ACKNOWLEDGMENTS
We are grateful to the National Natural Science Foundation of China
(Grants No. 41827804) and Guangdong Special Support Program (Grants No.
2019BT02Z546) for financial support
of this work.
(1) Wollnik, H.; Casares, A. An
energy-isochronous multi-pass time-of-flight mass spectrometer
consisting of two coaxial electrostatic mirrors. International
Journal of Mass Spectrometry 2003 , 227 (2), 217-222.
(2) Wollnik, H.; Przewloka, M.
Time-of-flight mass spectrometers with multiply reflected ion
trajectories. International journal of mass spectrometry and ion
processes 1990 , 96 (3), 267-274.
(3) Plaß, W. R.; Dickel, T.; Czok, U.;
Geissel, H.; Petrick, M.; Reinheimer, K.; Scheidenberger, C.; I.Yavor,
M. Isobar separation by time-of-flight mass spectrometry for low-energy
radioactive ion beam facilities. Nuclear Instruments and Methods
in Physics Research Section B: Beam Interactions with Materials and
Atoms 2008 , 266 (19), 4560-4564. DOI:
https://doi.org/10.1016/j.nimb.2008.05.079.
(4) Piechaczek, A.; Shchepunov, V.;
Carter, H. K.; Batchelder, J. C.; Zganjar, E. F.; Liddick, S. N.;
Wollnik, H.; Hu, Y.; Griffith, B. O. Development of a high resolution
isobar separator for study of exotic decays. Nuclear Instruments
and Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms 2008 , 266 (19), 4510-4514. DOI:
https://doi.org/10.1016/j.nimb.2008.05.149.
(5) Schury, P.; Okada, K.; Shchepunov,
S.; Sonoda, T.; Takamine, A.; Wada, M.; Wollnik, H.; Yamazaki, Y.
Multi-reflection time-of-flight mass spectrograph for short-lived
radioactive ions. European Physical Journal A 2009 ,42 (3), 343-349, Article. DOI: 10.1140/epja/i2009-10882-6 Scopus.
(6) Dickel, T.; Jesch, C.; Plaß, W.
R.; Ayet, S.; Czok, U.; Geissel, H.; Lautenschläger, F.; Petrick, M.;
Scheidenberger, C.; Sun, B.; et al. Further advances in the development
of a multiple-reflection time-offlight mass spectrometer for isobar
separation and massmeasurements at the LEB. GSI Sci. Rep.2011 , 2010 , Article. Scopus.
(7) Wolf, R.; Beck, D.; Blaum, K.;
Böhm, C.; Borgmann, C.; Breitenfeldt, M.; Herfurth, F.; Herlert, A.;
Kowalska, M.; Kreim, S. On-line separation of short-lived nuclei by a
multi-reflection time-of-flight device. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 2012 , 686 , 82-90.
(8) Ito, Y.; Schury, P.; Wada, M.;
Naimi, S.; Sonoda, T.; Mita, H.; Arai, F.; Takamine, A.; Okada, K.;
Ozawa, A. Single-reference high-precision mass measurement with a
multireflection time-of-flight mass spectrograph. Physical Review
C 2013 , 88 (1), 011306.
(9) Weber, C.; Müller, P.; Thirolf, P.
G. Developments in Penning trap (mass) spectrometry at MLLTRAP: Towards
in-trap decay spectroscopy. International Journal of Mass
Spectrometry 2013 , 349-350 , 270-276. DOI:
https://doi.org/10.1016/j.ijms.2013.05.006.
(10) Van Schelt, J.; Lascar, D.;
Savard, G.; Clark, J. A.; Bertone, P. F.; Caldwell, S.; Chaudhuri, A.;
Levand, A. F.; Li, G.; Morgan, G. E.; et al. First Results from the
CARIBU Facility: Mass Measurements on the $r$-Process Path.Physical Review Letters 2013 , 111 (6), 061102.
DOI: 10.1103/PhysRevLett.111.061102.
(11) Moore, I. D.; Eronen, T.;
Gorelov, D.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V. S.;
Koponen, J.; Penttilä, H.; Pohjalainen, I.; et al. Towards commissioning
the new IGISOL-4 facility. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms2013 , 317 , 208-213. DOI:
https://doi.org/10.1016/j.nimb.2013.06.036.
(12) Yoon, J. W.; Park, Y.-H.; Park,
S. J.; Kim, G. D.; Kim, Y. K. Design of the multi-reflection
time-of-flight mass spectrometer for the RAON facility. EPJ Web of
Conferences 2014 , 66 , 11042.
