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Abstract 24 

Because they are conceptually unable to consider events at the sub-annual scale, probabilistic flood 25 

analyses based on annual maxima (AM) underestimate the actual frequency of frequent floods 26 

(with return periods under 5 years), so that peaks-over-threshold (POT) approaches should be 27 

preferred. While this has been acknowledged for decades, frequent floods are still estimated too 28 

often using AM, probably because the procedure is simpler, and AM series are longer and easier 29 

to obtain. However, the negative bias incurred when performing flood frequency with AM can be 30 

severe. This affects fields such as river restoration, stream ecology, and fluvial geomorphology, 31 

which require a correct characterization of frequent floods. Using hundreds of U.S. watersheds 32 

with natural flow regimes, across different climatic and geomorphic conditions, we systematically 33 

study the variability in how AM frequency analyses underestimate frequent floods, finding clear 34 

spatial patterns. Exploiting the duality between the Generalized Extreme Value and the 35 

Generalized Pareto distributions (used for modeling AM and POT, respectively), we identify the 36 

drivers of frequent-flood underestimation, studying the influence of the distributions’ shapes. In 37 

turn, with the support of an optimal feature-selection technique, we determine the physical drivers 38 

explaining underestimation, from a wide spectrum of basin descriptors, investigating their linkages 39 

with the distributional characteristics that affect underestimation. A theoretical relationship is 40 

derived to infer the underestimation rate, allowing for post-hoc correction of AM-predicted 41 

frequent floods, without the need to perform POT frequency analyses. However, this approach 42 

underperforms at sites with mixed flood populations. 43 

Plain Language Summary 44 

Engineers and river scientists perform probabilistic analyses of floods to describe how frequently 45 

a given peak discharge is equaled or exceeded at a river location. The two approaches for selecting 46 

the peak values to be analyzed yield different flood predictions: annual maxima (AM), which takes 47 

only the maximum discharge from each single year in the record, tends to underestimate flood 48 

frequency (or overestimate the average time between events) as compared to peaks-over-threshold 49 

(POT), which includes all floods above a threshold. Even though this bias becomes significant 50 

when estimating frequent floods (those that occur on average at least once every 5 years), which 51 

play crucial roles in stream restoration, river ecology, and fluvial geomorphology, many still prefer 52 

AM over POT. This work studies frequent flood underestimation by AM at hundreds of U.S. 53 

basins, showing that its severity is strongly site-dependent and influenced by the climate: higher 54 

underestimation rates should be expected in arid and semi-arid regions. A theoretical correction 55 

approach is proposed to adjust the magnitude of frequent floods predicted with AM. An 56 

investigation into its limits of applicability finds poorer performances for basins where major 57 

floods happen anytime in the year, due to the occurrence of different flood-generating mechanisms. 58 

1 Introduction 59 

State-of-the-art methods for flood frequency analysis (FFA) use either annual maxima 60 

(AM) or peaks-over-threshold (POT) series (Pan et al., 2022). AM consider the largest event for 61 

each water year (starting on October 1, in the U.S.; Barth et al., 2017), while POT (also known as 62 

“exceedances” or partial duration series – PDS; Bezak et al., 2014) correspond to all the 63 

independent peaks extracted from the continuous hydrograph, that exceed a suitably defined 64 

threshold (Coles, 2001). The two methods predict average interarrival times (AITs) between two 65 

floods larger than a certain magnitude (also referred to as “events”) which are conceptually 66 

different from each other (Wang & Holmes, 2020). AM-FFA produces what is conventionally 67 
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referred to as return period 𝑅, i.e., the average number of years with no events before a year with 68 

at least one event. Mathematically, the domain of 𝑅 is (1,∞) years, which implies that AM-FFA 69 

cannot consider events potentially occurring multiple times annually (Wang & Holmes, 2020). In 70 

contrast, POT-FFA predicts an Average Recurrence Interval (𝐴𝑅𝐼) with domain (0,∞) years, thus 71 

also covering more frequent events, at the sub-annual scale (Wang & Holmes, 2020). This 72 

conceptual difference implies that, given the AM and POT series of peak flows observed at a given 73 

river section, the two methods will predict different AIT values between consecutive events of the 74 

same flood magnitude, independently of any sampling variability effect. Since their difference is 75 

negligible for large floods (Langbein, 1949; Wang & Holmes, 2020), the two methods have often 76 

been used almost interchangeably in many FFA applications (Adamowski, 2000; Bezak et al., 77 

2014; Karim et al., 2017; Madsen et al., 1997; Metzger et al., 2020; Norheim, 2018; Ouarda et al., 78 

2006). On the other hand, if the analysis focuses on frequent floods (FFs; i.e., events with 𝑅 not 79 

larger than 5 years), the conceptual difference between 𝑅 and 𝐴𝑅𝐼 may translate into significantly 80 

different numerical values of the AITs predicted by the two methods, for the same flood magnitude 81 

(Ball et al., 2019; Karim et al., 2017; Wyżga, 1995). 𝑅 predicted for a given FF by AM-FFA is 82 

larger than its corresponding 𝐴𝑅𝐼 from POT-FFA (Langbein, 1949). Under the assumption that 83 

the annual number of exceedances follows a Poisson distribution (Wang & Holmes, 2020), Eq. (1) 84 

provides Langbein’s relationship between 𝑅 and 𝐴𝑅𝐼 for a given flood of magnitude 𝑄 (Langbein, 85 

1949).  86 

1

𝑅(𝑄)
= 1 − exp (−

1

𝐴𝑅𝐼(𝑄)
) (1) 

The AIT between two FF events estimated from 𝑅 may not reflect the real, higher 87 

frequency of occurrence of that FF, because using yearly time-blocks for sampling extreme events 88 

cannot accurately capture the interarrival time of frequent peaks, that may occur more than once 89 

per year. For such frequent events, the 𝐴𝑅𝐼 from POT-FFA represents a better and conceptually 90 

more appropriate estimate of the actual AIT between two occurrences than the return period 𝑅 91 

(Ball et al., 2019; Karim et al., 2017; Wyżga, 1995).  92 

Overestimating the AIT of a given FF event when using AM-FFA is equivalent to 93 

underestimating its frequency. If the focus of the analysis is identifying the flood peak magnitude 94 

𝑄 that can occur with a given average frequency or AIT (e.g., once every 2 years), performing 95 

AM-FFA would result in underestimating 𝑄. 96 

There are multiple issues connected to the use of AM series for FFA. Two well-known 97 

drawbacks are: 1) a limited number of peak values, as compared to POT, for the same flow record 98 

(Bezak et al., 2014; Caires, 2009; Cunnane, 1973; Pan et al., 2022; Prosdocimi, 2018; Robson & 99 

Reed, 1999; Tavares & Da Silva, 1983), and 2) the risk of including low peaks from dry years in 100 

the analysis (Cohn et al., 2013; England et al., 2019; Lamontagne et al., 2016; Plavšić et al., 2016), 101 

which may arise from different hydrological mechanisms than the other peaks, and therefore come 102 

from a different population, violating the necessary assumption of i.i.d. events (Klemeš, 2000). 103 

Because of the first issue, national guidelines from different countries recommend minimum 104 

record lengths for performing AM-FFA (Robson & Reed, 1999; England et al., 2019). As to the 105 

low outliers, often referred to as “potentially influential low flows” (PILFs; Cohn et al., 2013), 106 

U.S. Bulletin 17C (England et al., 2019) recommends their preliminary removal from AM series 107 

using the “multiple Grubbs-Beck test” (MGBT; Cohn et al., 2013).  108 

FF-underestimation is another well-known issue of AM-FFA (Langbein, 1949), but 109 

apparently it has not received the same attention in the hydrologic community. In the U.S., e.g., 110 

AM- has often been preferred over POT-FFA by many governmental agencies (e.g., Feaster et al., 111 
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2014; Kennedy & Paretti, 2014; Law & Tasker, 2003; Southard, 2010, Virginia Department of 112 

Transportation, 2021), even when predicting FFs with return periods as low as, e.g., 2 years, or 113 

even less. The use of state-of-the-art techniques (such as MGBT) may remove small peaks from 114 

AM series, which would be automatically ignored in the corresponding POT series. However, this 115 

does not resolve the issue of FF underestimation, which is not due to the presence of PILFs in the 116 

AM, but rather to the fundamental conceptual difference between 𝑅 and 𝐴𝑅𝐼.  117 

There is a number of reasons why AM-FFA still enjoys greater popularity, such as: 1) wider 118 

availability of AM series as compared to POT (Norheim, 2018; Prosdocimi et al., 2014); 2) greater 119 

simplicity since, in contrast with POT-, AM-FFA does not require applying independence criteria 120 

between subsequent flood events, nor selecting a threshold for defining extreme events (Pan et al., 121 

2022); 3) the range of quantiles affected by FF underestimation is irrelevant in many engineering 122 

applications, which focus on more extreme, higher return-period floods.  123 

With reference to the latter issue, major civil engineering works subject to risk of flooding, 124 

such as bridges (Benedict & Knight, 2021), storm sewers (Sun et al., 2011), dam-drainage systems 125 

(Khaddor et al., 2021), levees (Huang et al., 2015), and other hydraulic structures for river flood 126 

control (Cipollini et al., 2021; Lendering et al., 2019; Scussolini et al., 2016) are all designed to 127 

withstand relatively extreme events, with large return periods (Ponce, 1989; Rasekh et al., 2010; 128 

Sayers et al., 2013), depending on their strategic importance and the threat that their failure would 129 

pose to human lives and properties (Cipollini et al., 2021; Lendering et al., 2019; Morrison et al., 130 

2018; Shah et al., 2018; Tung, 2005; Vogel & Castellarin, 2017). However, there are many other 131 

applications where accurate prediction of frequent floods is critical. Regular, low-magnitude 132 

floods play a more relevant role than extreme (but rarer)  inundation events in a series of river-133 

related phenomena such as changes in fluvial morphology (Death et al., 2015; Harvey et al., 1979; 134 

Wolman & Miller, 1960), sediment transport (Markus & Demissie, 2006), and dynamics of the 135 

stream ecosystem (Bendix & Hupp, 2000; Johnson et al., 1995; Meier, 2008), which are all crucial 136 

aspects in river restoration projects and river science (Wohl et al., 2015). Much research on fluvial 137 

geomorphology focuses on the role of FFs (e.g., with return periods between one and two years), 138 

which have been shown to simultaneously perform sufficient geomorphic work as well as occur 139 

frequently enough, so they tend to determine the channel’s shape (Death et al., 2015; Harvey et 140 

al., 1979; Wolman & Miller, 1960). In river ecology, FFs affect the dynamic interactions between 141 

main channel and floodplain, with major impacts on the extension of the habitats cyclically 142 

available to the aquatic biota (Johnson et al., 1995; Wohl et al., 2015) and riparian vegetation 143 

