ACKNOWLEDGMENTS
We are grateful to the National Natural Science Foundation of China (Grants No. 41827804) and Guangdong Special Support Program (Grants No. 2019BT02Z546) for financial support of this work.
(1) Wollnik, H.; Casares, A. An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors. International Journal of Mass Spectrometry 2003 , 227 (2), 217-222.
(2) Wollnik, H.; Przewloka, M. Time-of-flight mass spectrometers with multiply reflected ion trajectories. International journal of mass spectrometry and ion processes 1990 , 96 (3), 267-274.
(3) Plaß, W. R.; Dickel, T.; Czok, U.; Geissel, H.; Petrick, M.; Reinheimer, K.; Scheidenberger, C.; I.Yavor, M. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2008 , 266 (19), 4560-4564. DOI: https://doi.org/10.1016/j.nimb.2008.05.079.
(4) Piechaczek, A.; Shchepunov, V.; Carter, H. K.; Batchelder, J. C.; Zganjar, E. F.; Liddick, S. N.; Wollnik, H.; Hu, Y.; Griffith, B. O. Development of a high resolution isobar separator for study of exotic decays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2008 , 266 (19), 4510-4514. DOI: https://doi.org/10.1016/j.nimb.2008.05.149.
(5) Schury, P.; Okada, K.; Shchepunov, S.; Sonoda, T.; Takamine, A.; Wada, M.; Wollnik, H.; Yamazaki, Y. Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions. European Physical Journal A 2009 ,42 (3), 343-349, Article. DOI: 10.1140/epja/i2009-10882-6 Scopus.
(6) Dickel, T.; Jesch, C.; Plaß, W. R.; Ayet, S.; Czok, U.; Geissel, H.; Lautenschläger, F.; Petrick, M.; Scheidenberger, C.; Sun, B.; et al. Further advances in the development of a multiple-reflection time-offlight mass spectrometer for isobar separation and massmeasurements at the LEB. GSI Sci. Rep.2011 , 2010 , Article. Scopus.
(7) Wolf, R.; Beck, D.; Blaum, K.; Böhm, C.; Borgmann, C.; Breitenfeldt, M.; Herfurth, F.; Herlert, A.; Kowalska, M.; Kreim, S. On-line separation of short-lived nuclei by a multi-reflection time-of-flight device. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2012 , 686 , 82-90.
(8) Ito, Y.; Schury, P.; Wada, M.; Naimi, S.; Sonoda, T.; Mita, H.; Arai, F.; Takamine, A.; Okada, K.; Ozawa, A. Single-reference high-precision mass measurement with a multireflection time-of-flight mass spectrograph. Physical Review C 2013 , 88 (1), 011306.
(9) Weber, C.; Müller, P.; Thirolf, P. G. Developments in Penning trap (mass) spectrometry at MLLTRAP: Towards in-trap decay spectroscopy. International Journal of Mass Spectrometry 2013 , 349-350 , 270-276. DOI: https://doi.org/10.1016/j.ijms.2013.05.006.
(10) Van Schelt, J.; Lascar, D.; Savard, G.; Clark, J. A.; Bertone, P. F.; Caldwell, S.; Chaudhuri, A.; Levand, A. F.; Li, G.; Morgan, G. E.; et al. First Results from the CARIBU Facility: Mass Measurements on the $r$-Process Path.Physical Review Letters 2013 , 111 (6), 061102. DOI: 10.1103/PhysRevLett.111.061102.
(11) Moore, I. D.; Eronen, T.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V. S.; Koponen, J.; Penttilä, H.; Pohjalainen, I.; et al. Towards commissioning the new IGISOL-4 facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms2013 , 317 , 208-213. DOI: https://doi.org/10.1016/j.nimb.2013.06.036.
(12) Yoon, J. W.; Park, Y.-H.; Park, S. J.; Kim, G. D.; Kim, Y. K. Design of the multi-reflection time-of-flight mass spectrometer for the RAON facility. EPJ Web of Conferences 2014 , 66 , 11042.
(13) Tian, Y. L.; Wang, Y. S.; Wang, J. Y.; Zhou, X. H.; Huang, W. X. Designing a multi-reflection time-of-flight mass analyzer for LPT. International Journal of Mass Spectrometry 2016 , 408 , 28-32. DOI: https://doi.org/10.1016/j.ijms.2016.08.013.