(13) Tian, Y. L.; Wang, Y. S.; Wang,
J. Y.; Zhou, X. H.; Huang, W. X. Designing a multi-reflection
time-of-flight mass analyzer for LPT. International Journal of
Mass Spectrometry 2016 , 408 , 28-32. DOI:
https://doi.org/10.1016/j.ijms.2016.08.013.
(14) Schury, P.; Niwase, T.; Wada,
M.; Brionnet, P.; Chen, S.; Hashimoto, T.; Haba, H.; Hirayama, Y.; Hou,
D. S.; Iimura, S.; et al. First high-precision direct determination of
the atomic mass of a superheavy nuclide. Physical Review C2021 , 104 (2), L021304. DOI:
10.1103/PhysRevC.104.L021304.
(15) Makarov, A.; Denisov, E.; Lange,
O. Performance evaluation of a high-field orbitrap mass analyzer.Journal of the American Society for Mass Spectrometry2009 , 20 (8), 1391-1396. DOI:
10.1016/j.jasms.2009.01.005.
(16) Madeira, P. J. A.; Alves, P. A.;
Borges, C. M. High resolution mass spectrometry using FTICR and orbitrap
instruments. Fourier Transform–Materials Analysis 2012 .
(17) San Jose, C., USA and Bremen,
Germany Quantitative and Qualitative Confirmation of Pesticides in Beet
Extract Using a Hybrid Quadrupole-Orbitrap Mass Spectrometer., .Thermo Scientific Application Note 617 2015 .
(18) Hondo, T.; Jensen, K. R.; Aoki,
J.; Toyoda, M. A new approach for accurate mass assignment on a
multi-turn time-of-flight mass spectrometer. European Journal of
Mass Spectrometry 2017 , 23 (6), 385-392.
(19) Johnson, J. T.; Lee, K. W.;
Bhanot, J. S.; McLuckey, S. A. A Miniaturized Fourier Transform
Electrostatic Linear Ion Trap Mass Spectrometer: Mass Range and
Resolution. Journal of the American Society for Mass Spectrometry2019 , 30 (4), 588-594. DOI: 10.1007/s13361-018-02126-x.
(20) Liu, L.; Li, J.; Lv, J.; Jiang,
H.; Chen, F.-e. Detoxification mechanism of vinegar-processed Kansui
revealed by systematic phytochemical analysis using
ultrahigh-performance liquid chromatography diode array detection tandem
mass spectrometry, ultrahigh-performance liquid chromatography
high-resolution mass spectrometry and in silico drug target
identification. Rapid Communications in Mass Spectrometry2022 , 36 (17), e9332. DOI:
https://doi.org/10.1002/rcm.9332.
(21) Kotiaho, T. On‐site
environmental and in situ process analysis by mass spectrometry.Journal of Mass Spectrometry 1996 , 31 (1), 1-15.
(22) Kueppers, S.; Haider, M. Process
analytical chemistry—future trends in industry. Analytical and
Bioanalytical Chemistry 2003 , 376 (3), 313-315. DOI:
10.1007/s00216-003-1907-0.
(23) Hinz, D. C. Process analytical
technologies in the pharmaceutical industry: the FDA’s PAT initiative.Analytical and Bioanalytical Chemistry 2006 , 384(5), 1036-1042. DOI: 10.1007/s00216-005-3394-y.
(24) Holmes, N.; Akien, G. R.;
Savage, R. J. D.; Stanetty, C.; Baxendale, I. R.; Blacker, A. J.;
Taylor, B. A.; Woodward, R. L.; Meadows, R. E.; Bourne, R. A. Online
quantitative mass spectrometry for the rapid adaptive optimisation of
automated flow reactors. Reaction Chemistry & Engineering2016 , 1 (1), 96-100, 10.1039/C5RE00083A. DOI:
10.1039/C5RE00083A.
(25) Zhang, J.; Li, Z.; Zhou, Z.;
Bai, Y.; Liu, H. Rapid screening and quantification of glucocorticoids
in essential oils using direct analysis in real time mass spectrometry.Rapid Communications in Mass Spectrometry 2016 ,30 (S1), 133-140. DOI: https://doi.org/10.1002/rcm.7639.
(26) Transient Processes. InChemical Engineering Design and Analysis: An Introduction ,
Reimer, J. A., Duncan, T. M. Eds.; Cambridge Series in Chemical
Engineering, Cambridge University Press, 1998; pp 310-350.
(27) Huang, M.-Z.; Cheng, S.-C.; Cho,
Y.-T.; Shiea, J. Ambient ionization mass spectrometry: A tutorial.Analytica Chimica Acta 2011 , 702 (1), 1-15. DOI:
https://doi.org/10.1016/j.aca.2011.06.017.
