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Abstract 32 

Phytoplankton primary productivity (PP) varies significantly over environmental gradients, 33 

particularly in physically-dynamic systems such as estuaries and coastal seas. As the Changjiang 34 

River runoff peaks during summer time, large environmental gradients appear in both the 35 

Changjiang estuary and adjacent East China Sea (ECS), likely driving significant variability in PP. 36 

As satellite models of PP often underperform in coastal waters, we aimed to develop a novel 37 

approach for net PP estimation in such a dynamic environment. Parallel in situ measurements of 38 

Fast Repetition Rate (FRR) fluorometry and carbon (C) uptake rates were conducted for the first 39 

time in this region during two summer cruises in 2019 and 2021. A series of 13C-incubations (n=31) 40 

were performed, with measured PP ranging from ~6 - 1700 mgC m-3 d-1. Net PP values were 41 

significantly correlated with salinity (r = 0.45), phytoplankton chlorophyll a (Chl-a, r = 0.88), 42 

Photosystem II (PSII) functional absorption cross-section (𝜎𝑃𝑆𝐼𝐼, r = -0.76) and maximum PSII 43 

quantum yield (𝐹𝑣/𝐹𝑚, r = 0.59). Stepwise regression analysis showed that Chl-a and 𝜎𝑃𝑆𝐼𝐼 were 44 

the strongest predictors of net PP. A generalized additive model (GAM) was also used to estimate 45 

net PP considering nonlinear effects of Chl-a and 𝜎𝑃𝑆𝐼𝐼. We demonstrate that GAM outperforms 46 

linear modelling approaches in predicting net PP in this study, as evidenced by a lower root mean 47 

square error (~140 vs. 250 mgC m-3 d-1). Our novel approach provides a high resolution means to 48 

examine carbon cycling dynamics in this important region. 49 

Plain Language Summary 50 

The East China Sea (ECS) has a complex current system that creates a highly dynamic 51 

physical environment for phytoplankton, particularly during the summer months. Net primary 52 

productivity (PP) is highly variable in this region, but characterising the spatial patterns in PP is 53 

difficult due to the lack of a high-resolution data collecting method. Therefore, there is a strong 54 

need for a quick and easily implemented method for monitoring PP to capture variations in this 55 

dynamic system. Based on parallel measurements of phytoplankton biomass and photophysiology, 56 

we have developed a model that allows us to rapidly and easily assess regional PP at a high 57 

resolution. The high data volume potentially provided by our net PP model could not only 58 

contribute to a better understanding of PP variations in such a dynamic environment, but also help 59 

fill the large gaps in field data needed for validating satellite-based primary productivity models. 60 

1 Introduction 61 

Phytoplankton primary productivity (PP) is a key process mediating the transfer of carbon 62 

(C) between the atmosphere and ocean interior, and thus plays a key role in regulating the global 63 

climate. However, PP varies greatly over space and time, depending upon environmental 64 

conditions including light, temperature and nutrient availability, together with the composition of 65 
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the phytoplankton community (Arrigo et al., 2000; Behrenfeld & Falkowski, 1997; Behrenfeld et 66 

al., 2006; Cermeño et al., 2005; Marra, 2015; Moore et al., 2008; Ning et al., 1988; Platt & Jassby, 67 

1976). Estimation of phytoplankton PP is therefore extremely challenging, particularly within 68 

physically-dynamic systems such as estuaries and coastal waters (Gong and Liu, 2003; Firme et 69 

al. 2023).  70 

Satellite assessments of phytoplankton PP based on ocean color are routinely used in the 71 

open ocean over large scales (Arrigo et al., 2008; Behrenfeld et al., 2005; Kameda & Ishizaka, 72 

2005; Lee et al., 2015; Ning et al., 1998), yet are not easily applied to shallow coastal regions due 73 

to interference from colored dissolved organic matter (CDOM), suspended sediment and land run-74 

off (Moreno-Madriñán & Fischer, 2013). Consequently, PP estimates for estuaries and coastal 75 

regions are largely derived from direct, in situ observations (Cloern et al., 2014), usually performed 76 

via carbon isotope (14C or 13C) incubations (Hama et al., 1983; Nielsen, 1952). While carbon 77 

isotope methods are highly-sensitive, they also require long incubation periods, resulting in a very 78 

low sampling resolution (Morelle et al., 2018). The lack of spatial and temporal coverage afforded 79 

by incubation-based approaches limits our ability to fully understand environmental controls upon 80 

PP variability in dynamic coastal waters (Cloern et al, 2014).      81 

Fast Repetition Rate (FRR) fluorometry is a bio-optical technique capable of non-82 

invasively evaluating changes in photosystem II (PSII) photochemistry – allowing estimation of 83 

phytoplankton productivity as photosynthetic electron transport rates (ETRs) (Kolber & Falkowski, 84 

1993; Kolber et al., 1998). FRR fluorometry has rapidly become a widely-used oceanographic tool 85 

for evaluating photosynthetic rates in coastal and open ocean waters (Cermeño et al., 2005; Hughes 86 

et al., 2020; Moore et al., 2003; Robinson et al., 2014; Schuback et al., 2015; Suggett et al., 2006). 87 

However, estimation of PP from FRR flurometery measurements requires conversion of ETRs to 88 

C-uptake rates - i.e., from a photosynthetic “currency” of electrons to carbon (see Suggett et al., 89 

2009). This conversion requires knowledge (or assumption) of: i) the number of PSII reaction 90 

centers per Chl-a (𝑛𝑃𝑆𝐼𝐼), ii) the electron requirement for carbon fixation (𝐾𝐶, or 𝛷𝑒,𝐶 ) and iii) an 91 

appropriate spectral correction factor (scf) to account for spectral properties of the in-situ light 92 

field versus the absorption spectra of the phytoplankton sample (reviewed by Hughes et al. 2018a). 93 

All three parameters exhibit considerable variability but are not easily measured under field 94 

conditions (Oxborough et al., 2012; Suggett et al., 2011), thus assumed values are often used, 95 
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which can introduce significant uncertainty into PP estimates (Cheah et al., 2011; Fujiki et al., 96 

2008; Kromkamp et al., 2008; Raateoja et al., 2004; Smyth et al., 2004; Zhu et al., 2016, 2019). 97 

Importantly, ETRs are constructed from specific fluorescence parameters that are 98 

retrievable from the single-turnover FRR measurement protocol (see Hughes et al. 2018a; 99 

Schuback et al. 2021). These include the maximum quantum efficiency of PSII ( 𝐹𝑣 / 𝐹𝑚 ) and the 100 

functional absorption cross-section of PSII (𝜎𝑃𝑆𝐼𝐼). Under actinic light, both  𝐹𝑣 / 𝐹𝑚  and 𝜎𝑃𝑆𝐼𝐼 are 101 

modified according to how the absorbed light is utilized by PSII and as such, 𝐹𝑣 / 𝐹𝑚  and 𝜎𝑃𝑆𝐼𝐼 are 102 

both likely (in)directly related to C-fixation, since light absorption is one of the key factors 103 

governing PP (Behrenfeld et al., 2006; Moore et al., 2006). Interestingly, both fluorescence 104 

parameters may contain signatures of both the nutritional status and taxonomy (Hughes et al., 105 