(Bendix & Hupp, 2000; Meier, 2008; Wohl et al., 2015).  144 

Biased FF predictions from using AM may negatively affect scientific and practical 145 

progress in these fields. For instance, a river restored based on the wrong design discharge may 146 

end up flooding as much as three times more often than per-design conditions, which could cause 147 

channel unravelling; similarly, environmental studies on river ecology and geomorphology, where 148 

FFs play a dominant role, may be based on wrong assumptions. 149 

 So far, FF-underestimation has been systematically investigated only in a few regions of 150 

the world, such as Poland (Wyżga, 1995) and Australia (Karim et al., 2017; Keast & Ellison, 2013). 151 

These authors suggest that the degree of FF underestimation is site-dependent, with the variability 152 

attributed to differences in the climate and resulting flow regime across catchments, as rivers with 153 

flashy behavior, typical of dry regions, experienced greater FF underestimation from AM-FFA 154 

than rivers in more humid regions, characterized by more stable flows (Karim et al., 2017; Wyżga, 155 

1995). Some authors (e.g., Keast & Ellison, 2013; Page & McElroy, 1981) pointed out that 156 

Langbein’s equation (Eq. 1) may misestimate the actual difference between 𝑅 and 𝐴𝑅𝐼 of FFs in 157 
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some Australian basins. Keats & Ellison (2013) suggested that this could be due to a violation of 158 

the assumption of event independence, when extracting the PDS from long-term hydrographs.  159 

Our work stems from the idea that a systematic comparison of FF predictions from AM 160 

and POT series at a wider, e.g., continental scale, can provide a deeper insight into the phenomenon 161 

of FF underestimation by AM-FFA and its climatic dependence. We choose the continental U.S. 162 

(CONUS) as study region, since FF underestimation by AM-FFA has not been systematically 163 

investigated there, yet.   164 

Exploiting the duality between AM- and POT-FFA, valid under certain hypotheses (Wang 165 

& Holmes, 2020), we derive a theoretical expression of the underestimation of the 𝑇-year quantile 166 

from AM-FFA, as compared to POT-FFA, as a function of 𝑇 and the parameters of the distribution 167 

of AM. This equation can be used directly to correct AM-based estimates of FF quantiles, without 168 

needing to perform POT-FFA.  169 

It is known from decades of regionalization studies (e.g., Adamowski, 2000; Burn, 1997; 170 

Castellarin et al., 2001; Dalrymple, 1960; Hosking & Wallis, 1997; Hosking et al., 1985; Laio et 171 

al., 2011; Lun et al., 2021; Madsen et al., 1997; Metzger et al., 2020; Smith et al., 2015; Stedinger 172 

& Lu, 1995; Zaman et al., 2012; Zrinji & Burn, 1994) that there exist linkages between watershed 173 

characteristics and the parameters of flood distributions. Hence, the relationship between FF 174 

underestimation and the characteristics of the flood distribution can also be used to identify basin 175 

and climatic attributes that, through their influence on flood distributions, contribute to the spatial 176 

variability in FF underestimation. We deploy a wrapper method for feature selection (Babatunde 177 

et al., 2014; Huang et al., 2007) for this purpose. The list of candidate watershed characteristics 178 

encompasses a wide spectrum of information, including topographic, geomorphic, land-cover, and 179 

climatic descriptors, as well as hydrologic signatures (Addor et al., 2017). We also consider 180 

indicators of flow seasonality, derived from peak series using circular statistics (Villarini, 2016).   181 

The large scale of this study also allows us to obtain a clearer view of the regions (and their 182 

characteristics) where Langbein’s equation misestimates the difference between R and ARI of FFs.  183 

To sum up, the contributions of this work can be synthesized as follows: 1) rigorously 184 

frame the phenomenon of FF underestimation from AM, allowing for a better understanding of 185 

the physical and theoretical drivers of variability in underestimation across varied sites; 2) provide 186 

a framework for preliminary estimates of the degree of FF underestimation by AM-FFA in a given 187 

basin, based only on its location and physical characteristics; 3) contribute a rigorous, theoretical 188 

method to correct AM-based estimates of FFs without performing POT-FFA in the first place, thus 189 

overcoming the common difficulties that POT-FFA typically entails; and 4) investigate where and 190 

why this theoretical method, as well as Langbein’s equation, are (or are not) valid in real-world 191 

applications, possibly revisiting the explanation provided by Keast & Ellison (2013). 192 

2 Methodology 193 

Figure 1 shows a conceptual map of the methodological steps of this work, which are 194 

described in more detail in the following subsections.  195 
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 196 

Figure 1. Scheme of the methodological steps of this work. 197 

 198 
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2.1 Quantile ratio as measure of the underestimation of FFs from AM-FFA 199 

One way of comparing FF estimates from AM- and POT-FFA is to consider the same flood 200 

magnitude 𝑄 and assess the difference between its 𝑅 and 𝐴𝑅𝐼 values (e.g., Langbein, 1949; Wang 201 

& Holmes, 2020). Here we consider instead the same value of AIT 𝑇, for both 𝑅 and 𝐴𝑅𝐼 (i.e., 202 

𝑇 = 𝑅 = 𝐴𝑅𝐼), and estimate the corresponding quantiles 𝑄𝐴𝑀(𝑇) and 𝑄𝑃𝑂𝑇(𝑇), using the inverse 203 

cumulative distribution functions (inverse CDFs) of the AM and POT distributions, respectively, 204 

where the probability is expressed in terms of 𝑇. In this way, the quantile ratio 𝑟(𝑇) of 𝑄𝐴𝑀(𝑇) to 205 

𝑄𝑃𝑂𝑇(𝑇) (Eq. 2) readily provides a measure of the underestimation of the 𝑇-year flood by AM-206 

FFA, given that the actual frequency of FFs is better reflected by the POT-based quantile estimate 207 

(Karim et al., 2017). 208 

𝑟(𝑇) =
𝑄𝐴𝑀(𝑇)

𝑄𝑃𝑂𝑇(𝑇)
 (1) 

Ignoring any effects of sampling variability, 𝑄𝐴𝑀(𝑇) is expected to be smaller 209 

than 𝑄𝑃𝑂𝑇(𝑇) for small 𝑇s and become closer to 𝑄𝑃𝑂𝑇(𝑇) for increasing 𝑇, as reflected in 210 

Langbein’s equation. Hence, 0 < 𝑟(𝑇) ≤ 1, approximately. From 𝑟(𝑇), the percentage of 211 

underestimation due to using AM-FFA is obtained as 𝑢(𝑇) = [1 − 𝑟(𝑇)] × 100%. 212 

2.2 Duality-based quantile ratio 213 

Under the hypotheses of i.i.d. POTs distributed as 𝐺𝑃𝑂𝑇(𝑄) and number 𝑚 of exceedances 214 

per year distributed as 𝑃(𝑚), the distribution of AM, 𝐹𝐴𝑀(𝑄) is univocally determined by the total 215 

probability theorem (Eq. 3; Önöz & Bayazit, 2001). 𝐹𝐴𝑀(𝑄) is referred to as the derived 216 

distribution of AM (Meier et al., 2016). 217 

𝐹𝐴𝑀(𝑄 ≤ 𝑄𝑇) = ∑𝑃(𝑚 = 𝑘)[𝐺𝑃𝑂𝑇(𝑄𝑇)]
𝑘

∞

𝑘=0

 (2) 

Furthermore, the parameters of the two distributions 𝐺𝑃𝑂𝑇(𝑄) and 𝐹𝐴𝑀(𝑄) can be related 218 

to each other by a set of reparameterization equations (Madsen et al., 1997; Prosdocimi & 219 

Kjeldsen, 2022; Wang & Holmes, 2020). This property is termed the “duality” between the AM 220 

and POT distributions (Coles, 2001; Wang & Holmes, 2020) and can be exploited to rewrite 𝑟(𝑇) 221 

as an expression of the parameters of a single distribution, either that for the AMs or the POTs. It 222 

is worth noticing that, for small quantiles, the choice of the distributions for AM and POTs is 223 

expected to have only a minor impact on 𝑟(𝑇) and 𝑢(𝑇).  224 

We use the Generalized Pareto (GP) distribution (Equation 4), with shape 𝜉𝑝, scale 𝜎𝑝, and 225 

location 𝜇𝑝, to model the magnitude of exceedances.  226 

𝑃𝐺𝑃(𝑄 ≤ 𝑄𝑇 , 𝑄 > 𝜇𝑝) =

{
 
 

 
 
1 − (1 + 𝜉𝑝

𝑄𝑇 − 𝜇𝑝

𝜎𝑝
)

−
1
𝜉𝑝
, 𝑓𝑜𝑟 𝜉𝑝 ≠ 0

1 − exp (−
𝑄𝑇 − 𝜇𝑝

𝜎𝑝
)     , 𝑓𝑜𝑟 𝜉𝑝 = 0  

 (3) 

GP is defined on the set {𝑄𝑇: 𝑄𝑇 > 𝜇𝑝 }  when 𝜉𝑝 ≥ 0, and {𝑄𝑇: 𝜇𝑝 < 𝑄𝑇 < 𝜇𝑝 −
𝜎𝑝

𝜉𝑝
} when 227 

𝜉𝑝 < 0. For 𝜉𝑝 = 0, GP degenerates to a shifted exponential distribution (Coles, 2001). For the 228 

AM, we consider the derived distributions from the total probability theorem (Eq. 3) for three 229 

alternative count models of 𝑚, namely the Poisson (PSN), Negative Binomial (NEG), and 230 

Binomial (BIN) distributions, given by Eqs. (5), (6), and (7), respectively. While the PSN is the 231 
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most popular (Bezak et al., 2014; Pan et al., 2022; Wang & Holmes, 2020), some authors (e.g., 232 

Bezak et al., 2014; Bhunya et al., 2013; Önöz & Bayazit, 2001) have proposed NEG and BIN as 233 

alternative models to deal with cases of over- or under-dispersion, respectively.  234 

𝑃𝑃𝑆𝑁(𝑚 = 𝑘, 𝜆 ) =
𝑒−𝜆𝜆𝑘

𝑘!
 (4) 

The parameter 𝜆 of PSN represents the expected value 𝐸(𝑚) of the number 𝑚 of 235 

exceedances (Önöz & Bayazit, 2001).  236 

𝑃𝑁𝐸𝐺(𝑚 = 𝑘, 𝛼, 𝛾) = (
𝛾 + 𝑘 − 1

𝑘
)𝛼𝑘(1 − 𝛼)𝛾 (5) 

The parameters 𝛼 and 𝛾 of NEG can be derived from 𝐸(𝑚) = 𝜆 =
𝛼𝛾

1−𝛼
, and the variance 237 

of the number of exceedances, 𝑉𝑎𝑟(𝑚) = 𝑉 =
𝛼𝛾

(1−𝛼)2
, as 𝛼 = 1 −

𝜆

𝑉
 and 𝛾 = 𝜆

1−𝛼

𝛼
=

𝜆2

𝑉−𝜆
 (Bhunya 238 

et al., 2013). 239 

𝑃𝐵𝐼𝑁(𝑚 = 𝑘, 𝛽, 𝛿) = (
𝛿
𝑘
) 𝛽𝑘(1 − 𝛽)𝛿−𝑘 (6) 