(28) Liu, Q.; Zenobi, R. Rapid
analysis of fragrance allergens by dielectric barrier discharge
ionization mass spectrometry. Rapid Communications in Mass
Spectrometry 2021 , 35 (6), e9021. DOI:
https://doi.org/10.1002/rcm.9021.
(29) Gao, Y.; Wang, W.; Zhang, K.;
Li, Y.; Cai, G. A study on the ionization mechanisms in a miniaturized
cylindrical Hall thruster. Vacuum 2022 , 201 ,
111060. DOI: https://doi.org/10.1016/j.vacuum.2022.111060.
(30) Dickel, T.; Plaß, W. R.; Lang,
J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.;
Petrick, M.; Scheidenberger, C.; et al. Multiple-reflection
time-of-flight mass spectrometry for in situ applications. Nuclear
Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms 2013 , 317 , 779-784. DOI:
https://doi.org/10.1016/j.nimb.2013.08.021.
(31) Dickel, T.; Plaß, W. R.;
Lippert, W.; Lang, J.; Yavor, M. I.; Geissel, H.; Scheidenberger, C.
Isobar Separation in a Multiple-Reflection Time-of-Flight Mass
Spectrometer by Mass-Selective Re-Trapping. Journal of the
American Society for Mass Spectrometry 2017 , 28 (6),
1079-1090. DOI: 10.1007/s13361-017-1617-z.
(32) Naimi, S.; Nakamura, S.; Ito,
Y.; Mita, H.; Okada, K.; Ozawa, A.; Schury, P.; Sonoda, T.; Takamine,
A.; Wada, M. An rf-carpet electrospray ion source to provide isobaric
mass calibrants for trans-uranium elements. International Journal
of Mass Spectrometry 2013 , 337 , 24-28.
(33) Ring, S.; Pedersen, H.; Heber,
O.; Rappaport, M.; Witte, P.; Bhushan, K.; Altstein, N.; Rudich, Y.;
Sagi, I.; Zajfman, D. Fourier transform time-of-flight mass spectrometry
in an electrostatic ion beam trap. Analytical chemistry2000 , 72 (17), 4041-4046.
(34) Strasser, D.; Heber, O.;
Goldberg, S.; Zajfman, D. Self-bunching induced by negative effective
mass instability in an electrostatic ion beam trap. Journal of
Physics B: Atomic, Molecular and Optical Physics 2003 ,36 (5), 953.
(35) Hilger, R. T.; Santini, R. E.;
McLuckey, S. A. Nondestructive Tandem Mass Spectrometry Using a Linear
Quadrupole Ion Trap Coupled to a Linear Electrostatic Ion Trap.Analytical Chemistry 2013 , 85 (10), 5226-5232.
DOI: 10.1021/ac4007182.
(36) Hilger, R. T.; Dziekonski, E.
T.; Santini, R. E.; McLuckey, S. A. Injecting electrospray ions into a
Fourier transform electrostatic linear ion trap. International
Journal of Mass Spectrometry 2015 , 378 , 281-287. DOI:
https://doi.org/10.1016/j.ijms.2014.09.005.
(37) Verentchikov, A. N.; Yavor, M.
I.; Hasin, Y. I.; Gavrik, M. A. Multireflection planar time-of-flight
mass analyzer. II: The high-resolution mode. Technical Physics2005 , 50 (1), 82-86. DOI: 10.1134/1.1854828.
(38) Verenchikov, A.; Kirillov, S.;
Khasin, Y.; Makarov, V.; Yavor, M.; Artaev, V. Multiplexing in
Multi-Reflecting TOF MS. Journal of Applied Solution Chemistry and
Modeling 2017 , 6 , 1-22. DOI:
10.6000/1929-5030.2017.06.01.1.
(39) Cooper-Shepherd, D. A.;
Wildgoose, J.; Kozlov, B.; Johnson, W. J.; Tyldesley-Worster, R.;
Palmer, M. E.; Hoyes, J. B.; McCullagh, M.; Jones, E.; Tonge, R.; et al.
Novel Hybrid Quadrupole-Multireflecting Time-of-Flight Mass Spectrometry
System. Journal of the American Society for Mass Spectrometry2023 . DOI: 10.1021/jasms.2c00281.
(40) Stewart, H.; Grinfeld, D.;
Giannakopulos, A.; Petzoldt, J.; Shanley, T.; Garland, M.; Denisov, E.;
Peterson, A.; Damoc, E.; Zeller, M.; et al. Parallelized Acquisition of
Orbitrap and Astral Analyzers Enables High-Throughput Quantitative
Analysis. bioRxiv 2023 , 2023.2006.2002.543408. DOI:
10.1101/2023.06.02.543408.