2018b, 2021; Suggett et al., 2009b), suggesting that it might be possible to establish predictable 106 

relationships between FRRf-derived biophysical characteristics and photosynthetic rates within 107 

dynamic systems where light, nutrients, and phytoplankton assemblage composition are highly-108 

variable in space and time (Moore et al., 2003). 109 

The East China Sea (ECS) is situated in the vicinity of China, South Korea and Japan, and 110 

is one of the largest and most productive marginal seas in the world (Chang et al., 2003; Wong et 111 

al., 1998). The ECS notably features a complex current system, particularly during summer when 112 

it is influenced by both fresh Changjiang Diluted Water (CDW) freshwater discharge and saline 113 

Kuroshio saltwater intrusion (Guo et al., 2006; Figure 1A). It is well-documented that 114 

phytoplankton biomass, photophysiology and production can vary significantly in response to 115 

rapidly-changing gradients of light and nutrients along the coastal to the offshore waters of the 116 

ECS (Chen et al., 2004; Gong et al., 2000; Jiang et al., 2014, 2015; Liu et al., 2019; Ning et al., 117 

1988; Yoshikawa & Furuya, 2008). Due to the physical and biological dynamics within the 118 

Changjiang estuary and adjacent coastal waters, development of a reliable, high-resolution tool to 119 

monitor PP variability in this region would be highly-advantageous. 120 

By performing parallel in-situ measurements of net PP and FRR in the Changjiang estuary 121 

and adjacent ECS during two summer cruises (Figure 1B), here we develop a generalized additive 122 

model (GAM) to predict the net PP data as a function of phytoplankton biomass (Chl-a) and 123 

photophysiological parameters which can both be measured with relatively little time and effort. 124 

A growing number of research applications are using GAMs to evaluate and predict water 125 

environment changes of nutrient, phytoplankton biomass as well as primary productivity (Harding 126 
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et al., 2016, 2020; Liu et al., 2016; Richards et al., 2013; Testa et al., 2018). Our modeling approach 127 

based on GAMs allows for broad-scale retrieval of net PP across the Changjiang estuary and 128 

associated coastal waters. Such capability could greatly enhance our understanding of carbon 129 

cycling dynamics and long-term changes in ecosystem health within this ecologically important 130 

region. 131 

 132 

Figure 1. (a) Map of the East China Sea (ECS) indicating the main study region (light green shaded 133 

area) from which most of our data were collected. The main currents observed during the summer 134 

period are also shown: Kuroshio Water (KW), Kuroshio Branch Water (KBW), Taiwan Warm 135 

Current (TWC), Jiangsu Coastal Current (JCC) and Changjiang Diluted Water (CDW) (Guo et al., 136 

2006). Light grey lines indicate the isobath. (b) Sampling stations during the summer cruise of 137 

2019 and 2021 performed onboard the R/V Runjiang. Red squares indicate stations where net 138 

primary productivity (PP) data were measured. 139 

 140 
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2 Materials and Methods 141 

2.1 Sample Collection and Physicochemical Properties 142 

Two summer cruises were conducted as a part of the Long-term Observation and Research 143 

Plan in the Changjiang Estuary and the Adjacent East China Sea Project (LORCE I&II) from 15th 144 

- 25th August 2019, and 15th August - 4th September 2021 (Figure 1). Hydrographic measurements 145 

(temperature and salinity) and surface water samples (~1m) were collected using Niskin bottles 146 

attached to a rosette sampler that was equipped with a conductivity‐temperature‐depth (CTD) 147 

profiler (Seabird SBE CTD 911). Upper mixed layer depth (MLD) was defined as a density change 148 

from the ocean surface of 0.125 sigma units as per Huang & Russell (1994). Nutrient samples were 149 

collected from surface waters and filtered using a 0.4 μm polycarbonate membrane filter into 100 150 

mL high-density polyethylene (HDPE) bottles. Ammonium–nitrogen (NH4
+-N) was immediately 151 

measured onboard via indophenol blue spectrophotometric method (Grasshoff et al., 1999), while 152 

samples for nitrate + nitrite (NO3
- + NO2

-) and phosphate (PO4
3-) analyses were stored at –20 °C 153 

for later analysis using an automated nutrient analyzer (SEAL Analytical, Germany). Dissolved 154 

inorganic nitrogen (DIN) was determined as the sum of NH4
+, NO3

- and NO2
-. 155 

2.2 Chl-a and 13C uptake-based net primary productivity 156 

Chlorophyll-a concentrations were determined from 100 mL seawater samples filtered 157 

through GF/F filters, using a pre-calibrated fluorometer (Trilogy, Turner Design, USA) following 158 

the non-acidification method (Welschmeyer, 1994). GF/F filters were soaked in 90% Acetone and 159 

pigments were extracted for 24 h at -20℃ in darkness before subsequent fluorometric 160 

evaluation.13C uptake experiments were carried out via 24 h on-deck bottle incubations. Seawater 161 

was pre-filtered through 200-µm mesh to remove zooplankton grazers and then used to fill three 162 

500 mL polycarbonate bottles.13C-labeled sodium bicarbonate (99 atom %; NaH13CO3, CIL, USA) 163 

was added to each bottle where the final 13C atom % of total dissolved inorganic carbon was ca. 164 

10 % of that in the ambient seawater (Hama et al., 1983). Samples were placed in a shipboard 165 

incubator connected to the ship’s underway seawater system to control incubation temperature. 166 

The incubator was shaded with neutral density filter to achieve 50% transmission of measured 167 

surface irradiance. After 24 h, all samples were filtered through 25mm pre-combusted GF/F filters 168 

(450 °C, 6 h) and stored at –80 °C until further analysis. Filter samples were then vacuum-dried 169 

after exposure to fumes of HCl to remove excess particulate inorganic carbon. The concentration 170 
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of particulate organic carbon (POC) and the isotopic ratio of 13C and 12C (13C atomic %) on the 171 

filters were then determined using an isotope ratio mass spectrometer (DeltaPLUS, Thermo Fisher 172 

Scientific, USA) equipped with an elemental analyzer (EA 1110, CE Instruments). Finally, 173 

volumetric C-fixation rates were calculated according to Hama et al. (1983) ( Eq. 1): 174 

 175 

 𝑃𝐶 =
𝑃𝑂𝐶 × ( 𝑎𝑖𝑠−𝑎𝑛𝑠)