The parameters 𝛽 and 𝛿 of the BIN can be derived from 𝐸(𝑚) = 𝜆 = 𝛽𝛿 and 𝑉𝑎𝑟(𝑚) =240 

𝑉 = 𝛽𝛿(1 − 𝛽) as 𝛿 =
𝜆2

𝜆−𝑉
 and 𝛽 =

𝜆

𝛿
=

𝜆−𝑉

𝜆
 (Önöz & Bayazit, 2001). 241 

The derived distribution of AM assuming GP and PSN for magnitude and number of 242 

exceedances, respectively, is the Generalized Extreme Value (GEV) distribution (Eq. 8), with 243 

shape, scale, and location parameters (𝜉𝑔, 𝜎𝑔, and 𝜇𝑔, respectively) assuming values in the ranges 244 

−∞ < 𝜉𝑔 < +∞, 𝜎𝑔 > 0, and −∞ < 𝜇𝑔 < +∞, respectively (Coles, 2001).  245 

𝑃𝐺𝐸𝑉(𝑄 ≤ 𝑄𝑇) =

{
 
 

 
 
exp [−(1 + 𝜉𝑔

𝑄𝑇 − 𝜇𝑔

𝜎𝑔
)

−
1
𝜉𝑔
]  , 𝑓𝑜𝑟 𝜉𝑔 ≠ 0

exp [− exp(−
𝑄𝑇 − 𝜇𝑔

𝜎𝑔
))]  , 𝑓𝑜𝑟 𝜉𝑔 = 0  

 (7) 

The GEV has a lower (upper) bound equal to 𝜇𝑔 −
𝜎𝑔

𝜉𝑔
 for 𝜉𝑔 > 0 (𝜉𝑔 < 0 ), while it is 246 

unbounded for 𝜉𝑔 = 0 (Coles, 2001). 247 

Reparameterization Eqs. (9), (10), and (11) provide the relationships between the 248 

parameters of the GP and GEV distributions (Wang & Holmes, 2020).  249 

𝜉𝑝 = 𝜉𝑔 = 𝜉 (8) 

 250 

𝜆 =

{
 
 

 
 
(1 − 𝜉

𝜇𝑔 − 𝜇𝑝

𝜎𝑔
)

−
1
𝜉

, 𝑓𝑜𝑟 𝜉 ≠ 0

exp(
𝜇𝑔 − 𝜇𝑝

𝜎𝑔
) , 𝑓𝑜𝑟 𝜉 = 0

 (9) 

 251 

𝜎𝑝 = 𝜎𝑔 − 𝜉(𝜇𝑔 − 𝜇𝑝) (10) 

Alternatively, when the NEG or BIN are considered to model the number of exceedances, 252 

the derived distribution is a 5-parameter extension of the 4-parameter Kappa (KPP) family (K5E; 253 

Eq. 12; Eastoe & Tawn, 2010), of which the GEV is a member (Hosking, 1994).  254 
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𝑃𝐾5𝐸(𝑄 ≤ 𝑄𝑇) =

{
  
 

  
 

[1 − 𝜂 (1 + 𝜉𝑘
𝑄𝑇 − 𝜇𝑘
𝜎𝑘

)
−
1
𝜉𝑘
]

𝜆
𝜂

, 𝑓𝑜𝑟 𝜉𝑘 ≠ 0 

[1 − 𝜂 exp (−
𝑄𝑇 − 𝜇𝑘
𝜎𝑘

) ]

𝜆
𝜂
 , 𝑓𝑜𝑟 𝜉𝑘 = 0 

 (11) 

The special KPP case (Hosking, 1994) occurs when 𝜆 = 1. Reparameterization equations 255 

for the GP-K5E duality are given by Eqs. (13), (14), and (15). 256 

𝜇𝑘 = 𝜇𝑝 ,    𝜎𝑘 = 𝜎𝑝 ,    𝜉𝑘 = 𝜉𝑝 (12) 

 257 

𝛽 =
𝛼

𝛼 − 1
=
𝜆 − 𝑉

𝜆 
= 𝜂 (13) 

 258 

𝛿 = −𝛾 =
𝜆2

𝜆 − 𝑉
=
𝜆

𝜂
  (14) 

Eqs. (16), (17), and (18) represent the inverse CDFs of the GEV, GP, and K5E 259 

distributions, respectively, where the probability is suitably expressed in terms of 𝑅 or 𝐴𝑅𝐼, by 260 

considering 𝐺𝑃𝑂𝑇(𝑄𝑃𝑂𝑇(𝐴𝑅𝐼)) = 1 − 1/(𝜆 𝐴𝑅𝐼) and 𝐹𝐴𝑀(𝑄𝐴𝑀(𝑅)) = 1 − 1/𝑅, respectively.  261 

𝑄𝐴𝑀(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑅) =

{
 
 

 
 
𝜇𝑔 +

𝜎𝑔

𝜉𝑔
{[ln (

𝑅

𝑅 − 1
)]
−𝜉𝑔

− 1} , 𝑓𝑜𝑟 𝜉𝑔 ≠ 0

𝜇𝑔 − 𝜎𝑔 ln [ln (
𝑅

𝑅 − 1
)] ,             𝑓𝑜𝑟 𝜉𝑔 = 0 

 (15) 

 262 

𝑄𝑃𝑂𝑇(𝜉𝑝, 𝜎𝑝, 𝜇𝑝, 𝜆, 𝐴𝑅𝐼) = {
𝜇𝑝 +

𝜎𝑝
𝜉𝑝
[(𝜆 𝐴𝑅𝐼)𝜉𝑝 − 1] , 𝑓𝑜𝑟 𝜉𝑝 ≠ 0

𝜇𝑝 + 𝜎𝑝 ln(𝜆 𝐴𝑅𝐼) ,                    𝑓𝑜𝑟 𝜉𝑝 = 0
 (16) 

 263 

𝑄𝐴𝑀(𝜉𝑝, 𝜎𝑝, 𝜇𝑝, 𝜆, 𝜂, 𝑅)

=

{
 
 
 

 
 
 
𝜇𝑝 +

𝜎𝑝

𝜉𝑝
{[
1

𝜂
(1 − (1 −

1

𝑅
)

𝜂
𝜆
 

)]

−𝜉𝑝

− 1} , 𝑓𝑜𝑟  𝜉𝑝 ≠ 0 

𝜇𝑝 − 𝜎𝑝 ln {
1

𝜂
[1 − (1 −

1

𝑅
)

𝜂
𝜆
 

]}  ,                  𝑓𝑜𝑟 𝜉𝑝 = 0

 
(17) 

Under the assumption of a PSN count model, replacing Eqs. (9), (10), and (11) into Eqs. 264 

(16) and (17) leads to Eq. (19) and (20), respectively, where the AM-quantile is expressed in terms 265 

of the parameters of the distribution of POTs, and vice versa.  266 

𝑄𝐴𝑀(𝜉𝑝, 𝜎𝑝, 𝜇𝑝, 𝜆, 𝑅) =

{
 
 

 
 
𝜇𝑝 +

𝜎𝑝

𝜉𝑝
[(
1

𝜆
ln

𝑅

𝑅 − 1
)
−𝜉𝑝

− 1] , 𝑓𝑜𝑟 𝜉𝑝 ≠ 0

𝜇𝑝 − 𝜎𝑝 ln [
1

𝜆
ln (

𝑅

𝑅 − 1
)] ,                  𝑓𝑜𝑟 𝜉𝑝 = 0 

 (18) 

 267 
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𝑄𝑃𝑂𝑇(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝐴𝑅𝐼) = {
𝜇𝑔 +

𝜎𝑔

𝜉𝑔
(𝐴𝑅𝐼𝜉𝑔 − 1) , 𝑓𝑜𝑟 𝜉𝑔 ≠ 0

                  
𝜇𝑔 + 𝜎𝑔 ln(𝐴𝑅𝐼) ,                  𝑓𝑜𝑟 𝜉𝑔 = 0

 (19) 

Eqs. (19) and (20) can be used to obtain expressions of the quantile ratio 𝑟̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇) 268 

and 𝑟̂(𝜉𝑝, 𝜎𝑝, 𝜇𝑝, 𝜆, 𝑇) for the 𝑇-year event [Eqs. (21) and (22), respectively], as functions of the 269 

parameters of a single distribution, either the GEV or the GP, respectively. For convenience, 270 

expressions are derived for the general case 𝜉𝑔 ≠ 0.  271 

𝑟̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇) =
𝑄𝐴𝑀(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)

𝑄𝑃𝑂𝑇(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)
=

1 +
1
𝜉𝑔

𝜎𝑔
𝜇𝑔
[(ln

𝑇
𝑇 − 1)

−𝜉𝑔
− 1]

1 +
1
𝜉𝑔

𝜎𝑔
𝜇𝑔
[𝑇𝜉𝑔 − 1]

 (20) 

 272 

𝑟̂(𝜉𝑝, 𝜎𝑝 , 𝜇𝑝, 𝜆, 𝑇) =
𝑄𝐴𝑀,𝑇(𝜉𝑝, 𝜎𝑝, 𝜇𝑝, 𝜆, 𝑇)

𝑄𝑃𝑂𝑇,𝑇(𝜉𝑝, 𝜎𝑝, 𝜇𝑝, 𝜆, 𝑇)
=

1 +
1
𝜉𝑝

𝜎𝑝
𝜇𝑝
[(
1
𝜆
ln

𝑇
𝑇 − 1)

−𝜉𝑝

− 1]

1 +
1
𝜉𝑝

𝜎𝑝
𝜇𝑝
[(𝜆𝑇)𝜉𝑝 − 1]

 (21) 

Eqs. 21 and 22 are valid under the assumption of PSN count model for 𝑚.  273 

Alternatively, if a NEG or BIN count model is assumed, a duality-based expression of the 274 

quantile ratio can be obtained using the parameters of the K5E (Eq. 23) from the ratio of Eqs. (18) 275 

and (17).  276 

𝑟̂(𝜉𝑝, 𝜎𝑝 , 𝜇𝑝, 𝜆, 𝜂, 𝑇) =

1 +
1
𝜉𝑝

𝜎𝑝
𝜇𝑝
{[
1
𝜂
(1 − (1 −

1
𝑇)

𝜂
𝜆
 

)]

−𝜉𝑝

− 1}

1 +
1
𝜉𝑝

𝜎𝑝
𝜇𝑝
[(𝜆𝑇)𝜉𝑝 − 1]

 
(22) 

