of Water Resources Planning and Management, 141(11), 989 
04015023. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000536 990 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

Tang, Q., & Lettenmaier, D. P. (2012). 21st century runoff sensitivities of major global river 991 
basins. Geophysical Research Letters, 39(6). https://doi.org/10.1029/2011GL050834  992 

Tang, Y., Tang, Q., & Zhang, L. (2020). Derivation of interannual climate elasticity of 993 
streamflow. Water Resources Research, 56(11), e2020WR027703. 994 
https://doi.org/10.1029/2020WR027703 995 

Tebaldi, C., Hayhoe, K., Arblaster, J. M., & Meehl, G. A. (2006). Going to the extremes. 996 
Climatic Change, 79(3), 185–211. https://doi.org/10.1007/s10584-006-9051-4 997 

Torbenson, M. C. A., & Stagge, J. H. (2021). Informing Seasonal Proxy-Based Flow 998 
Reconstructions Using Baseflow Separation: An Example From the Potomac River, United 999 
States. Water Resources Research, 57(2), e2020WR027706. 1000 
https://doi.org/10.1029/2020WR027706  1001 

Toth, Z., & Kalnay, E. (1993). Ensemble forecasting at NMC: The generation of perturbations. 1002 
Bulletin of the American Meteorological Society, 74(12), 2317–2330. 1003 
https://doi.org/10.1175/1520-0477(1993)074%3C2317:EFANTG%3E2.0.CO;2 1004 

Trainer, F. W., & Watkins, F. A. (1975). Geohydrologic reconnaissance of the upper Potomac 1005 
River basin. US Govt. Print. Off. https://doi.org/10.3133/wsp2035 1006 

Udall, B., & Overpeck, J. (2017). The twenty-first century Colorado River hot drought and 1007 
implications for the future. Water Resources Research, 53(3), 2404–2418. 1008 
https://doi.org/10.1002/2016WR019638  1009 

Vano, J. A., Das, T., & Lettenmaier, D. P. (2012). Hydrologic Sensitivities of Colorado River 1010 
Runoff to Changes in Precipitation and Temperature. Journal of Hydrometeorology, 13(3), 932–1011 
949. https://doi.org/10.1175/JHM-D-11-069.1  1012 

Vogel, R. M., & Fennessey, N. M. (1995). Flow Duration Curves Ii: A Review of Applications 1013 
in Water Resources Planning1. JAWRA Journal of the American Water Resources Association, 1014 
31(6), 1029–1039. https://doi.org/10.1111/j.1752-1688.1995.tb03419.x  1015 

Vose, R. S., Applequist, S., Squires, M., Durre, I., Menne, M. J., Williams, C. N., Fenimore, C., 1016 
Gleason, K., & Arndt, D. (2014). Improved historical temperature and precipitation time series 1017 
for US climate divisions. Journal of Applied Meteorology and Climatology, 53(5), 1232–1251. 1018 
https://doi.org/10.1175/JAMC-D-13-0248.1 1019 

Watts, G., Christierson, B. von, Hannaford, J., & Lonsdale, K. (2012). Testing the resilience of 1020 
water supply systems to long droughts. Journal of Hydrology, 414–415, 255–267. 1021 
https://doi.org/10.1016/j.jhydrol.2011.10.038  1022 

Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest 1023 
neighbor classification. Journal of Machine Learning Research, 10(2).  1024 

Woodhouse, C. A., Pederson, G. T., Morino, K., McAfee, S. A., & McCabe, G. J. (2016). 1025 
Increasing influence of air temperature on upper Colorado River streamflow. Geophysical 1026 
Research Letters, 43(5), 2174-2181. https://doi.org/10.1002/2015GL067613 1027 

Xue, Z., & Ullrich, P. A. (2022). Changing Trends in Drought Patterns over the Northeastern 1028 
United States Using Multiple Large Ensemble Datasets. Journal of Climate, 35(22), 3813–3833. 1029 
https://doi.org/10.1175/JCLI-D-21-0810.1  1030 



Is Hot Drought a Risk in the US Mid-Atlantic: a Potomac Basin Case Study, Schultz et al. 

 

Yang, Q., Tian, H., Friedrichs, M. A. M., Liu, M., Li, X., & Yang, J. (2015). Hydrological 1031 
Responses to Climate and Land-Use Changes along the North American East Coast: A 110-Year 1032 
Historical Reconstruction. JAWRA Journal of the American Water Resources Association, 1033 
51(1), 47–67. https://doi.org/10.1111/jawr.12232  1034 

Yates, D., Gangopadhyay, S., Rajagopalan, B., & Strzepek, K. (2003). A technique for 1035 
generating regional climate scenarios using a nearest‐neighbor algorithm. Water Resources 1036 
Research, 39(7). https://doi.org/10.1029/2002WR001769 1037 

Zeff, H. B., Herman, J. D., Reed, P. M., & Characklis, G. W. (2016). Cooperative drought 1038 
adaptation: Integrating infrastructure development, conservation, and water transfers into 1039 
adaptive policy pathways. Water Resources Research, 52(9), 7327–7346. 1040 
https://doi.org/10.1002/2016WR018771 1041 

 1042 

  1043 