𝑡× ( 𝑎𝑖𝑐−𝑎𝑛𝑠)
                                                                                              (1) 176 

where 𝑃𝐶  is the net carbon fixation rate (mgC m-3 d-1), t is the time of incubation in days 177 

(for this study, 1d). 𝑎𝑖𝑠 is the atomic% of 13C in the incubated sample, 𝑎𝑛𝑠 is the atomic% of 13C 178 

in the natural sample, and 𝑎𝑖𝑐 is the atomic% of 13C in the total inorganic C. Chl-a specific primary 179 

productivity (𝑃𝐵
𝐶 , mgC [mgChl-a]-1 d-1) was calculated as 𝑃𝐶  normalized to measured Chl-a 180 

concentration. 181 

2.3 Fast Repetition Rate (FRR) fluorometry 182 

Variable chlorophyll fluorescence was measured using a Fast Repetition Rate (FRR) 183 

fluorometer (FastOcean) integrated with a FastAct laboratory base unit system (Act2, Chelsea 184 

Technologies Ltd, London, United Kingdom). Water samples collected during daytime (8:00 – 185 

17:00) were measured after 30 min dark adaptation to relax non-photochemical quenching (NPQ) 186 

processes, and measurements for all samples were completed inside an hour. FRR fluorometry 187 

measurements were corrected for blank (or baseline) fluorescence using 0.2 µm filtrates (Cullen 188 

& Davis, 2003; Schuback et al. 2021). Since diatoms and dinoflagellates are known to dominate 189 

phytoplankton assemblages in the study area (Jiang et al., 2014, 2015;Yang et al., 2014), the blue 190 

(447 nm) excitation band was solely used for photophsyiological measurements of all samples 191 

(e.g., Zhu et al., 2017, 2022). The FRR fluorometer was programmed to deliver a single-turnover 192 

protocol with a saturation phase comprising 100 flashlets on a 2 µs pitch, followed by a relaxation 193 

phase comprising of 50 flashlets on a 150 µs pitch. Each FRRf acquisition was subsequently fitted 194 

to the KPF model of Kolber et al. (1998) to derive the minimum fluorescence yield (Fo), maximum 195 

fluorescence yield (Fm), functional absorption cross section of PSII (𝜎𝑃𝑃𝑃𝑃
447 ), and maximum 196 

photochemical efficiency of PSII (Fv/Fm, where Fv = Fm - Fo).   197 
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2.4 Statistical Analyses 198 

Correlations between the independent parameters were analyzed using Spearman’s rank 199 

order correlation coefficient. Stepwise regression was used to examine the contribution of 200 

physicochemical variables in explaining variance of net PP (Probability of F to enter <= 0.05) and 201 

to develop a multiple linear model for net PP estimation. The comparion of mean values of grouped 202 

samples was tested by one-way non-parametric ANOVA (Kruskal-Wallis test). In addition, a 203 

Generalized Additive Modelling (GAM) approach was proposed for modeling of phytoplankton 204 

PP to meet current and future assessment needs. The mathematical formulation of a typical GAM 205 

is presented in Eq.2: 206 

𝑔(𝐸[𝑌]) =  𝜇 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯ + 𝑓𝑛(𝑥𝑛)                                                         (2) 207 

where a function 𝑔() is applied to the expected value (E) of the dependent variable Y (in 208 

this case, Net PP). 𝜇 is the modeled intercept. 𝑓() is the smoothing function of the independent 209 

variables 𝑥1, 𝑥2, … 𝑥𝑛. Analyses were implemented using the mgcViz package in R (Fasiolo et al, 210 

2018), where cubic regression spline was used to optimize the smoothing functions, and correlation 211 

coefficient (R2), root mean square error (RMSE) and Akaike information criterion (AIC) were used 212 

to evaluate model explanatory power, goodness of fit, and parsimony respectively. Due to the 213 

small sample size, the RMSE between actual values and predicted values was calculated using the 214 

Leave-One-Out Cross-Validation (LOOCV) procedure (Yada & Shukla, 2016). 215 

All statistical analyses and curve fitting were performed using the open-source statistical 216 

software R (Version 3.6.1, R Core Team 2019). Data were visualized using GMT 4, Ocean Data 217 

View 5 (Schlitzer, 2018) and R Studio software. 218 

3 Results 219 

3.1 Hydrography and Chlorophyll-a biomass 220 

Sampling while transiting from the Changjiang mouth to offshore, revealed a strong 221 

gradient of physico-biological conditions present in ECS surface waters during summer (Table 1; 222 

Figure 2). High sea surface temperatures (SST) and low sea surface salinity (SSS) values were 223 

observed along Changjiang mouth sections (section A and B, Figure 2A, B, C, D). Highest Chl-a 224 

concentrations were observed in the centre of the study area along the 123°E longitude, as well as 225 

in the coastal upwelling zone known as Zhoushan upwelling (Figure 2B). Relatively low Chl-a 226 

values were measured in both coastal and offshore waters (Figure 2E, F). Notably, a diatom bloom 227 
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(where a bloom is defined as a Chl-a concentration > 30 µg L-1) occurred outside of the Changjiang 228 

mouth during the 2021 cruise (Figure 2F). 229 

Biophysical variables were notably different observed between two cruises, likely caused 230 

by the variations of Changjiang runoff at the times of sampling. Averaged runoff (between August 231 

15th - 31st) from the Changjiang river measured at the Datong hydrological station, was 39,152 ± 232 

3860 m3s-1 in 2010 but was ~10% higher in 2021 at 43,341 ± 1448 m3 s-1.  Consequently, CDW 233 

(featured as low salinity water) extended further east in 2021 compared to 2019 (Figure 2C, D). 234 

Area-averaged nutrient concentrations were also higher in 2021, with DIN and PO4
3- values of 22.2 235 

± 26.3 µmol L-1 and 0.46 ± 0.51 µmol L-1 respectively, compared to 19.3 ± 18.8 and 0.32 ± 0.39 236 

µmol L-1 in 2019. In conjunction with higher nutrient levels, the average Chl-a concentration in 237 

2021 was approximately twice that of 2019 (6.14 ± 6.88 µg L-1 vs. 2.71 ± 2.61 µg L-1) and also 238 

spanned a much wider range (0.27 - 38.4 µg L-1) compared to 2019 (0.18 to 11.1 µg L-1; Figure 239 

2E, F). 240 

 241 

Table 1. Geographical locations and surface values of physico-chemical and biological variables 242 

measured at stations where primary productivity (PP) incubations were performed in the 243 

Changjiang estuary and adjacent East China Sea during two summer cruises in 2019 and 2021. 244 

Lon: longitude, Lat:latitude, Temp: temperature (℃), Sal: salinity, MLD: mixed layer depth (m), 245 