In either case, the duality-based underestimation 𝑢̂(𝑇) is obtained from the corresponding 277 

duality-based quantile ratio 𝑟̂(𝑇) as 𝑢̂(𝑇) = [1 − 𝑟̂(𝑇)] × 100%.  278 

2.3 Annual maxima and peaks-over-threshold analyses 279 

We use L-moments (LM-method, Hosking, 1990) for fitting GP on the POT series and 280 

GEV on the AM series, and Eqs. (13), (14), and (15) to derive K5E parameters from the duality 281 

with the GP. 𝜆 and 𝑉 are equaled to the sample mean and variance of 𝑚 extracted from the POT 282 

series, respectively. The fitting of the GEV and GP on the AM and POT series, respectively, is 283 

assessed through the Kolmogorov-Smirnov goodness-of-fit (GOF) test (Kottegoda & Rosso, 284 

1997). 285 

Independent peaks are identified considering a conservative combination of two popular 286 

independence criteria (both reported in Pan et al., 2022): one proposed in Bulletin 17 (U.S. Water 287 

Resources Council, 1976) and the other recommended by Cunnane (1979) and in Volume 3 of the 288 

UK Flood Estimation Handbook (Robson & Reed, 1999).  289 

Regarding threshold selection, we adopted the Mahalanobis distance (MD)-based method 290 

by Kiran & Srinivas (2021), since it has been shown to outperform many other recent automated 291 

threshold-selection criteria in the literature (Kiran & Srinivas, 2021). To test the sensitivity of our 292 

results, we also considered the method by Solari et al. (2017), which uses a GOF test to evaluate 293 

the various samples of exceedances obtained with the moving threshold, instead of L-moments.  294 
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2.4 Feature selection for identifying optimal predictors 295 

A wrapper method for optimal feature selection (Babatunde et al., 2014; Huang et al., 2007) 296 

is used to characterize watersheds with different levels of FF underestimation, as well as those 297 

basins where the duality (Eq. 21) is not valid. It couples an optimization algorithm with a learning 298 

machine, where the latter is trained to map input into output variables while the former determines 299 

the optimal predictors among a wide spectrum of basin attributes, based on the performance of the 300 

learning machine (Huang et al., 2007; Babatunde et al., 2014). In this work, these attributes are 301 

either mapped into distributional characteristics that affect FF underestimation or are used to 302 

classify catchments where Eq. (21) is not valid. 303 

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II; Deb et al., 2002) is used as 304 

an optimizer, considering three conflicting objectives on the predictive power and the number of 305 

optimal features (see Table 1). The property of genetic algorithms (GAs) of dealing with a 306 

multitude of candidate solutions (“population”) spread over the solution space (Simpson et al., 307 

1994), makes NSGA-II particularly effective in avoiding local optima, quite typical in feature- 308 

selection problems (Huang et al., 2007), and suitable for identifying synergies among groups of 309 

two or more explanatory variables which could be irrelevant individually, but may display high 310 

explanatory power when combined with others (Taormina & Chou, 2015). 311 

We deploy an ensemble of 12 multi-layer perceptrons (MLPs; Hornik et al., 1989), trained 312 

independently from each other, as the learning machine. Ensemble predictions average out any 313 

bias from the single training instances (Aggarwal et al., 2018), hence an unbiased assessment of 314 

each set of candidate input variables is obtained. The evaluation is based on the average 315 

performance on test basins in a five-fold validation framework (i.e., five iterative splits of the full 316 

dataset into training and test sets, with 80%-20% proportion, respectively).  317 

Table 1 summarizes the tuning parameters of the optimization routine and the 318 

training/assessment of the learning machine in the two cases of 1) training a regressor model to 319 

map basin attributes into distributional characteristics that affect FF underestimation, and 2) 320 

training a binary classifier to identify watersheds where the duality-derived expression of the 321 

quantile ratio (Eq. 21) is not valid. Note that the output of a MLP classifier can be interpreted as 322 

the predicted probability of a positive case (i.e., basin where Eq. 21 is not valid).  323 

 For both optimization routines, the number of features 𝑁𝑓 is minimized while maximizing 324 

the performance of the learning machine, as measured by the other two objectives. Therefore, the 325 

optimal Pareto fronts (Figures 6a and 8a) contain multiple trade-off solutions (see, e.g., Dell’Aira 326 

et al., 2021) with different performances and numbers 𝑁𝑓 of optimal features, each corresponding 327 

to different subsets of basin attributes. These are broken down into a heatmap (Figures 6b and 8b), 328 

with basin attributes and 𝑁𝑓 on the two axes, and the color gradient displaying the relative 329 

frequency at which each attribute is considered in alternative optimal solutions with same 𝑁𝑓.  Key 330 

basin attributes are those that are used more frequently in alternative optimal solutions with same 331 

𝑁𝑓, as well as those used in the most parsimonious solutions (i.e., with the smallest 𝑁𝑓 values). 332 

The way key basin attributes affect the target variable is studied using bivariate partial-333 

dependence plots (PDPs; Figures 7 and 9), which show the marginal effect of a pair of predictors 334 

on the output of the learning machine, averaging out the effects of all the other input features 335 

(Auret & Aldrich, 2012). 336 

 337 
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Table 1. Parameter tuning of the optimization routine and learning machine training coupled in 338 

the wrapper method for feature selection. Depending on the target variable, regression or 339 

classification models are trained on candidate optimal features. 340 

 341 
 342 

 Model/Algorithm 

/Hyperparameter 

Regressor 

(sigma/mu)  

Classifier  

(anomaly detection) 
Notes/References 

F
ea

tu
re

 O
p

ti
m

iz
a

ti
o

n
 

Optimization 

algorithm 
NSGA-II NSGA-II 

(Deb et al. 2002) 

Population size 

𝑁𝑝𝑜𝑝 
1000 1000 

Survival of the fittest 
individuals to keep 

population size constant. 

Number of 

generations 𝑁𝑔𝑒𝑛 
≥ 200 ≥ 200 

Stop after 20 generations 

with no significant changes 

in the optimal population 

(but not before 200). 

Crossover – 

mutation 

probabilities 

0.85-0.15 0.85-0.15 

Probability of occurrence of 
one of the two genetic 

operators for each pair of 

parent individuals (Simpson 
et al. 1994). 

Objective 1 𝑁𝑓 𝑁𝑓 Number of input features.  

Objective 2 𝑀𝐴𝐸 𝑅𝑂𝐶_𝐴𝑈𝐶 

Mean Absolute Error, in the 

interval [0;+∞[ ; Receiver 

Operating Characteristic 

(ROC) area under the curve, 

in the interval [0.5;  1]. 
Optimal value of 𝑅𝑂𝐶_𝐴𝑈𝐶 

is 1, below 0.5 the classifier 

performs worse than a 
random classifier 

(Fernández et al. 2018) 

Objective 3 𝐼𝑄𝑅 𝑃𝑅_𝐴𝑈𝐶 

Width of the interquartile 
range of errors, in the 

interval [0;+∞[ (ideal value 

is 0); Precision-Recall area 

under the curve, in the 

interval [𝑟; 1], where r is the 

proportion of actual 

positives over the total 
number of cases; optimal 

value is 1; below 𝑟 is worse 

than a trivial classifier that 

marks all instances as 
positive (Fernández et al. 

2018) 

L
ea

rn
in

g
 M

a
ch

in
e 

T
ra

in
in

g
 

Model  MLP MLP 
Multi-layer perceptron 
(Hornik et al. 1989) 

Ensemble size  12 12 

Ensemble predictions 

average out any bias related 

to the single training 
instance (Aggarwal 2018). 

Number of hidden 

layers 
3 3 

 

Activation Sigmoid Sigmoid  

Hidden units per 

layer 
30 100 

 

Number of epochs  ~500 ~20000 

Early stop after 100 – 10000 

epochs with no performance 
improvement on the 

validation set. 
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Optimizer Adam SGD 

Adaptive Moment 

Estimation – Stochastic 

Gradient Descent (Fatima 

2020; Landro et al. 2020) 

Performance metric 
𝑀𝐴𝐸 

Binary cross- 

entropy 

Mean Absolute Error (Wang 
et al. 2020) 

Oversampling  

(For imbalanced 

datasets) 

- SMOTE with Tomek links 

Technique to artificially 

generate other positive 

examples in an otherwise 
imbalanced dataset 

(Fernández et al. 2018). Our 

original dataset only has 
~20% of positive examples, 

i.e., basins where duality 

apparently is not valid, 
which would hamper the 

training, resulting in a 

classifier that only predicts 

negative labels.  

Cost-sensitive 

learning (For 

imbalanced 

datasets) 

- Weights 1:5 

Error on positive examples 

(false negative) are weighted 

5 times more than errors on 
negative examples (false 

positive) in the error 

function minimized during 
the training, to reduce 

chances of misclassification 
of the positive examples 

(Fernández et al. 2018). 

 343 

2.5 Descriptors of flood seasonality as a proxy for the presence of mixed populations 344 

The date in which a flood occurs contains information about its generating mechanism: for 345 

instance, snowmelt floods are concentrated in the springtime in the U.S., while flooding events 346 

during the summertime may be caused by, e.g., convective storms, tropical cyclones, or the 347 

monsoon phenomenon, depending on the specific geographical location (Villarini, 2016).  348 

Villarini (2016) used circular statistics to analyze the seasonality of AM. The annual peak 349 

in year 𝑘𝑡ℎ is represented by a vector 𝒛𝐴𝑀,𝑘 of unit length and direction 𝜗𝑘 in the complex plane 350 

(Eq. 24, with 𝑖 = √−1 ), where 𝜗𝑘 corresponds to the time of year when the flood occurred (in 351 

radians, see Figure 3a-b). The vectorial sum 𝒛̅𝐴𝑀 of vectors 𝒛𝐴𝑀,𝑘 across multiple years (Eq. 25) 352 

represents the long-term average seasonality, which offers insights into the seasonal patterns of 353 

flood occurrence and the mechanisms that may drive them. Its module |𝒛̅𝐴𝑀|, in the interval [0; 1], 354 

is a measure of the strength of seasonality (Eq. 26). For example, if the annual vectors 𝒛𝐴𝑀,𝑘 are 355 

clustered in the same season, |𝒛̅𝐴𝑀| will be close to 1 (Figure 2b), indicating that one single 356 

dominant mechanism is responsible for the largest floods, whereas if vectors 𝒛𝐴𝑀,𝑘 are spread out 357 

more widely, |𝒛̅𝐴𝑀| would be close to 0 (Figure 2a), suggesting the presence of multiple major 358 

mechanisms operating at different times of the year. The direction of 𝒛𝐴𝑀,𝑘, 𝜗̅𝐴𝑀 (Eq. 27, defined 359 

by parts to fit 𝜗𝑘 in the interval [0; 2𝜋]) indicates the time of the year (in radians) when annual 360 

peaks are mostly concentrated.  361 

𝒛𝐴𝑀,𝑘 = cos 𝜗𝑘 + 𝑖 sin 𝜗𝑘 (23) 