(14) Schury, P.; Niwase, T.; Wada, M.; Brionnet, P.; Chen, S.; Hashimoto, T.; Haba, H.; Hirayama, Y.; Hou, D. S.; Iimura, S.; et al. First high-precision direct determination of the atomic mass of a superheavy nuclide. Physical Review C2021 , 104 (2), L021304. DOI: 10.1103/PhysRevC.104.L021304.
(15) Makarov, A.; Denisov, E.; Lange, O. Performance evaluation of a high-field orbitrap mass analyzer.Journal of the American Society for Mass Spectrometry2009 , 20 (8), 1391-1396. DOI: 10.1016/j.jasms.2009.01.005.
(16) Madeira, P. J. A.; Alves, P. A.; Borges, C. M. High resolution mass spectrometry using FTICR and orbitrap instruments. Fourier Transform–Materials Analysis 2012 .
(17) San Jose, C., USA and Bremen, Germany Quantitative and Qualitative Confirmation of Pesticides in Beet Extract Using a Hybrid Quadrupole-Orbitrap Mass Spectrometer., .Thermo Scientific Application Note 617 2015 .
(18) Hondo, T.; Jensen, K. R.; Aoki, J.; Toyoda, M. A new approach for accurate mass assignment on a multi-turn time-of-flight mass spectrometer. European Journal of Mass Spectrometry 2017 , 23 (6), 385-392.
(19) Johnson, J. T.; Lee, K. W.; Bhanot, J. S.; McLuckey, S. A. A Miniaturized Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometer: Mass Range and Resolution. Journal of the American Society for Mass Spectrometry2019 , 30 (4), 588-594. DOI: 10.1007/s13361-018-02126-x.
(20) Liu, L.; Li, J.; Lv, J.; Jiang, H.; Chen, F.-e. Detoxification mechanism of vinegar-processed Kansui revealed by systematic phytochemical analysis using ultrahigh-performance liquid chromatography diode array detection tandem mass spectrometry, ultrahigh-performance liquid chromatography high-resolution mass spectrometry and in silico drug target identification. Rapid Communications in Mass Spectrometry2022 , 36 (17), e9332. DOI: https://doi.org/10.1002/rcm.9332.
(21) Kotiaho, T. On‐site environmental and in situ process analysis by mass spectrometry.Journal of Mass Spectrometry 1996 , 31 (1), 1-15.
(22) Kueppers, S.; Haider, M. Process analytical chemistry—future trends in industry. Analytical and Bioanalytical Chemistry 2003 , 376 (3), 313-315. DOI: 10.1007/s00216-003-1907-0.
(23) Hinz, D. C. Process analytical technologies in the pharmaceutical industry: the FDA’s PAT initiative.Analytical and Bioanalytical Chemistry 2006 , 384(5), 1036-1042. DOI: 10.1007/s00216-005-3394-y.
(24) Holmes, N.; Akien, G. R.; Savage, R. J. D.; Stanetty, C.; Baxendale, I. R.; Blacker, A. J.; Taylor, B. A.; Woodward, R. L.; Meadows, R. E.; Bourne, R. A. Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors. Reaction Chemistry & Engineering2016 , 1 (1), 96-100, 10.1039/C5RE00083A. DOI: 10.1039/C5RE00083A.
(25) Zhang, J.; Li, Z.; Zhou, Z.; Bai, Y.; Liu, H. Rapid screening and quantification of glucocorticoids in essential oils using direct analysis in real time mass spectrometry.Rapid Communications in Mass Spectrometry 2016 ,30 (S1), 133-140. DOI: https://doi.org/10.1002/rcm.7639.
(26) Transient Processes. InChemical Engineering Design and Analysis: An Introduction , Reimer, J. A., Duncan, T. M. Eds.; Cambridge Series in Chemical Engineering, Cambridge University Press, 1998; pp 310-350.
(27) Huang, M.-Z.; Cheng, S.-C.; Cho, Y.-T.; Shiea, J. Ambient ionization mass spectrometry: A tutorial.Analytica Chimica Acta 2011 , 702 (1), 1-15. DOI: https://doi.org/10.1016/j.aca.2011.06.017.