DIN: dissolved inorganic nitrogen (µmol L-1), Chl-a: chlorophyll a (µg L-1). BLD represents those 246 

samples below the limit of detection, and N/A = data not available. 247 

 248 

Station Lon Lat Temp Sal MLD DIN PO4
3- Chl-a 

2019-N3 122.65 32.5 26.0 29.7 5 10.04 0.05 4.08 

2019-J3 122.5 32.0 28.5 25.4 3 17.9 0.05 0.86 

2019-J6 123.58 32.2 27.8 30.1 10 5.2 BLD 1.16 

2019-A5 122.99 31.5 28.5 23.0 5 17.1 BLD 2.44 

2019-A8 123.73 31.5 28.8 30.9 8 1.35 BLD 0.64 

2019-A9 124.24 31.5 28.9 30.3 16 0.8 BLD 0.47 
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2019-B6 122.67 31.0 7.1 22.8 2 34.8 0.55 2.1 

2019-B10 123.40 31.0 28.2 33.5 10 0.23 BLD 0.57 

2019-B11 123.75 31.0 28.8 31.1 11 0.99 BLD 0.45 

2019-B12 124.23 31.0 28.6 30.8 10 0.55 BLD 0.40 

2019-C5 123.0 30.5 28.1 30.4 5 2.0 BLD 0.61 

2019-C8 123.75 30.5 28.9 33.5 8 2.5 BLD 0.21 

2019-D6 123.38 30.0 28.9 32.2 6 N/A N/A 0.18 

2021-N6 123.66 32.8 27.5 30.0 10 N/A N/A 1.61 

2021-J2 122.41 32.0 28.3 26.9 8 28.1 0.49 4.52 

2021-J5 123.3 32.1 28.4 31.6 10 1.9 BLD 0.87 

2021-J6 123.6 32.1 28.0 32.6 9 0.93 0.05 1.72 

2021-A2 122.4 31.5 27.9 11.7 4 16.5 0.67 3.84 

2021-A5 123 31.5 29.1 15.6 5 32.7 0.11 38.4 

2021-B8 123 31 28.3 23.2 5 23.8 0.16 21.2 

2021-B10 123.4 31.0 28.5 26.7 10 8.14 0.07 4.35 

2021-B12 123.9 31.0 28.5 29.6 14 0.14 0.05 1.4 

2021-C5 123.0 30.5 27.4 27.5 5 1.0 0.09 18.1 

2021-C7 123.4 30.5 28.1 31.7 17 N/A N/A 0.57 
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2021-D5 123.2 30.0 28.4 31.2 6 0.48 0.06 1.05 

2021-E3 122.5 29.5 26.9 26.9 5 14.7 0.12 8.36 

2021-E5 122.9 29.4 28.7 30.8 7 0.46 0.17 2.34 

2021-F1 122.1 29.1 27.7 28.0 5 25.6 1.01 1.62 

2021-F3 122.3 29.0 26.7 26.2 6 20.5 0.33 15.01 

2021-F4 122.5 28.9 28.0 31.3 11 1.27 0.07 3.96 

2021-F6 122.7 28.9 28.1 30.7 11 0.67 0.08 5.26 

 249 

 250 

 251 

Figure 2. Spatial variability in temperature (℃), salinity (PSU) and Chlorophyll-a (Chl-a, µg L-1) 252 

in 2019 (a, c, e) and 2021 (b, d, f) cruise. The red dashed box in (b) indicates the upwelling zone. 253 

The white triangle in (f) indicates the location of an observed diatom bloom. 254 
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3.2 Phytoplankton photophysiology 255 

Surface 𝐹𝑣/𝐹𝑚 and 𝜎𝑃𝑆𝐼𝐼
447  values showed wide ranges and significant variability when all 256 

data were pooled (Figure 3). 𝐹𝑣/𝐹𝑚 ranged from 0.14 - 0.61, averaging 0.45 ± 0.06 over the study 257 

area. Overall, higher values of 𝐹𝑣/𝐹𝑚 (> 0.5) were mostly associated with high Chl-a, while low 258 

𝐹𝑣/𝐹𝑚  values (< 0.4) were mostly observed in the offshore waters characterized by low 259 

phytoplankton biomass (Figure 3A, B). There were however some notable exceptions where 260 

𝐹𝑣/𝐹𝑚  values > 0.5 were observed in several offshore stations that also exhibited low Chl-a 261 

concentrations (e.g., B12 in Figure 3A and J6, C7 in Figure 3B), likely reflecting the different 262 

photosynthetic strategies used by phytoplankton to cope with this varied environment. Surface 263 

𝜎𝑃𝑆𝐼𝐼
447  values ranged from 2.96 - 7.46 nm2 PSII-1 and exhibited a clear spatial trend (Figure 3C, D). 264 

Generally, 𝜎𝑃𝑆𝐼𝐼
447  values were low in the Changjiang month and adjacent waters (< 4.5 nm2 PSII-1) 265 

and increased with distance offshore (Figure 3C, D). No significant correlation was found between 266 

𝐹𝑣/𝐹𝑚  and 𝜎𝑃𝑆𝐼𝐼
447  (r = -0.22, n = 80, p = 0.053). Meanwhile,  𝐹𝑜  was found significantly and 267 

positively correlated with Chl-a (Spearman, r = 0.818, n = 80; p < 0.001; Supplementary Figure 268 

S1 ). 269 

While comparing phytoplankton physiological features between datasets of 2019 and 2021, 270 

it was notable that both the highest and lowest 𝐹𝑣/𝐹𝑚 and 𝜎𝑃𝑆𝐼𝐼
447  values were observed in 2021, 271 

perhaps reflecting more drastic environmental changes during the cruise period in this year. The 272 

mean 𝐹𝑣/𝐹𝑚 value was almost identical in both years (0.45 ± 0.04 compared to 0.46 ± 0.08 in 2019 273 

and 2021, respectively), while 𝜎𝑃𝑆𝐼𝐼
447  was on average ~10% lower in 2021 (5.01 ± 1.07 vs. 5.45 ± 274 

0.77 nm2  PSII-1) (ANOVA, p = 0.028). 275 
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 276 

Figure 3. Spatial variability in photophysiological parameters: the maximum quantum yield of 277 

Photosystem II (PSII), 𝐹𝑣/𝐹𝑚 (unitless) and the functional absorption cross-section of PSII, 𝜎𝑃𝑆𝐼𝐼
447  278 

(nm2 PSII-1) during the 2019 (a, c) and 2021 (b, d) cruises. 279 

3.3 Phytoplankton Primary productivity (PP) 280 

A total of 31 13C-incubations were performed over both years, with surface carbon uptake 281 

rates (𝑃𝐶) spanning several orders of magnitude, ranging between 6.0 – 1,679 mgC m-3 d-1. Higher 282 