 362 

𝒛̅𝐴𝑀 =
1

𝑁𝑦𝑒𝑎𝑟𝑠
∑ cos𝜗𝑘

𝑁𝑦𝑒𝑎𝑟𝑠

𝑘=1

+ 𝑖
1

𝑁𝑦𝑒𝑎𝑟𝑠
∑ sin𝜗𝑘

𝑁𝑦𝑒𝑎𝑟𝑠

𝑘=1

= 𝑧𝐴̅𝑀,𝑥 + 𝑖𝑧𝐴̅𝑀,𝑦 (24) 
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 363 

|𝒛̅𝐴𝑀| = √𝑧𝐴̅𝑀,𝑥
2 + 𝑧𝐴̅𝑀,𝑦

2 (25) 

 364 

𝜗̅𝐴𝑀 =

{
  
 

  
 arctan

𝑧𝐴̅𝑀,𝑦

𝑧𝐴̅𝑀,𝑥
 ,                                            𝑖𝑓 𝑧𝐴̅𝑀,𝑥 > 0 

arctan
𝑧𝐴̅𝑀,𝑦

𝑧𝐴̅𝑀,𝑥
+ 𝜋 , 𝑖𝑓 𝑧𝐴̅𝑀,𝑥 < 0 𝑎𝑛𝑑 𝑧𝐴̅𝑀,𝑦 ≥ 0

arctan
𝑧𝐴̅𝑀,𝑦

𝑧𝐴̅𝑀,𝑥
− 𝜋 , 𝑖𝑓 𝑧𝐴̅𝑀,𝑥 < 0 𝑎𝑛𝑑 𝑧𝐴̅𝑀,𝑦 < 0

  (26) 

In Eqs. 25–27, 𝑧𝐴̅𝑀,𝑥 and 𝑧𝐴̅𝑀,𝑦 represent the real and imaginary component of 𝒛̅𝐴𝑀, 365 

respectively, while 𝑁𝑦𝑒𝑎𝑟𝑠 the number of years of record. 366 

 367 
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Figure 2. Descriptors of a-b) AM-, c-d) POT-, and e-f) FF-seasonality, for two USGS 369 

stations. The column on the left shows a case of low seasonality, as peaks are evenly spread 370 

within the year. The case on the right shows a basin with high flood seasonality, concentrated in 371 

the Spring season (May and June). 372 

 373 

This approach can provide insights into the climatic mechanisms behind AM floods, but it 374 

does not account for other relevant floods that may occur in the same or in other seasons. Hence, 375 

we introduce two other measures of flood seasonality, namely the POT seasonality and the FF 376 

seasonality, both derived from the POT series. In the former (Figure 2c-d), each POT from the 𝑘𝑡ℎ 377 

year is scaled by the corresponding AM, so that all floods contribute to the overall seasonality 378 

proportionally to their relative magnitude, as compared to the annual peak (Eq. 28). 𝑁𝑃𝑂𝑇,𝑘 is the 379 

number of POTs in the 𝑘𝑡ℎ year, while 𝑄𝐴𝑀,𝑘 is its annual flood. 𝑄𝑗,𝑘 is the 𝑗𝑡ℎ POT in year 𝑘𝑡ℎ, 380 

while 𝜗𝑗,𝑘 is the time of the year when it occurred.  381 

𝒛̅𝑃𝑂𝑇 =

∑ ∑
𝑄𝑗,𝑘
𝑄𝐴𝑀,𝑘

 cos 𝜗𝑗,𝑘
𝑁𝑃𝑂𝑇,𝑘
𝑗=1

𝑁𝑦𝑒𝑎𝑟𝑠
𝑘=1

∑ ∑
𝑄𝑗,𝑘
𝑄𝐴𝑀,𝑘

 
𝑁𝑃𝑂𝑇,𝑘
𝑗=1

𝑁𝑦𝑒𝑎𝑟𝑠
𝑘=1

+ 𝑖

∑ ∑
𝑄𝑗,𝑘
𝑄𝐴𝑀,𝑘

 sin 𝜗𝑗,𝑘
𝑁𝑃𝑂𝑇,𝑘
𝑗=1

𝑁𝑦𝑒𝑎𝑟𝑠
𝑘=1

∑ ∑
𝑄𝑗,𝑘
𝑄𝐴𝑀,𝑘

 
𝑁𝑃𝑂𝑇,𝑘
𝑗=1

𝑁𝑦𝑒𝑎𝑟𝑠
𝑘=1

= 𝑧𝑃̅𝑂𝑇,𝑥 + 𝑖𝑧𝑃̅𝑂𝑇,𝑦 

(27) 

POT seasonality indices |𝒛̅𝑃𝑂𝑇| and 𝜗̅𝑃𝑂𝑇 are obtained replacing the components 𝑧𝑃̅𝑂𝑇,𝑥 and 382 

𝑧𝑃̅𝑂𝑇,𝑦 of 𝒛̅𝑃𝑂𝑇 in Eqs. 26 and 27, respectively.  383 

For the FF seasonality (Figure 2e-f), all POTs equal or larger than the reference frequent 384 

flood 𝑄𝐹𝐹, considered herein as the 2-year event, 𝑄𝐹𝐹 = 𝑄𝑃𝑂𝑇(𝑇 = 2), are represented by a unit 385 

vector (like the annual maxima in Eq. 24) and therefore weighted in the same way, while smaller 386 

events in the PDS are suitably scaled by 𝑄𝐹𝐹 so as to decrease their importance in the overall 387 

seasonality (Eq. 29). In this way, information about both major, but rare events, as well as frequent 388 

smaller floods, is incorporated into the seasonality indices, and the choice of 𝑄𝐹𝐹 defines the lower 389 

bound for the range of flood sizes considered with full weight.  390 

𝒛̅𝐹𝐹 =
∑

𝑄𝑚
max [𝑄𝑚, 𝑄𝐹𝐹]

 cos 𝜗𝑚
𝑁𝑃𝑂𝑇
𝑚=1

∑
𝑄𝑚

max [𝑄𝑚, 𝑄𝐹𝐹]
 

𝑁𝑃𝑂𝑇
𝑗=1

+ 𝑖
∑

𝑄𝑚
max [𝑄𝑚, 𝑄𝐹𝐹]

 sin 𝜗𝑚
𝑁𝑃𝑂𝑇
𝑚=1

∑
𝑄𝑚

max [𝑄𝑚, 𝑄𝐹𝐹]
 

𝑁𝑃𝑂𝑇
𝑗=1

= 𝑧𝐹̅𝐹,𝑥 + 𝑖𝑧𝐹̅𝐹,𝑦 

(28) 

𝑁𝑃𝑂𝑇 is the number of POTs in the PDS, 𝑄𝑚 is the 𝑚𝑡ℎ POT of the series, and 𝜗𝑚 is the 391 

time of the year when it occurred. FF seasonality indices |𝒛̅𝐹𝐹| and 𝜗̅𝐹𝐹 are obtained replacing the 392 

components 𝑧𝐹̅𝐹,𝑥 and 𝑧𝐹̅𝐹,𝑦 of 𝒛̅𝐹𝐹 in Eqs. 26 and 27, respectively.  393 

Unlike the AM seasonality, which only provides insight into the drivers of the largest flood 394 

each year, the POT seasonality is expected to incorporate information about all major floods in the 395 

record. In addition, the FF seasonality looks at the seasonal distribution of all peaks in the POT 396 

series, but emphasizing those that are larger than the reference frequent flood 𝑄𝐹𝐹.  397 

These descriptors are intended to complement each other; from their comparison, one 398 

should infer information on the seasonality of events across a range of magnitudes, possibly with 399 

different patterns of seasonality.  400 

 401 

 402 

 403 
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3 Case study basins 404 

We considered the subset of CONUS watersheds from the well-known CAMELS dataset 405 

(Addor et al., 2017) for which continuous flow data (U.S. Geological Survey, 2022) are available 406 

for a minimum of 18 water years. Years with incomplete records were discarded if the gap was 407 

larger than 20%. 408 

Basins with trends in the AM series or in the number of POTs per year, detected through 409 

the Mann-Kendall test (Bayazit, 2015), were excluded from the analysis, to ensure stationarity. 410 

Potentially influential low flows (PILFs; Cohn et al., 2013) were removed from the AM series 411 

using the MGBT algorithm recommended in the USGS Bulletin 17C (England et al., 2019), 412 

adopting the R package “MGBT” by Asquith et al. (2021). The methodology assumes that the log-413 

transformed AM follow a normal distribution, and a statistical test is used to identify any low 414 

outliers in the series (Cohn et al., 2013).  415 

The final dataset contains 432 basins with minimum human impacts, whose attributes 416 

encompass topographic, geomorphologic, climatic, and land-cover (LC) information, as well as 417 

hydrologic signatures (Addor et al., 2017), supplemented with the flood seasonality indices 418 

described in Section 2.5.  419 

In what follows, basin attributes from the CAMELS dataset are referenced using the same 420 

names as in Addor et al. (2017). The only exception is the dominant land-cover 421 

(𝑑𝑜𝑚_𝑙𝑎𝑛𝑑_𝑐𝑜𝑣𝑒𝑟) categorical variable, from which we derive as many binary variables as the 422 

number of categories. Each binary variable takes the value of 1 for basins with that specific 423 

dominant land-cover, 0 otherwise. These binary variables are indicated by the “LC-”  prefix, such 424 

as, e.g.: 𝐿𝐶 −𝑀𝑖𝑥𝑒𝑑 𝐹𝑜𝑟𝑒𝑠𝑡𝑠, 𝐿𝐶 − 𝐷𝑒𝑐𝑖𝑑. 𝐵𝐿 𝐹𝑜𝑟𝑒𝑠𝑡 (deciduous broadleaf), 𝐿𝐶 − 𝐶𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠, 425 

etc. 426 

The same approach was adopted for the dominant geologic class (𝑔𝑒𝑜𝑙_𝑐𝑙𝑎𝑠𝑠_1𝑠𝑡) 427 

categorical variable, but none of the resulting binary variables were optimal predictors according 428 

to the wrapper method.  429 

 430 

4 Results and discussion 431 

4.1 Observed and duality-derived underestimation 432 

Underestimation of the 𝑇-year event from AM-, with respect to POT-FFA, is obtained from 433 

Eq. (2) considering the quantiles 𝑄𝐴𝑀(𝑇) and 𝑄𝑃𝑂𝑇(𝑇) from the GEV and GP distributions, 434 

respectively. The Kolmogorov-Smirnov GOF test (Kottegoda & Rosso, 1997) indicates a good fit 435 

of these two distributions to the AM and POT series, respectively, for all the considered basins. 436 

Also, the estimated FF quantiles display no sensitivity to the PDS threshold-selection method. 437 