(28) Liu, Q.; Zenobi, R. Rapid analysis of fragrance allergens by dielectric barrier discharge ionization mass spectrometry. Rapid Communications in Mass Spectrometry 2021 , 35 (6), e9021. DOI: https://doi.org/10.1002/rcm.9021.
(29) Gao, Y.; Wang, W.; Zhang, K.; Li, Y.; Cai, G. A study on the ionization mechanisms in a miniaturized cylindrical Hall thruster. Vacuum 2022 , 201 , 111060. DOI: https://doi.org/10.1016/j.vacuum.2022.111060.
(30) Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; et al. Multiple-reflection time-of-flight mass spectrometry for in situ applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2013 , 317 , 779-784. DOI: https://doi.org/10.1016/j.nimb.2013.08.021.
(31) Dickel, T.; Plaß, W. R.; Lippert, W.; Lang, J.; Yavor, M. I.; Geissel, H.; Scheidenberger, C. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping. Journal of the American Society for Mass Spectrometry 2017 , 28 (6), 1079-1090. DOI: 10.1007/s13361-017-1617-z.
(32) Naimi, S.; Nakamura, S.; Ito, Y.; Mita, H.; Okada, K.; Ozawa, A.; Schury, P.; Sonoda, T.; Takamine, A.; Wada, M. An rf-carpet electrospray ion source to provide isobaric mass calibrants for trans-uranium elements. International Journal of Mass Spectrometry 2013 , 337 , 24-28.
(33) Ring, S.; Pedersen, H.; Heber, O.; Rappaport, M.; Witte, P.; Bhushan, K.; Altstein, N.; Rudich, Y.; Sagi, I.; Zajfman, D. Fourier transform time-of-flight mass spectrometry in an electrostatic ion beam trap. Analytical chemistry2000 , 72 (17), 4041-4046.
(34) Strasser, D.; Heber, O.; Goldberg, S.; Zajfman, D. Self-bunching induced by negative effective mass instability in an electrostatic ion beam trap. Journal of Physics B: Atomic, Molecular and Optical Physics 2003 ,36 (5), 953.
(35) Hilger, R. T.; Santini, R. E.; McLuckey, S. A. Nondestructive Tandem Mass Spectrometry Using a Linear Quadrupole Ion Trap Coupled to a Linear Electrostatic Ion Trap.Analytical Chemistry 2013 , 85 (10), 5226-5232. DOI: 10.1021/ac4007182.
(36) Hilger, R. T.; Dziekonski, E. T.; Santini, R. E.; McLuckey, S. A. Injecting electrospray ions into a Fourier transform electrostatic linear ion trap. International Journal of Mass Spectrometry 2015 , 378 , 281-287. DOI: https://doi.org/10.1016/j.ijms.2014.09.005.
(37) Verentchikov, A. N.; Yavor, M. I.; Hasin, Y. I.; Gavrik, M. A. Multireflection planar time-of-flight mass analyzer. II: The high-resolution mode. Technical Physics2005 , 50 (1), 82-86. DOI: 10.1134/1.1854828.
(38) Verenchikov, A.; Kirillov, S.; Khasin, Y.; Makarov, V.; Yavor, M.; Artaev, V. Multiplexing in Multi-Reflecting TOF MS. Journal of Applied Solution Chemistry and Modeling 2017 , 6 , 1-22. DOI: 10.6000/1929-5030.2017.06.01.1.
(39) Cooper-Shepherd, D. A.; Wildgoose, J.; Kozlov, B.; Johnson, W. J.; Tyldesley-Worster, R.; Palmer, M. E.; Hoyes, J. B.; McCullagh, M.; Jones, E.; Tonge, R.; et al. Novel Hybrid Quadrupole-Multireflecting Time-of-Flight Mass Spectrometry System. Journal of the American Society for Mass Spectrometry2023 . DOI: 10.1021/jasms.2c00281.
(40) Stewart, H.; Grinfeld, D.; Giannakopulos, A.; Petzoldt, J.; Shanley, T.; Garland, M.; Denisov, E.; Peterson, A.; Damoc, E.; Zeller, M.; et al. Parallelized Acquisition of Orbitrap and Astral Analyzers Enables High-Throughput Quantitative Analysis. bioRxiv 2023 , 2023.2006.2002.543408. DOI: 10.1101/2023.06.02.543408.