PP values were generally found in coastal waters, while the majority of lower PP values were 283 

measured at offshore stations (Figure 4A, B). Interestingly, the spatial distribution of Chl-a 284 

normalized carbon uptake rates ( 𝑃𝐵
𝐶 ) differed from that of 𝑃𝐶 , where high 𝑃𝐵

𝐶  values were 285 

measured in both coastal and offshore waters (Figure 4C, D), likely reflecting the interactive 286 

effects of different environmental factors (e.g., nutrient, light, mixing layer depth, etc.) and 287 

phytoplankton community structure on the efficiency of phytoplankton C-uptake (e.g., Firme et al. 288 

2023). Similar to the observed trend in Chl-a distribution, a wider range and higher average net PP 289 

values were observed in 2021 (74.3 - 1,679 mgC m-3 d-1, mean: 527 ± 511 mgC m-3 d-1) compared 290 

to 2019 (6.0 - 260 mg C m-3 d-1, mean: 66.0 ± 68.5 mg C m-3 d-1). Average 𝑃𝐵
𝐶  was ~1.5 times 291 

higher in 2021 than 2019 (97.7 ± 68.1 vs. 69.5 ± 48.5 mgC [mg Chl-a]-1 d-1). Therefore, it appeared 292 
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that the higher PP values observed for 2021 were likely driven by both higher Chl-a concentrations 293 

and greater phytoplankton C-uptake efficiency. 294 

 295 

Figure 4. Spatial variability in surface net carbon fixation rates, 𝑃𝐶(mgC m-3 d-1) and Chlorophyll-296 

a (Chl-a) specific carbon fixation rates, 𝑃𝐵
𝐶  (mgC [mgChl-a]-1 d-1) during the 2019 (a, c) and 2021 297 

(b, d) cruises. 298 

3.4 Net PP Modelling 299 

Spearman rank correlation analysis between net PP and various physical, biological and 300 

physiological variables revealed that salinity, 𝐹𝑣/𝐹𝑚, 𝜎𝑃𝑆𝐼𝐼
447  and Chl-a were all correlated with net 301 

PP (Table 2), with Chl-a and 𝜎𝑃𝑆𝐼𝐼
447  exhibiting the highest correlation coefficients (r = 0.881 and r 302 

= –0.759 respectively, p < 0.001). Stepwise linear regression (SLR) analysis further confirmed that 303 

Chl-a and 𝜎𝑃𝑆𝐼𝐼
447  were key predictor variables of PP variability. While 𝜎𝑃𝑆𝐼𝐼

447  alone explained the 304 

most variability of NPP (61%), adding Chl-a further improved the predictive power of the model, 305 

increasing R2 to 0.73 (p < 0.001, Table 3). The multiple linear model ( 𝑃𝐶 = – 𝑎 × 𝜎𝑃𝑆𝐼𝐼
447 +306 

 𝑏 × 𝐶ℎ𝑙𝑎 + 𝑐) yielded an RMSE of 248.7 mgC m-3 d-1 (Table 3). 307 

 308 

 309 
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 310 

 Table 2. Spearman rank analysis for correlations between net primary productivity (𝑃𝐶 , mg C m-
311 

3 d-1) and environmental variables (temperature, salinity) and photophsyiological parameters 312 

(Photosystem II (PSII) maximum quantum yield [Fv/Fm], the functional absorption cross-section 313 

of PSII [𝜎𝑃𝑆𝐼𝐼
447 , nm2 PSII-1]) and Chlorophyll-a concentration (Chl-a, µg L-1) 314 

 315 

* and ** denotes statistical significance at p < 0.05 and 0.01 respectively 316 

 317 

 318 

Table 3. Influence of various physiological and biological variable on carbon fixation rates, 𝑃𝐶 , 319 

estimated by stepwise linear regression. 320 

 321 

 *𝑃𝐶 = – 𝑎 × 𝜎𝑃𝑆𝐼𝐼
447 +  𝑏 × 𝐶ℎ𝑙𝑎 + 𝑐, where 𝑎 = 246.75, 𝑏 = 25.77, 𝑐 = 1611.2 322 

 323 

 324 

To account for the potential non-linear impacts of 𝜎𝑃𝑆𝐼𝐼
447  and Chl-a on 𝑃𝐶  (Figure 5), a 325 

Generalized Additive Model (GAM) approach was applied to develop a predictive model of net 326 

PP including the following two predictors: (𝑃𝐶  ~ s(𝜎𝑃𝑆𝐼𝐼
447 ) + s(Chl-a)). Seven GAM sub-models 327 

based on different combinations of knots number (𝑘) were tested (Table 4), with sub-model GAM6 328 

found to be best-performing model (Table 4). The RMSE of GAM was smaller than that of the 329 

multiple linear model (144.2 vs. 248.7 mgC m-3d-1), indicating net PP in this study area could be 330 

better predicted by its nonlinear relationship with Chl-a and 𝜎𝑃𝑆𝐼𝐼
447  (see Figure 6 for response plots 331 

of best-fitting GAM with both 𝜎𝑃𝑆𝐼𝐼
447  and Chl-a). Overall, GAMs predicted similar distribution 332 

patterns of surface net PP to observed values, with high rates mainly distributed in the coastal areas, 333 

  Temp Sal 𝐹𝑣/𝐹𝑚 𝜎𝑃𝑆𝐼𝐼
447  Chl-a 

𝑃𝐶  r 

p value 

n 

0.186 

0.318 

31 

0.451* 

0.011 

31 

0.596* 

0.01 

30 

-0.759** 

0.000 

30 

0.881** 

0.000 

31 

 No. of predictor variables  Variables R2 RMSE 

 1 𝜎𝑃𝑆𝐼𝐼
447  0.61 / 

 2* 𝝈𝑷𝑺𝑰𝑰
𝟒𝟒𝟕 , Chl-a 0.73 248.7 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

and relatively low rates tended to occur in the offshore waters (R2 = 0.94, n = 30; p < 0.001; 334 

Supplementary Figure S2, Figure 7).  335 

 336 

 337 

Figure 5. Scatter plots of net primary productivity, 𝑃𝐶(mgC m-3 d-1) against (a) the functional 338 

absorption cross-section of PSII, 𝜎𝑃𝑆𝐼𝐼
447  (nm2 PSII-1) and (b) Chl-a concentration (µg L-1). 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 
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Table 4. Statistics for generalized additive models (GAM) of net primary productivity (PP) in the 356 

Changjiang estuary and East China Sea using predictor variables (Table 3). Submodels GAM1 to 357 