Figure 3a shows the observed spatial pattern of underestimation 𝑢(𝑇) of FFs from AM-FFA, as 438 

compared to POT-FFA (Eq. 2).  439 
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Figure 3. a) Spatial pattern of observed FF underestimation 𝑢(𝑇) for the 1.5-year event; 441 

b) absolute deviation between the observed and duality-derived underestimation, |𝑢(𝑇) − 𝑢̂(𝑇)| 442 

for the 1.5-year event under the assumption of PSN count model (Eq. 21); catchments where the 443 

deviation exceeds 8% are marked with triangles, pointing either up or down depending on the 444 

sign of the deviation; c) same as b), but with BIN or NEG count model (Eq. 23); d) Absolute 445 

deviation of Langbein-estimated return period 𝑅𝐿 from the GEV-derived 𝑅 of the POT-quantile 446 

with 𝐴𝑅𝐼 of 1.5 years; catchments where the deviation exceeds 0.35 years are marked with 447 

triangles, pointing either up or down depending on the sign of the deviation. In b), c), and d), 448 

clusters A-H of basins with large deviations are circled.  449 

 450 

There is a clear spatial structure in the degree of underestimation of the 1.5-year quantile. 451 

Minima of 10-20% are observed in many northern and some north-central states. A band of minima 452 

runs from the states of Washington and Oregon, on the west coast, moving south-east down to 453 

Colorado and northern New Mexico. There are few observations in the north-central U.S., due to 454 

the lack of CAMELS stations with sufficiently long flow records for the Dakotas, Nebraska, and 455 

Minnesota. Moving east, minima are also observed in the strip of territory starting from New 456 

England, on the east coast, and in states around the Great Lakes, down to Kentucky and West 457 

Virginia, on the west side of the Appalachian range.  458 

The Appalachian range is a clear dividing line on the map, as the land east of it, to the 459 

Atlantic coast, is characterized by rates of FF underestimation of about 25-30%, with some peaks 460 

up to 45%, in contrast with the 10-20%, that prevails on its western side.  461 

Moving down to Florida, most watersheds still present a 25-30% underestimation, but there 462 

are also a few basins characterized by 50% or more, resulting in greater heterogeneity overall. A 463 

discontinuity along the eastern coast can be observed, north of Florida, with a few basins between 464 

Georgia and South Carolina (i.e., the Savannah River) showcasing underestimation rates of 60%, 465 

and a few others in the south of Georgia with rates of 45-50%. These are higher values of 466 

underestimation than those generally observed for other watersheds close to the Atlantic, all 467 

clustered in the same region. Interestingly, this area also represents a singularity from a climatic 468 

perspective, with respect to the rest of the eastern coast. More precisely, it is the only region not 469 

significantly affected by precipitation from tropical cyclones (Villarini & Smith, 2010).  470 

Basins close to the Gulf coast and in the hinterland above it, up to Tennessee and Arkansas, 471 

present a gradual increase in the rate of underestimation, moving from east to west. A similar east-472 

west pattern is also observed when moving from south of the Great Lakes to Kansas, through 473 

Illinois and Missouri. This spatial trend of increasing underestimation reaches a local peak in the 474 

central and south-central U.S. (i.e., Texas, Oklahoma, and Kansas), where some of the highest 475 

underestimation rates in the country are observed, above 40%, although with great heterogeneity 476 

due to the occasional presence of catchments with only moderate underestimation, particularly in 477 

coastal Texas. High values of underestimation are also observed in the south-west US (New 478 

Mexico, Arizona, central and southern California).  479 

Along the west coast of California, moving from south to north, a gradual decrease of the 480 

degree of underestimation occurs, from 50-55% to 30%. The underestimation further decreases 481 

northward, reaching minima of 10-20% along the coasts of Oregon and Washington.  482 

Figures 3b and 3c show the absolute deviations of duality-derived underestimation 𝑢̂(𝑇) 483 

(Eqs. 21 and 23) from the observed 𝑢(𝑇).  Filled circular markers indicate deviations not larger 484 

than 8%, showing that very accurate predictions of underestimation can be derived from the duality 485 

in those basins. Slight differences are imputable to sample variability in parameter estimation. 486 
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About 20% of the basins are categorized as anomalous, i.e., the deviation exceeds 8%; these are 487 

marked with a triangle, pointing either up or down to indicate that 𝑢̂(𝑇) > 𝑢(𝑇) or 𝑢̂(𝑇) < 𝑢(𝑇), 488 

respectively. Figure 3b shows deviations when the PSN count model is adopted (Eq. 21) while 489 

Figure 3c depicts results for BIN or NEG count models (Eq. 23). It is interesting to note that 490 

anomalous catchments with high deviations are strongly clustered in space. The most striking 491 

groups are in the south-central and south-western U.S., as well as in the area that encompasses 492 

northern Florida and southern Georgia, with deviations above 10-15% (Figures 3b-c). Another 493 

cluster of anomalous deviations, although not as strong, is observed along the Appalachian range. 494 

All these clusters are observed independently of the assumption on the distribution of the yearly 495 

number of exceedances, since a similar structure is observed for both a PSN (Figure 3b) and BIN 496 

or NEG (Figure 3c) count model. However, in the latter case, some clusters are more widespread 497 

(e.g., clusters B and E in Figure 3c), and more anomalous watersheds are observed, including in 498 

regions that are not affected when considering a PSN count model (e.g., group H in Figure 3c). 499 

A BIN or NEG count model results in overall larger deviations. For instance, for the 500 

clusters observed in Kansas and Texas, the duality-derived estimates under BIN (or NEG) count 501 

model often predict levels of underestimation 25% larger than the observed (Figure 3c), while 502 

under the assumption of a PSN count model absolute deviations typically do not exceed 10% 503 

(Figure 3b). There are a few catchments in the Sierra Nevada/Great Basin and at the boundary 504 

between Georgia and South Carolina where an opposite behavior is observed, i.e., deviations are 505 

larger when a PSN count model is considered. It is worth noting that in these few watersheds the 506 

hypothesis that the number of exceedances is PSN distributed can be rejected, based on the Chi-507 

square GOF test (Kottegoda & Rosso, 1997; open circles in Figure 3b), but not the hypotheses of 508 

a BIN or NEG count model (open circles and open triangles in Figure 3c, respectively).  509 

However, from a broader perspective, looking at the distribution of the number of 510 

exceedances is not decisive to choose the most accurate expression for duality-based predictions 511 

of underestimation. The point biserial correlation between watersheds where, e.g., PSN can be 512 

rejected and catchments where |𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇) − 𝑢(𝑇)| exceeds 8% is a modest 0.40. The p-513 

value of the Chi-square test and the magnitude of the deviation are also poorly correlated. 514 

Furthermore, there is some overlap between basins where all the three considered count models 515 

should be rejected, and interestingly all these watersheds belong to the clusters of basins with large 516 

deviations (Figures 3b-c). Thus, the reasons for the poor performance of the duality-based 517 

predictions of underestimation must be identified by looking at what other theoretical assumptions 518 

are violated in regions with large deviations, beyond what distribution best fits the series of the 519 

annual count of exceedances. We propose an explanation in Subsection 4.4. 520 

So far, all comparisons between observed and theoretical underestimation have focused on 521 

the 1.5-year event, taken as a representative FF. Figure 4 shows the observed and duality-derived 522 

underestimation for other FF quantiles, considering values of 𝑇 up to 5 years. As expected, the 523 

underestimation tends to decrease for larger 𝑇s, indicating that predictions from AM and POT-524 

FFA converge for increasingly less frequent floods. This is consistent with Langbein’s equation 525 

(Eq. 1), which predicts smaller differences between 𝑅 and 𝐴𝑅𝐼 for increasing 𝑇 (Wang & Holmes, 526 

2020).  527 
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 528 

Figure 4. Spatial distribution of the observed underestimation 𝑢(𝑇), and duality-derived 529 

underestimations 𝑢̂(𝜉𝑔, 𝜎𝑔 ,  𝜇𝑔, 𝑇), and 𝑢̂(𝜉𝑝, 𝜎𝑝,  𝜇𝑝, 𝜆, 𝜂, 𝑇), for a range of 𝑇s.  530 

 531 

 532 
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Relatively higher underestimation rates are still observed in south-central and south-533 

western U.S., independently of 𝑇, so that the spatial structure of 𝑢(𝑇) is preserved. Both duality-534 

derived underestimations, 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇) and 𝑢̂(𝜉𝑝, 𝜎𝑝 , 𝜇𝑝, 𝜆, 𝜂, 𝑇),  match the observed 535 

underestimation, overall.   536 

4.2 Duality as a tool to adjust AM-based FF estimates 537 

From a practical standpoint, Eq. (21) can be used to estimate the amount of FF 538 

underestimation by AM-FFA without the need to compare the AM-based estimate of the 𝑇-year 539 

event to the corresponding POT value. Like Langbein’s equation (Eq. 1), Eq. (21) is valid under 540 

the assumption of a PSN count model for the annual number of exceedances. The duality-derived 541 

quantile ratio 𝑟̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇) can be regarded as a correction coefficient of the 𝑇-year quantile 542 

obtained from AM-FFA, function of 𝑇 and the GEV parameters. The corrected, duality-based 𝑇-543 

year quantile 𝑄𝑃𝑂𝑇
∗ (𝑇) can be obtained from the AM-based quantile using Eq. (30), without the 544 

need to perform POT-FFA.  545 

𝑄𝑃𝑂𝑇
∗ (𝑇) =

1

𝑟̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)
𝑄𝐴𝑀(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇) (29) 

Although the accuracy of the predicted underestimation is lower in some regions (Figure 546 

3b), the errors between observed and predicted underestimation are relatively small, so that overall 547 

the bias from applying an “incorrect correction” will still be much smaller than considering the 548 

AM-based FF quantile without any correction.  549 

 It is preferable to use the GP-GEV duality and resulting 𝑟̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇) (Eq. 21) instead 550 

of the GP-K5E duality with its correction coefficient 𝑟̂(𝜉𝑝, 𝜎𝑝, 𝜇𝑝, 𝜆, 𝜂, 𝑇) (Eq. 23), because 1) the 551 

GP-GEV duality leads to smaller absolute errors than the GP-K5E duality, overall (Figure 3b-c); 552 

and 2) the GEV is a commonly used 3-parameter distribution, in contrast to the 5-parameter K5E 553 

required for computing 𝑟̂(𝜉𝑝, 𝜎𝑝 , 𝜇𝑝, 𝜆, 𝜂, 𝑇).  554 

4.3 Theoretical and physical drivers of underestimation 555 

Eq. (21) also affords to study the effects that GEV parameters have on the level of 556 

underestimation 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇). Figure 5 maps 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇) in the 𝜎𝑔-𝜇𝑔 and 𝜎𝑔/𝜇𝑔-𝜉𝑔 planes, 557 

for two values of 𝑇.  558 
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 559 

