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¥ max grad norm | vy Na,train
(N/A, 5, Ii3%3) 0.9 0.9 0.7 100
(N/A, 50, Ii3x3) 0.1 0.8 0.7 100
(N/A, 100, I;3x3) 0.1 0.9 0.7 100
(N(0,1), 50, Ij3x3) 0.9 0.95 0.95 | 1000
(N(0,2), 50, Ij3x3) 0.05 | 0.8 0.7 1000
(N(0,3), 50, Ij3x3) 0.1 0.9 0.9 1000
(N(0,1), 5, Ij3x3) 0.25 | 0.8 0.7 100
(N(0,1), 50, Ij3x3) 0.9 0.95 0.95 | 1000
(N(0,1), 100, Ij3x3) 0.05 | 0.95 0.9 1000
(N(0,1), 50, Ij3x3) 0.9 0.95 0.95 | 1000
(£(0,1), 50, Ii3x3) 0.8 0.85 0.95 | 100
(U(0,1), 50, Ig3x3) 0.1 0.9 0.8 100
(NM(0,1), 50, diag(1,0,0)) | 0.25 | 0.8 0.8 500
(N(0,1), 50, diag(1,1,0)) | 0.3 0.9 0.7 500
(NM(0,1), 50, diag(1,0,1)) | 0.25 | 0.8 0.95 | 1000

Table 1: Table describing the hyperparameters used to train the RL agent using the proximal policy optimization
algorithm. The table outlines the hyperparameters for all 15 experiments considered in the study. All agents were
trained using the ADAM optimization algorithm with a learning rate of 10~3. Moreover, all actor and critic networks
are comprised of densely connected multilayer perceptrons with two hidden layers with 128 neurons each.
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Figure 1: PDF's of the z-variable before (top) and after (middle) the correction step at time ¢ = 45 alongside the PDF
of the correction (bottom) for the EnKF and RL solutions. The plots are presented for the experiment analyzing
the sensitivity of the data assimilation algorithms to assimilation frequency. As can be seen from the plots, the RL
distributions for the z-variable and the correction are wider than that of the EnKF. Nevertheless, the RL distribution
covers more of the noisy observations than the EnKF does. Furthermore, the mode of the RL ensemble is closer to
the reference solution in comparison to the EnKF.
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Figure 2: PDF's of the z-variable before (top) and after (middle) the correction step at time ¢ = 45 alongside the PDF
of the correction (bottom) for the EnKF and RL solutions. The plots are presented for the experiment analyzing
the sensitivity of the data assimilation algorithms to the distribution of the observational noise. The plots indicate
that while both the EnKF and RL distributions admit a high probability near the reference solution for the case
of Gaussian noise, the RL solution is much closer to the reference solution than the EnKF solution in the case of
lognormal and uniform noise. Furthermore, in the case of nongaussian noise, the EnKF correction term appears to
be much more aggressive than that of RL and generally appears not to have a particular structure.
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Figure 3: PDFs of the z-variable before (top) and after (middle) the correction step at time t = 45 alongside the PDF
of the correction (bottom) for the EnKF and RL solutions. The plots are presented for the experiment analyzing the
sensitivity of the data assimilation algorithms to partial observability. For the case of H = (1,0,0) and (1,1,0), the
plots indicate that the RL and EnKF distributions are comparable, where both cover most of the noisy observations
and have the mode of the distribution close to the reference solution. Whereas for H = (1,0, 1), the RL distribution
is wider covering more of the noisy observations, and has the mode of the distribution closer to the reference solution
in comparison to the EnKF solution.
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Figure 4: Plot illustrating the RMSE of the ensemble averaged solution as a function of the ensemble size Neps. The
plot indicates that the RMSE of the EnKF solution saturates at an ensemble size of 10 meaning that an ensemble
size of 50 is considered as a large cardinality ensemble for the Lorenz ’63 system. On the other hand, the RMSE of
the RL solution appears to keep on decreasing as Nep s increases, with a much lower RMSE for small ensembles. This
suggests that the RL framework offers huge computational savings with an adequately reliable solution, especially
when computational resources are scarse.