(41) Rosenbusch, M.; Wada, M.;
Schury, P.; Ito, Y.; Ishiyama, H.; Ishizawa, S.; Hirayama, Y.; Kimura,
S.; Kojima, T.; Miyatake, H. A new multi-reflection time-of-flight mass
spectrograph for the SLOWRI facility. Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials
and Atoms 2020 , 463 , 184-188.
(42) Rosenbusch, M.; Wada, M.; Chen,
S.; Takamine, A.; Iimura, S.; Hou, D.; Xian, W.; Yan, S.; Schury, P.;
Hirayama, Y.; et al. The new MRTOF mass spectrograph following the
ZeroDegree spectrometer at RIKEN’s RIBF facility. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 2023 ,1047 , 167824. DOI: https://doi.org/10.1016/j.nima.2022.167824.
(43) Wada, M.; Ishida, Y.; Nakamura,
T.; Yamazaki, Y.; Kambara, T.; Ohyama, H.; Kanai, Y.; Kojima, T. M.;
Nakai, Y.; Ohshima, N. Slow RI-beams from projectile fragment
separators. Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms 2003 ,204 , 570-581.
(44) Dodonov, A.; Kozlovski, V.;
Soulimenkov, I.; Raznikov, V.; Loboda, A.; Zhen, Z.; Horwath, T.;
Wollnik, H. High-resolution electrospray ionization orthogonal-injection
time-of-flight mass spectrometer. European Journal of Mass
Spectrometry 2000 , 6 (6), 481-490.
(45) Guo, C.; Huang, Z.; Gao, W.;
Nian, H.; Chen, H.; Dong, J.; Shen, G.; Fu, J.; Zhou, Z. A homemade
high-resolution orthogonal-injection time-of-flight mass spectrometer
with a heated capillary inlet. Review of Scientific Instruments2008 , 79 (1), 013109. DOI: 10.1063/1.2832334.
(46) Javahery, G.; Thomson, B. A
segmented radiofrequency-only quadrupole collision cell for measurements
of ion collision cross section on a triple quadrupole mass spectrometer.Journal of the American Society for Mass Spectrometry1997 , 8 (7), 697-702.
(47) Guo, C.; Huang, Z.; Gao, W.;
Nian, H.; Chen, H.; Fu, J.; Zhou, Z. Combining a capillary with a
radio-frequency-only quadrupole as an interface for a home-made
time-of-flight mass spectrometer. European Journal of Mass
Spectrometry 2007 , 13 (4), 249-257.
(48) Dawson, P. Performance
characteristics of an RF-only quadrupole. International journal of
mass spectrometry and ion processes 1985 , 67 (3),
267-276.
(49) Shu-xiong, Y.; Hui, Z.; Ting,
M.; Wei, G.; Zheng-xu, H. Application of Ion Valve Technology in an
Orthogonal-Injection TOF Mass Spectrometer. Journal of Chinese
Mass Spectrometry Society 2017 , 38 (3), 294.
(50) Schury, P.; Okada, K.;
Shchepunov, S.; Sonoda, T.; Takamine, A.; Wada, M.; Wollnik, H.;
Yamazaki, Y. Multi-reflection time-of-flight mass spectrograph for
short-lived radioactive ions. The European Physical Journal A2009 , 42 (3), 343-349. DOI: 10.1140/epja/i2009-10882-6.
(51) Plaß, W. R.; Dickel, T.;
Scheidenberger, C. Multiple-reflection time-of-flight mass spectrometry.International Journal of Mass Spectrometry 2013 ,349-350 , 134-144. DOI:
https://doi.org/10.1016/j.ijms.2013.06.005.
(52) Schury, P.; Wada, M.; Ito, Y.;
Arai, F.; Naimi, S.; Sonoda, T.; Wollnik, H.; Shchepunov, V. A.; Smorra,
C.; Yuan, C. A high-resolution multi-reflection time-of-flight mass
spectrograph for precision mass measurements at RIKEN/SLOWRI.Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms 2014 , 335 ,
39-53. DOI: https://doi.org/10.1016/j.nimb.2014.05.016.
(53) Pfeiffer Vacuum, G. Vacuum
technology book. Vol. II, Pfeiffer Vacuum GmbH, Asslar, Germany2013 .
(54) Reynolds, O. XXIX. An
experimental investigation of the circumstances which determine whether
the motion of water shall be direct or sinuous, and of the law of
resistance in parallel channels. Philosophical Transactions of the
Royal society of London 1883 , (174), 935-982.
(55) Urban, J.; Štys, D. Noise and
baseline filtration in mass spectrometry. In Bioinformatics and
Biomedical Engineering: Third International Conference, IWBBIO 2015,
Granada, Spain, April 15-17, 2015. Proceedings, Part II 3 , 2015;
Springer International Publishing: pp 418-425.