Figure 5. Case study basins mapped in the 𝜇𝑔 − 𝜎𝑔 and 𝜉𝑔 − 𝜎𝑔/𝜇𝑔 planes. The color 560 

gradient shows the computed underestimation 𝑢̂(𝜉𝑔, 𝜎𝑔,  𝜇𝑔, 𝑇) for 𝑇 = 1.5 (a and b) and 𝑇 = 3 561 

years (c and d). 562 

 563 

For small 𝑇s (e.g., 1.5 years; Figure 5a-b) the scale-location ratio 𝜎𝑔/𝜇𝑔 is the main control 564 

over 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇), with larger 𝜎𝑔/𝜇𝑔 values associated to greater underestimation while the 565 

effect of the shape 𝜉𝑔 is negligible. For larger 𝑇s (e.g., 3 years; Figure 5c-d) though, the shape 566 

parameter also contributes to the amount of underestimation, with larger (positive) 𝜉𝑔 associated 567 

to larger 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇), for a given 𝜎𝑔/𝜇𝑔 ratio. Hence, the convergence of quantiles estimated 568 

from AM- and POT-FFA for increasing 𝑇s is slower at sites with larger shape parameters. For our 569 

case study, the largest 𝜎𝑔/𝜇𝑔 values are all paired with large 𝜉𝑔 values, indicating that U.S. basins 570 

most affected by FF underestimation tend to experience this issue for a wider range of 𝑇s, as 571 

compared to watersheds with modest underestimation (also see Figure 4).  572 

Optimal predictors for 𝜎𝑔/𝜇𝑔 show that arid climates are associated to larger 𝜎𝑔/𝜇𝑔 ratios 573 

(Figures 6-7), and therefore greater FF underestimation.  574 

 575 
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Figure 6. a) Pareto front of optimal trade-off solutions among three competing objectives 577 

to minimize: number of predictors 𝑁𝑓, mean absolute error MAE, and width of the interquartile 578 

range IQR. Each point corresponds to a learning machine trained to estimate 𝜎𝑔/𝜇𝑔 with a set of 579 

𝑁𝑓 basin characteristics; b) heatmap with the frequency of usage of variables as optimal predictors 580 

in different solutions with same 𝑁𝑓; solutions with 𝑁𝑓 up to 10 are considered (see online 581 

Supporting information for the full heatmap).  582 

 583 

 584 

 585 

Figure 7. Lower triangular matrix: bivariate partial-dependence plots that show the 586 

relationships between key basin attributes and 𝜎𝑔/𝜇𝑔 values. Upper triangular matrix: Spearman 587 

correlation of key basin attributes. Diagonal: frequency distribution of the key basin attributes; 588 

brown histograms are used for categorical and binary variables, while continuous variables are in 589 

blue.  590 

 591 

 592 

The number of dry days per year (𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑓𝑟𝑒𝑞; Addor et al., 2017) has the strongest predictive 593 

power on 𝜎𝑔/𝜇𝑔, as it is used in every optimal solution, including that for 𝑁𝑓 = 1 (Figure 6). 594 
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Similar observations have been made for Europe (Lun et al., 2021), where the aridity index was 595 

identified as the main control on the coefficient of variation of annual maxima (𝐶𝑉𝐴𝑀). Although 596 

the wrapper method never considered the aridity index (𝑎𝑟𝑖𝑑𝑖𝑡𝑦 in the CAMELS dataset) among 597 

the optimal predictors of  𝜎𝑔/𝜇𝑔, our findings are equivalent to those of Lun et al. (2021) for 598 

Europe, because of the strong positive correlation between 𝐶𝑉𝐴𝑀 and 𝜎𝑔/𝜇𝑔 (Pearson correlation 599 

𝜌𝑃(𝐶𝑉𝐴𝑀, 𝜎𝑔/𝜇𝑔) = 0.85  and Spearman correlation 𝜌𝑆(𝐶𝑉𝐴𝑀, 𝜎𝑔/𝜇𝑔) = 0.87, for our dataset), as 600 

well as between 𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑓𝑟𝑒𝑞 and the aridity index [𝜌𝑃(𝑎𝑟𝑖𝑑𝑖𝑡𝑦, 𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑓𝑟𝑒𝑞) = 0.74, 601 

𝜌𝑆(𝑎𝑟𝑖𝑑𝑖𝑡𝑦, 𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑓𝑟𝑒𝑞) = 0.82 ].  602 

Optimal solutions shown by the heatmap in Figure 6b, and PDPs in Figure 7 help identify 603 

other basin characteristics that have a strong control over 𝜎𝑔/𝜇𝑔 and, in turn, on FF 604 

underestimation by AM-FFA. The type of climate and the size of the river have the strongest 605 

influence. E.g., watersheds with low mean daily precipitation values (𝑝_𝑚𝑒𝑎𝑛) are characterized 606 

by larger values of the 𝜎𝑔/𝜇𝑔 ratio. This is enhanced at locations that also experience long periods 607 

with low flows each year (high 𝑙𝑜𝑤_𝑞_𝑑𝑢𝑟). Low average precipitation is typical of an arid climate 608 

[𝜌𝑆(𝑎𝑟𝑖𝑑𝑖𝑡𝑦, 𝑝_𝑚𝑒𝑎𝑛) = −0.65], and low values of 𝑝_𝑚𝑒𝑎𝑛 may be associated to large numbers 609 

of dry days (𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑓𝑟𝑒𝑞). Having long periods with low flows in this kind of climate may be 610 

a sign of intermittent, flashy behavior, reflected by larger 𝜎𝑔/𝜇𝑔 ratios. This explains the prediction 611 

of higher 𝜎𝑔/𝜇𝑔 values at locations that display both signs of an arid climate (e.g., large values of 612 

𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑓𝑟𝑒𝑞 and small values of 𝑝_𝑚𝑒𝑎𝑛) as well as persistent low flows.  613 

Large 𝜎𝑔/𝜇𝑔 values are also predicted at basins with long durations of high precipitation 614 

events (i.e., with large ℎ𝑖𝑔ℎ_𝑝𝑟𝑒𝑐_𝑑𝑢𝑟 values) and persistent low flows during the year (large 615 

𝑙𝑜𝑤_𝑞_𝑑𝑢𝑟 values). These are typical in regions dominated by synoptic-scale weather systems 616 

(Addor et al., 2017), where annual precipitation and flow cycles display strong seasonality, with 617 

maxima concentrated in winter and minima in summer. Watersheds from these locations are 618 

characterized by ℎ𝑖𝑔ℎ_𝑝𝑟𝑒𝑐_𝑡𝑖𝑚𝑖𝑛𝑔 in the December-February (DJF) period, and negative 619 

𝑝_𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 values, which both indicate that precipitation events occur predominantly in 620 

winter. The range of variability of floods (reflected by 𝜎𝑔) associated to this kind of climate can 621 

be wide, which explains why the learning machine predicts large 𝜎𝑔/𝜇𝑔 values when the 622 

precipitation cycle displays strong winter seasonality concurrent with large average duration of 623 

high precipitation events (ℎ𝑖𝑔ℎ_𝑝𝑟𝑒𝑐_𝑑𝑢𝑟). 624 

Indicators of river size relative to basin area, such as the mean and the 95-percentile of 625 

daily flow per unit area (i.e., 𝑞_𝑚𝑒𝑎𝑛 and 𝑞95, respectively) also represent strong controls over 626 

the 𝜎𝑔/𝜇𝑔 ratio. This was expected, as rivers with greater flows have larger 𝜇𝑔 and are generally 627 

more stable (Dell’Aira et al., 2022), resulting in narrower ranges of variability (therefore, smaller 628 

𝜎𝑔), and consequentially smaller 𝜎𝑔/𝜇𝑔 values.  629 

Basin attributes of secondary importance for predicting 𝜎𝑔/𝜇𝑔 include vegetation land-630 

cover (e.g., 𝐿𝐶_𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑; 𝑓𝑟𝑎𝑐_𝑓𝑜𝑟𝑒𝑠𝑡) and geomorphic information (e.g., 631 

𝑔𝑒𝑜𝑙_𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦; 𝑔𝑒𝑜𝑙_𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦). The former may be regarded as a proxy for the type of 632 

climate, while the latter may affect the hydrologic response of basins. It is worth noting that, ceteris 633 

paribus, the learning machine assigns larger 𝜎𝑔/𝜇𝑔 values to watersheds with grassland dominant 634 

land-cover (𝐿𝐶𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 = 1), more frequent in arid and semi-arid regions (Addor et al., 2017), 635 

than catchments with other dominant land-cover types. This suggests that the learning machine is 636 

exploiting the relationships between climate and vegetation type.  637 
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Results on the optimal predictors for the shape parameter 𝜉𝑔 show similar dependencies to 638 

those for 𝜎𝑔/𝜇𝑔, with large 𝜉𝑔 values associated to dry regions and small, negative values to humid 639 

areas. This is in agreement with previous research (e.g., Metzger et al., 2020; Villarini & Smith, 640 

2013), matching our observations (Figure 4) that basins in arid and semi-arid regions show slower 641 

rates of convergence of quantiles estimated from AM- and POT-FFA, for increasing 𝑇.  A large, 642 

positive 𝜉𝑔 results in a GEV-PDF without upper bound, which may better describe the flashy 643 

behavior of rivers in arid catchments, in contrast with the more stable flows in humid regions. The 644 

list of basin attributes that affect 𝜉𝑔 includes variables highly correlated to the aridity index, such 645 

as 𝑟𝑢𝑛𝑜𝑓𝑓_𝑟𝑎𝑡𝑖𝑜 [𝜌𝑆(𝑎𝑟𝑖𝑑𝑖𝑡𝑦, 𝑟𝑢𝑛𝑜𝑓𝑓_𝑟𝑎𝑡𝑖𝑜) = −0.81] and 𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑑𝑢𝑟 646 

[𝜌𝑆(𝑎𝑟𝑖𝑑𝑖𝑡𝑦, 𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑑𝑢𝑟) = 0.77], as well as information on the type of vegetation, which is 647 

a proxy for the type of climate. Heatmaps and PDPs of the optimal basin attributes related to the 648 

variability in 𝜉𝑔 do not add any additional insight; therefore, they are not published in this work.  649 

4.4 Validity of the duality-based quantile ratio and Langbein’s equation 650 

We concluded in Section 4.1 that the validity limits of Eq. (21) are not determined by the 651 

violation of the hypothesis of a PSN count model.  We speculate here that the clusters of anomalous 652 

basins with large |𝑢(𝑇) − 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)| deviations (for 𝑇 equal to 1.5 years) can be explained 653 

by the occurrence of mixed flood populations. Clusters (indicated with letters A–G in Figure 4b-654 

c) are found in regions where the presence of mixed populations is well-acknowledged. E.g., a 655 

large proportion of flood events in the Sierra Nevada (western part of cluster A), coastal California 656 

(B), and central Arizona (C) is generated by atmospheric rivers (ARs), resulting in strongly 657 

heterogeneous populations (Barth et al., 2017, 2019; Villarini, 2016). In the Sierra, orographically 658 

enhanced precipitation in the November-April period and snowfall in winter (with consequent 659 

snowmelt floods in April-July) contribute further flood-generating mechanisms (Barth et al., 2017; 660 