GAM7 involve different combinations of 𝑘  for 𝜎𝑃𝑆𝐼𝐼
447  and Chl-a, respectively; AIC =Akaike 358 

information criterion; RMSE =root mean square error. 359 

 360 

 361 

 * represents the best-fitting GAM 362 

 363 

 No. of GAM 

submodel  

predictor 

variables 

𝑘 R2 AIC RMSE 

 GAM 1 𝜎𝑃𝑆𝐼𝐼
447 , Chl-a 3, 3 0.902 390.7 165.0 

 GAM 2 𝜎𝑃𝑆𝐼𝐼
447 , Chl-a 4, 3 0.906 389.9 161.7 

 GAM 3 𝜎𝑃𝑆𝐼𝐼
447 , Chl-a 3, 4 0.929 381.8 141.3 

 GAM 4 𝜎𝑃𝑆𝐼𝐼
447 , Chl-a 4, 4 0.929 382.16 143.7 

 GAM 5 𝜎𝑃𝑆𝐼𝐼
447 , Chl-a 5, 4 0.928 382.8 144.7 

 GAM 6* 𝝈𝑷𝑺𝑰𝑰
𝟒𝟒𝟕 , Chl-a 4, 5 0.933 380.42 144.2 

 GAM 7 𝜎𝑃𝑆𝐼𝐼
447 , Chl-a 5, 5 0.932 381.3 153.4 
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 364 

Figure 6. Interaction effects of the optimal Generalized Additive Model (GAM), showing (a) 365 

significant interaction between 𝜎𝑃𝑆𝐼𝐼
447  and Chl-a. (b-c) GAM results describing 𝑃𝐶(mgC m-3 d-1) 366 

variability with 𝜎𝑃𝑆𝐼𝐼
447  (nm2 PSII-1) and Chl-a concentration (µg L-1). 367 

 368 

 369 

Figure 7. Overlaid plots between observed (sized dots) and predicted net primary productivity (PP) 370 

(based on the best-fitting Generalized Additive Model [GAM] shown in Table 4) during (a) 2019 371 

and (b) 2021 summer cruises. 372 
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4 Discussion 373 

Assessing carbon cycling in dynamic coastal systems such as the Changjiang estuary and 374 

adjacent ECS is challenging due to the low sampling resolution of conventional, incubation-based 375 

methods. Here, we developed an empirical model to assess PP at high-resolution. We demonstrate 376 

for the first time how knowledge of Chl-a biomass and phytoplankton photophysiology can be 377 

used to predict PP across the strong environmental gradient present in this region during 378 

summertime.  Importantly, unlike previous work which has estimated C-uptake rates from FRR-379 

derived measurements (ETRs) by calculating (or assuming) 𝐾𝐶 and 𝑛𝑃𝑆𝐼𝐼 values (e.g., Hancke et 380 

al., 2015; Schuback et al., 2015; 2017; Wei et al., 2019; Zhu et al., 2015, 2017), our approach 381 

allows for retrieval of PP estimates without knowledge or assumption of either, or both, parameters 382 

which are difficult to measure in nature.  We discuss insights gleaned from application of FRR 383 

fluorometry to this study area, and how our GAM modelling approach provides a high-resolution 384 

solution to rapidly assess regional PP at and carbon cycling dynamics. 385 

4.1 Insights into phytoplankton photophysiology 386 

During summer, the spatial distribution of Chl-a within the Changjiang estuary and nearby 387 

East China Sea is mainly influenced by the equilibrium effects of light availability and nutrient 388 

supply, shaping a so-called “sandwich” pattern (Ning et al., 1988; Li et al., 2021). Specifically, 389 

Chl-a values were mostly higher along the boundaries of Changjiang plume front compared to 390 

either coastal and offshore waters (Li et al., 2021, Figure 2E, F). Overall, a similar spatial pattern 391 

was observed for 𝐹𝑣/𝐹𝑚  values when all data were pooled, revealing a significant positive 392 

correlation between these two parameters (Spearman’s Rank, r = 0.31, n = 76, p = 0.006) - as also 393 

observed in previous studies (Gutiérrez‐Rodríguez et al., 2020; Liu et al., 2022; Zhu et al., 2019). 394 

Several factors are thought to control 𝐹𝑣/𝐹𝑚 including the light environment, nutrient availability, 395 

and the taxonomic composition of the phytoplankton community itself (Suggett et al., 2009b). 396 

Decreases in 𝐹𝑣/𝐹𝑚 are commonly observed in nutrient-starved phytoplankton (Geider et al., 1993, 397 

1998a, b; Parkhill et al., 2001) and may explain the low 𝐹𝑣/𝐹𝑚 values recorded at offshore stations 398 

in this study where nutrient availability was low (Figure 3A, B). Meanwhile, at the Changjiang 399 

mouth where nutrient levels are elevated - and presumably not limiting for phytoplankton growth 400 

– the lower 𝐹𝑣/𝐹𝑚values are likely explained by another factor. While the presence of smaller 401 

phytoplankton cells can contribute to lower 𝐹𝑣/𝐹𝑚 values (Suggett et al. 2009b), size-fractionated 402 

Chl-a analysis found that our sampling sites near the Changjiang mouth were actually dominated 403 
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by phytoplankton cells >10 µm (~90%, data not shown) and thus taxonomy is unlikely to account 404 

for the low 𝐹𝑣/𝐹𝑚 values observed here. Due to increased stratification and shallow mixed layer at 405 

this location, it is likely that low 𝐹𝑣/𝐹𝑚  values are instead caused by PSII photoinactivation 406 

(Osmond, 1994; Moore et al., 2006;  Fisher et al. 2020) - which occurs when phytoplankton are 407 

exposed to higher light levels for longer periods – and manifests as reduced PSII photochemical 408 

efficiency (Fisher et al. 2020). Conversely, relatively high 𝐹𝑣/𝐹𝑚 values were also found at several 409 

offshore stations where nutrients were likely limiting (DIN < 0.5 µM, PO4
3- < 0.05 µM; Figure 3A, 410 

B). This result is not surprising because it is consistent with the interpretation that phytoplankton 411 

cells can maintain  𝐹𝑣/𝐹𝑚 values under steady-state macronutrient limitation, rather than starvation 412 

(MacIntyre et al., 1997; Parkhill et al., 2001; Behrenfeld et al., 2006; Kruskopf & Flynn, 2006; 413 

Moore et al., 2008; Schrader et al., 2011).  414 

In addition to light spectrum dependence, changes in 𝜎𝑃𝑆𝐼𝐼  are typically related to the 415 

photoacclimational status, cellular nutrient status and/or taxonomic shifts in the phytoplankton 416 

assemblage (Moore et al., 2006; Suggett et al., 2009b). While 𝜎𝑃𝑆𝐼𝐼 is expected to increase as cell 417 

size declines (see Suggett et al., 2009b), we observed no correlation between 𝜎𝑃𝑆𝐼𝐼
447  and proportion 418 

of Chl-a >10 µm (Spearman, p = 0.09; data not shown), further reinforcing the notion that 419 

phytoplankton community structure and composition is unlikely the primary driver of 420 

physiological variability in our dataset. Higher values of 𝜎𝑃𝑆𝐼𝐼
447  measured in the nutrient-poor 421 

offshore waters are consistent with previous studies showing that 𝜎𝑃𝑆𝐼𝐼 increases with decreasing 422 

nutrient supply (Kolber et al., 1988; Berges et al., 1996; Moore et al., 2003, 2005; Kulk et al., 423 