(41) Rosenbusch, M.; Wada, M.; Schury, P.; Ito, Y.; Ishiyama, H.; Ishizawa, S.; Hirayama, Y.; Kimura, S.; Kojima, T.; Miyatake, H. A new multi-reflection time-of-flight mass spectrograph for the SLOWRI facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2020 , 463 , 184-188.
(42) Rosenbusch, M.; Wada, M.; Chen, S.; Takamine, A.; Iimura, S.; Hou, D.; Xian, W.; Yan, S.; Schury, P.; Hirayama, Y.; et al. The new MRTOF mass spectrograph following the ZeroDegree spectrometer at RIKEN’s RIBF facility. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2023 ,1047 , 167824. DOI: https://doi.org/10.1016/j.nima.2022.167824.
(43) Wada, M.; Ishida, Y.; Nakamura, T.; Yamazaki, Y.; Kambara, T.; Ohyama, H.; Kanai, Y.; Kojima, T. M.; Nakai, Y.; Ohshima, N. Slow RI-beams from projectile fragment separators. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2003 ,204 , 570-581.
(44) Dodonov, A.; Kozlovski, V.; Soulimenkov, I.; Raznikov, V.; Loboda, A.; Zhen, Z.; Horwath, T.; Wollnik, H. High-resolution electrospray ionization orthogonal-injection time-of-flight mass spectrometer. European Journal of Mass Spectrometry 2000 , 6 (6), 481-490.
(45) Guo, C.; Huang, Z.; Gao, W.; Nian, H.; Chen, H.; Dong, J.; Shen, G.; Fu, J.; Zhou, Z. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet. Review of Scientific Instruments2008 , 79 (1), 013109. DOI: 10.1063/1.2832334.
(46) Javahery, G.; Thomson, B. A segmented radiofrequency-only quadrupole collision cell for measurements of ion collision cross section on a triple quadrupole mass spectrometer.Journal of the American Society for Mass Spectrometry1997 , 8 (7), 697-702.
(47) Guo, C.; Huang, Z.; Gao, W.; Nian, H.; Chen, H.; Fu, J.; Zhou, Z. Combining a capillary with a radio-frequency-only quadrupole as an interface for a home-made time-of-flight mass spectrometer. European Journal of Mass Spectrometry 2007 , 13 (4), 249-257.
(48) Dawson, P. Performance characteristics of an RF-only quadrupole. International journal of mass spectrometry and ion processes 1985 , 67 (3), 267-276.
(49) Shu-xiong, Y.; Hui, Z.; Ting, M.; Wei, G.; Zheng-xu, H. Application of Ion Valve Technology in an Orthogonal-Injection TOF Mass Spectrometer. Journal of Chinese Mass Spectrometry Society 2017 , 38 (3), 294.
(50) Schury, P.; Okada, K.; Shchepunov, S.; Sonoda, T.; Takamine, A.; Wada, M.; Wollnik, H.; Yamazaki, Y. Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions. The European Physical Journal A2009 , 42 (3), 343-349. DOI: 10.1140/epja/i2009-10882-6.
(51) Plaß, W. R.; Dickel, T.; Scheidenberger, C. Multiple-reflection time-of-flight mass spectrometry.International Journal of Mass Spectrometry 2013 ,349-350 , 134-144. DOI: https://doi.org/10.1016/j.ijms.2013.06.005.
(52) Schury, P.; Wada, M.; Ito, Y.; Arai, F.; Naimi, S.; Sonoda, T.; Wollnik, H.; Shchepunov, V. A.; Smorra, C.; Yuan, C. A high-resolution multi-reflection time-of-flight mass spectrograph for precision mass measurements at RIKEN/SLOWRI.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2014 , 335 , 39-53. DOI: https://doi.org/10.1016/j.nimb.2014.05.016.
(53) Pfeiffer Vacuum, G. Vacuum technology book. Vol. II, Pfeiffer Vacuum GmbH, Asslar, Germany2013 .
(54) Reynolds, O. XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical Transactions of the Royal society of London 1883 , (174), 935-982.
(55) Urban, J.; Štys, D. Noise and baseline filtration in mass spectrometry. In Bioinformatics and Biomedical Engineering: Third International Conference, IWBBIO 2015, Granada, Spain, April 15-17, 2015. Proceedings, Part II 3 , 2015; Springer International Publishing: pp 418-425.