U.S. Water Resources Council, 1976). In the Great Basin (eastern part of cluster A), snowmelt, 661 

frontal storms, and convective precipitation may generate major floods in the springtime, winter, 662 

and summer months, respectively (Burkham, 1988). In Arizona and New Mexico (cluster C), 663 

floods in the summer period may be caused by a variety of different processes, such as convective 664 

events (some of these connected to the North American monsoon activity, depending on the 665 

region) and eastern North Pacific tropical cyclones (Barth et al., 2017; Villarini, 2016). Coastal 666 

Texas, northern Florida/southern Georgia, and the Appalachian range (clusters E, F, and G) present 667 

the lowest AM seasonality within the U.S. (Villarini, 2016), indicating that AM may be observed 668 

in a different season each year, in turn suggesting the presence of multiple flood-generating 669 

mechanisms. Tropical cyclones and extratropical systems (TCs and ETSs, respectively), as well 670 

as organized warm-season convective systems (OWSCS) represent some of the possible drivers in 671 

those regions (Villarini, 2016; Villarini & Smith, 2010, 2013; Villarini et al., 2014). Further 672 

heterogeneity is introduced by the sensitivity of TC-generated floods to the phases of the North 673 

Atlantic and El Niño-Southern oscillations (Villarini et al., 2014), which may introduce variability 674 

in the characteristics of the flood population across years. Bulletin 17B (U.S. Interagency Advisory 675 

Committee on Water Data, 1982) already recommends separating TC-generated floods from other 676 

peaks of the series, for FFA applications. Southern Georgia displays the largest deviations 677 

observed for cluster F, which may be due to the presence of ETS-generated floods in early spring 678 

(Villarini & Smith, 2010), which apparently represent most AM events in this region, as suggested 679 

by the AM seasonality concentrated in the March-April period (Villarini, 2016). This indicates the 680 

presence of one dominant AM generating mechanism, related to the occurrence of ETSs, even 681 
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though the POT series may come from heterogeneous flood populations, as exceedances come 682 

from a variety of different generating mechanisms. These conditions may lead to a more severe 683 

violation of the assumption of identically distributed events because it implies that one generating 684 

mechanism produces peaks that are systematically larger than the events produced by other 685 

mechanisms, exacerbating bimodality in the flood population. A similar explanation can be 686 

provided for clusters D and H, where the medium-to-strong AM seasonality is concentrated in the 687 

May-June period (Villarini, 2016), concurrently with North Atlantic low-level jets (NALLJs; 688 

Weaver et al., 2012). This indicates that NALLJs represent the dominant AM generating 689 

mechanism for that region, therefore introducing maxima that come from a notably different 690 

distribution as compared to not-NALLJs induced floods.  691 

 Results from optimal feature analysis support our hypothesis that mixed populations affect 692 

the validity of Eq. (21), as the key basin attributes for watershed classification are all related to the 693 

seasonality of flood and precipitation, as well as the type of vegetation, which in turn can be related 694 

to the type of climate. Clusters of anomalous basins are identified considering a threshold 695 

|𝑢(𝑇) − 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)| > 8%.  696 

Figures 8-9 show that flow elasticity (i.e., sensitivity) to changes in precipitation 697 

(𝑠𝑡𝑟𝑒𝑎𝑚_𝑒𝑙𝑎𝑠), the runoff to precipitation ratio (𝑟𝑢𝑛𝑜𝑓𝑓_𝑟𝑎𝑡𝑖𝑜), as well as measures of flow and 698 

precipitation seasonality (ℎ𝑖𝑔ℎ_𝑝𝑟𝑒𝑐_𝑡𝑖𝑚𝑖𝑛𝑔, 𝑙𝑜𝑤_𝑝𝑟𝑒𝑐_𝑡𝑖𝑚𝑖𝑛𝑔, |𝒛̅𝑭𝑭|, |𝒛̅𝑨𝑴|, and 𝜃̅𝐴𝑀) all play 699 

an important role in affecting the probability of having a basin with large |𝑢(𝑇) − 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)| 700 

deviations.  701 
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Figure 8. a) Pareto front of optimal trade-off solutions among three competing objectives 703 

to minimize: number of predictors 𝑁𝑓, ROC area under the curve (ROC_AUC), and Precision-704 

Recall area under the curve (PR_AUC). Each point corresponds to a learning machine trained to 705 

classify basins with large deviations |𝑢(𝑇) − 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)|, hence, where the duality-derived 706 

Eq. (21) is not valid, using a set of 𝑁𝑓 basin characteristics; b) heatmap with the frequency of usage 707 

of variables as optimal predictors in different solutions with same 𝑁𝑓; solutions with 𝑁𝑓 up to 10 708 

are considered (see online Supporting information for the full heatmap).  709 

 710 

 711 

 712 

Figure 9. Lower triangular matrix: PDPs that show the relationships between key basin 713 

attributes and the probability that the deviation between observed and duality-derived 714 

underestimation is >8%. This is considered as an empirical indicator that the GP-GEV duality (Eq. 715 

21) is not valid at a given watershed. Upper triangular matrix: Spearman correlation of key basin 716 

attributes; correlation of binary variables is not computed because they are different categories of 717 

the same categorical variable. Diagonal: frequency distribution of the key basin attributes; brown 718 

histograms are used for categorical and binary variables, while blue for continuous variables.   719 

   720 
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 721 

A low FF seasonality (i.e., |𝒛̅𝑭𝑭| close to 0) is generally associated with a high probability 722 

of having an anomalous watershed. Strong AM seasonality (|𝒛̅𝑨𝑴| close to 1) concurrent with low 723 

FF seasonality leads to higher chances of an anomaly, while if both AM and FFs present strong 724 

seasonality, the duality equation (Eq. 21) should give a good estimate of the underestimation. A 725 

strong AM seasonality coupled with a strong FF seasonality indicates that peaks tend to occur all 726 

in the same period of the year, resulting in a homogenous flood population. In contrast, a strong 727 

AM seasonality paired to a low FF seasonality suggests that there is one generating mechanism 728 

that often results in the largest annual event to occur in the same season, across multiple years, but 729 

other types of floods are also present in the peak series.  730 

Another sign of large |𝑢(𝑇) − 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)| deviations is a high discharge-precipitation 731 

elasticity (𝑠𝑡𝑟𝑒𝑎𝑚_𝑒𝑙𝑎𝑠). This is because a strong flood sensitivity to precipitation may result in 732 

greater changes of the characteristics of flood distributions across years with different amounts 733 

and time distributions of rainfall. The highest values of flow elasticity in the U.S. are observed in 734 

arid and semiarid regions (Sankarasubramanian et al., 2001).  735 

Regarding the effect of dominant land-cover type, mixed or deciduous-broadleaf-forest 736 

catchments, common along the Appalachian range, are less likely to be classified as anomalous 737 

than savanna basins, more typical in parts of Texas and California. This reflects the fact that there 738 

are both regular and anomalous watersheds in the eastern U.S., characterized either by mixed or 739 

deciduous-forest land-cover, while basins in savanna regions present large |𝑢(𝑇) −740 

𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)| deviations more systematically. Cropland LC-dominated watersheds, widespread 741 

in central U.S. (including in dry climate regions such as Texas and Kansas), get a high probability 742 

of displaying large deviations if the 𝑟𝑢𝑛𝑜𝑓𝑓_𝑟𝑎𝑡𝑖𝑜 is low (typical of dry climates) or 𝑠𝑡𝑟𝑒𝑎𝑚_𝑒𝑙𝑎𝑠 743 

is high. This may be interpreted as a way of identifying the types of basins observed in Kansas and 744 

northern Texas (clusters E and part of D, respectively) by cross-checking multiple characteristics 745 

typical of those regions.  746 

To conclude, the highly non-linear relationships shown in Figure 9 between key basin 747 

attributes and the probability of large deviation |𝑢(𝑇) − 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)| all have a quite 748 

straightforward interpretation if the hypothesis of the influence of mixed populations is deemed 749 

correct. Or, at least, they are not in conflict with each other. This may be regarded as an empirical, 750 

a posteriori proof in support of this hypothesis.  751 

Langbein’s equation is valid under the same two assumptions required by Eq. (21): i.i.d. 752 

peaks and that the number of exceedances is PSN distributed. Considering thresholds of 8% for 753 

the |𝑢(𝑇) − 𝑢̂(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇)| deviations and 0.35 years for the errors in the Langbein-estimated 754 

return period 𝑅𝐿 (Figure 3d), the point biserial correlation between watersheds where Eq. (21) and 755 

Eq. (1) produce large errors is 0.78. This high correlation suggests that regions where the two 756 

theoretical equations are not perfectly valid are overall the same (also compare Figures 4b-d); in 757 

both cases, the most likely explanation is the occurrence of mixed populations, violating the 758 

assumption of identically distributed events. In practice, for design purposes or any other case 759 

where one needs to know the flood magnitude for a given frequency, Eq. (21) should be used 760 

together with AM-FFA, as it allows for directly correcting the AM-based flood estimate. In 761 

contrast, Langbein’s equation is more useful in a verification framework, i.e., when one is 762 

interested in assessing the actual frequency of the design flood computed from AM-FFA.  763 

 764 
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5 Conclusions 765 

Frequent flood underestimation by AM-FFA is a well-known phenomenon in engineering 766 

practice but is poorly understood from a theoretical standpoint. Probably this is one of the reasons 767 

why the issue has been systematically overlooked, with many practitioners across many disciplines 768 

using AM to predict FFs such as the 2-year quantile, or even more frequent floods.  769 

This work considers a large sample of watersheds with minimum human impact to show 770 

that the level of FF underestimation can vary widely depending on the GEV parameters, and in 771 

turn the type of climate, the size of the river, and other basin characteristics that affect the 772 

distributional characteristics of AM. The scale-location ratio is the main control over the amount 773 

of underestimation, for a given average interarrival time 𝑇, while the shape parameter determines 774 

how quickly AM- and POT-estimated quantiles converge, for increasing 𝑇.  775 

We propose a practical relationship, derived from the theoretical duality between the GEV 776 

and GP distributions, that can be used to correct AM-based estimates of FFs, considering that their 777 

actual frequency is better reflected by the 𝐴𝑅𝐼 predicted by POT-FFA. However, we were able to 778 

characterize some regions in the U.S. where this useful tool underperforms, as does the well-known 779 

Langbein’s equation, misestimating the gap between 𝑅 (from AM-) and 𝐴𝑅𝐼 (from POT-FFA). 780 

We conclude that the poor performance of both approaches is imputable to the occurrence of mixed 781 

flood populations. In these regions, the negative bias introduced by using AM-FFA can reach up 782 

to 60% for a 𝑇 of 1.5 years. Such levels of underestimation of frequent flood magnitude are of 783 

practical concern for a range of river science and engineering fields, so that the use of POT should 784 

be mandatory in these cases. 785 
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