2018). Meanwhile, the light environment experienced by phytoplankton from nearshore to 424 

offshore waters in the Changjiang estuary is likely to vary considerably with changing upper 425 

MLDs (Table 1). Typically, when experiencing an increase in growth irradiance, phytoplankton 426 

reduce their light harvesting capacity by decreasing 𝜎𝑃𝑆𝐼𝐼 to avoid photodamage (Falkowski et al., 427 

1981). Conversely, phytoplankton cells acclimated to low light usually increase the number and/or 428 

the ‘size’ of their photosynthetic units, which also resulting in an increased PSII functional cross-429 

section (𝜎𝑃𝑆𝐼𝐼) (Moore et al., 2006; Six et al., 2008). Unsurprisingly, higher 𝜎𝑃𝑆𝐼𝐼
447  values were 430 

mostly measured in deeper mixed offshore waters – where a larger PSII functional cross-section 431 

is conducive to increased light absorption per reaction center II (RCII), and is clearly advantageous 432 

at the low irradiance levels characteristic of this environment (Kolber et al., 1988; McKew et al., 433 

2013; Schuback et al., 2017). 434 
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4.2 Controls of phytoplankton primary productivity 435 

Surface PP values exhibited remarkable variability, ranging from ~6 - 1600 mgC m-3 d-1 436 

over the two summer sampling campaigns. Overall, phytoplankton PP and Chl-a were positively 437 

correlated (Table 2), reflecting that phytoplankton biomass is a key driver of C-uptake rates. 438 

However, pooling of the data revealed a decoupling between these two parameters, suggesting a 439 

maximum level of PP exists, beyond which further increase in Chl-a do not necessarily translate 440 

to increased production (Figure 5A). An apparent decoupling was also observed in the spatial 441 

distributions of Chl-a and PP, with high PP observed in coastal waters despite relatively low Chl-442 

a (Figure 2, 4). Such a decoupling between Chl-a and PP is consistent with previous observations 443 

in the ECS that attributed this phenomenon to grazing pressure by microzooplankton (Liu et al., 444 

2019). It is well-known that Chl-a concentrations are extremely plastic, with measured changes 445 

arising from light-driven (photoacclimation) and nutrient-driven physiological responses, which 446 

are not necessarily indicative of proportional changes in productivity (Behrenfeld et al., 2016; Liu 447 

et al., 2019). Previous laboratory studies of microalgal cultures have found a strong increase in the 448 

carbon-to-chlorophyll ratio (C:Chl-a) with increasing growth irradiance, i.e., where phytoplankton 449 

cells become less pigmented (Laws & Bannister, 1980; Geider et al., 1987, 1998a). Thus, 450 

according to traditional photoacclimation models, when mixing is shallow and light is saturating 451 

(e.g., as in the Changjiang mouth, Zhu et al., 2009), less Chl-a is required to sustain a given 452 

production rate (Behrenfeld et al., 2016) – and likely explains the spatial uncoupling of 453 

phytoplankton Chl-a and productivity observed in this study.  454 

Nutrient-driven physiological responses, which also lead to variations in production rates 455 

per unit Chl-a could also explain the high production rate yet low Chl-a values sometimes observed 456 

in this study. Declines of photosynthetic rates normalized to Chl-a, 𝑃𝐵
𝐶  in oligotrophic subtropical 457 

gyres is presumably due to nutrient limitation (Behrenfeld & Falkowski, 1997). Marañón et al. 458 

(2003) also proposed the existence of nutrient-dependent changes in photosynthetic performance, 459 

demonstrating a positive correlation between nutrient supply rates and Chl-a-normalized C-460 

fixation rates. Thus, it is plausible to suggest that higher production rates per Chl-a could be 461 

sustained in the coastal water and Changjing mouth with enhanced nutrient supply (Figure 4, 7). 462 

On the other hand, however, a shift in bloom stages associated with depleted nutrient 463 

concentrations (Table 1) is likely to decrease 𝑃𝐵
𝐶  and thus may contribute to inconsistent observed 464 

trends for net PP and Chl-a (Figure 5A, Waga et al., 2022). 465 
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4.3 Relationship between primary productivity and PSII functional absorption cross 466 

section 467 

We found a strong negative correlation between 𝜎𝑃𝑆𝐼𝐼
447  and net PP in the this study (Table 468 

2, Figure 5B), suggesting 𝜎𝑃𝑆𝐼𝐼
447  and net PP likely co-varied as a result of physiological and/or 469 

taxonomic responses to changing environmental conditions in this dynamic sampling area (Moore 470 

et al., 2003). Under nutrient limitation, phytoplankton species tend to reduce the abundance of the 471 

key D1 protein associated with PSII repair, together with CP43 and CP47, which leads to an 472 

increase in 𝜎𝑃𝑆𝐼𝐼. Meanwhile, the increased turnover of D1 under nutrient limitation could lead to 473 

a reduction in the steady state level of the proteins, which consequently decreased photochemical 474 

energy conversion efficiency and phytoplankton growth rates (Greene et al., 1992; Kolber et al., 475 

1988). Upon relief of nutrient deficiency, reduction in 𝜎𝑃𝑆𝐼𝐼 associated with increased D1 may be 476 

apparent in coastal waters where growth rates and primary productivity of phytoplankton are 477 

higher. In contrast, under light-limited systems, all PSII traps appear to be fully functional which 478 

increase the 𝜎𝑃𝑆𝐼𝐼 (Kolber et al., 1988). With increasing light, surplus energy supply relative to 479 

metabolic demand stimulates a decrease in 𝜎𝑃𝑆𝐼𝐼  (Huner et al., 1998). Whilst the major factor 480 

driving the co-variation of 𝜎𝑃𝑆𝐼𝐼 and net PP in our study remains unclear, Suggett et al (2009b) 481 

suggested that 𝜎𝑃𝑆𝐼𝐼 is less sensitive to nutrient limitation and thus the change in light availability 482 

might outweigh the potential influence of nutrient limitation upon PSII functioning. 483 

Along with changes driven by nutrient and light availability, 𝜎𝑃𝑆𝐼𝐼 and PSII efficiency also 484 

appears to vary across algal taxa. Diatoms and larger phytoplankton are generally characterized by 485 

lower 𝜎𝑃𝑆𝐼𝐼 values, whereas smaller phytoplankton or dinoflagellates and nanoflagellates exhibit 486 

relatively larger 𝜎𝑃𝑆𝐼𝐼 values (Suggett et al., 2009b). Furthermore, increased photosynthetic 487 

efficiency and growth rates have also been observed for larger phytoplankton under nutrient-488 

replete conditions, which may explain higher PSII photochemical efficiency observed in certain 489 

phytoplankton taxa such as diatoms (Cermeño et al., 2005). In summary, NPP and 𝜎𝑃𝑆𝐼𝐼  are 490 

unlikely to vary independently but as a result of some common physiological/ecological 491 

mechanism (Moore et al., 2003). 492 

Regardless of the underlying cause, the relationship between 𝜎𝑃𝑆𝐼𝐼 and NPP provides the 493 

opportunity of investigating changes in productivity at high resolution via FRR fluorometry in 494 

dynamic systems. However, with the decreasing of 𝜎𝑃𝑆𝐼𝐼
447 , the non-linear increasing of net PP may 495 

limit the power of 𝜎𝑃𝑆𝐼𝐼
447  alone as a predictor of net PP in linear modelling approaches (Figure 5B). 496 
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Therefore, it is crucial that models consider the non-linear co-variation between net PP and 𝜎𝑃𝑆𝐼𝐼
447  497 

together with Chl-a in order to accurately predict net PP in this study area. 498 

4.4 Modeling primary productivity by GAM 499 

Modeling phytoplankton PP remains an important approach for oceanographers to better 500 

understand marine ecosystem functioning. While several attempts including ours have been made 501 

to estimate PP in the ECS, few works to date have focused on developing predictive models in the 502 

Changjiang estuarine-coastal waters, due to the inadequate sampling resolution of incubation-503 

based approaches in such dynamic systems (Gong & Liu, 2003). Satellite-derived Chl-a has been 504 

widely-used as an input into PP algorithms (Arrigo et al., 2011) yet there is not always a clear 505 

relationship between phytoplankton biomass and production (Behrenfeld et al., 2005; Huot et al., 506 

2007; Laws et al., 2016). Efforts to estimate PP through scaling FRR-derived ETRs have gained 507 

significant traction in recent years, however, are constrained by a still-limited understanding of 508 

how 𝐾𝐶  varies in nature (Lawrenz et al., 2013; Hughes et al. 2020). More recent work has 509 

demonstrated the potential for fluorescence parameters relating to phytoplankton light history (e.g., 510 

NPQ) to correlate well with 𝐾𝐶 (e.g., Schuback et al. 2015, 2016;  Zhu et al., 2016; 2017); however, 511 

the slope describing the relationship varies unpredictably in space and time (Hughes et al. 2018b) 512 

or may break even down entirely under light-limited conditions (Hughes et al. 2021). Given the 513 

inherent uncertainties in predicting 𝐾𝐶 based off NPQ data, we opted to retrieve PP via a novel 514 

modelling approach incorporating easy-to-measure fluorescence parameters and Chl-a. In the 515 

current work, correlation analysis revealed that 𝜎𝑃𝑆𝐼𝐼  was negatively correlated with 516 

photosynthetic rates in this highly-dynamic region. Thus, together with Chl-a which has been 517 

routinely measured by fluorescence sensors (e.g. FRRf; Supplementary Figure S1), it provides an 518 

opportunity to quickly assess variability of PP at high spatial resolution once the appropriate model 519 

is established. 520 

The empirical model of PP by stepwise multiple linear regression was first developed 521 

including Chl-a and 𝜎𝑃𝑆𝐼𝐼
447 . The RMSE of SLR model was 248.7 mgC m-3 d-1, which is close to that 522 

of satellite-based empirical model developed in the ECS (Siswanto et al., 2006). Nevertheless, 523 

negative values of PP were observed in the predicted results either due to particularly small Chl-a 524 

or large 𝜎𝑃𝑆𝐼𝐼
447  values, highlight a notable drawback of linear models in such scenarios. In fact, the 525 

growth rates of phytoplankton and the photosynthetic rates per unit Chl-a are not likely to infinitely 526 
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increase but at a decreasing rate when phytoplankton exhibit the so-called “package effect” (e.g., 527 

Laiolo et al. 2021) or photodamage conditions as well as insufficient nutrient supply (Cullen et al., 528 

1992; Platt et al., 1980; Siswanto et al., 2009), thus non-linear models are likely to better describe 529 

C-fixation responses to changes in environmental variables (Siswanto et al., 2009). After fitting 530 

data to a best GAM model, PP prediction was significantly improved through consideration of 531 

non-linear relationships of Chl-a and 𝜎𝑃𝑆𝐼𝐼
447  on net PP, with RMSE decreasing from 248.7 to 144.2 532 

mgC m-3 d-1 and R2 increasing from 0.73 to 0.93, compared to the linear regression model (Tables 533 

3, 4). This result confirms the robustness of the non-linear relationship between net PP and the two 534 

fluorometric predictors. From initial setting with 𝑘-values of 3 on the 𝜎𝑃𝑆𝐼𝐼
447  and Chl-a smoothing, 535 

we tested several combinations of 𝑘-values, showing the best-fitting GAM with 𝑘-values of 4 and 536 

5 for 𝜎𝑃𝑆𝐼𝐼
447  and Chl-a, respectively. This suggests that the performance of GAM does not always 537 

improve with increasing 𝑘-values, reinforcing recommendations by Wood (2018) to employ a 538 

manual k-value selection process. It is also important to note that the selection of 𝑘-values is very 539 

application-specific and should be re-evaluated with any new dataset (Murphy et al., 2019). 540 

The developed PP model based on a GAM method in this study allows for assessment of 541 

C-uptake rates at high spatial and temporal resolutions in the ECS – particularly with increasing 542 

opportunities for ship-based sampling campaigns and use of autonomous measurement platforms 543 

(Fujiki et al., 2008; Ryan-Keogh et al., 2020). The higher data volume afforded through our PP 544 

model would not only benefit a better understanding of phytoplankton productivity in this dynamic 545 

environment, but also be able to fill the large gaps in data required to validate satellite-based PP 546 

models (Hughes et al., 2018a; Kerkar et al. 2021; Tripathy et al. 2012).  547 

 548 

5 Conclusions 549 

Our study found that surface PP in the Changjiang estuary and adjacent East China Sea 550 

exhibits dramatic variability with a range spanning several orders of magnitude – highlighting the 551 

dynamic nature of this system. According to our model, much of the variability in PP can be 552 

predicted from knowledge of phytoplankton photophysiology and Chl-a biomass. Satellite models 553 

routinely perform poorly in coastal systems, so development of high-resolution tools to assess PP 554 

is an important step yielding greater understanding of carbon-cycling within this (and indeed other) 555 

region(s). As active Chl-a fluorescence tools such as Fast Repetition Rate fluorometry become 556 
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smaller and less expensive, opportunities to deploy such instruments on vessels of opportunity, 557 

gliders and other autonomous platforms are rapidly opening-up.  If such sensors are calibrated to 558 

measure in-situ chlorophyll-a concentration, our capacity to develop and utilize region-specific PP 559 

estimation tools such as the one presented here can help fill the void of satellite-based PP models 560 

which are so important in estimating phytoplankton productivity in other areas of the global ocean. 561 
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