References
Ahmed, S., Hasan, M. M., Heydari, M., Rauf, A., Bawazeer, S., Abu-Izneid, T., . . . Rengasamy, K. R. (2020). Therapeutic potentials of crocin in medication of neurological disorders. Food and Chemical Toxicology, 145 , 111739.
Al-Baggou, B. K., Naser, A. S., & Mohammad, F. K. (2011). Hydrogen peroxide potentiates organophosphate toxicosis in chicks. Human and Veterinary Medicine, 3 (2), 142-149.
Ali, E. S., Mitra, K., Akter, S., Ramproshad, S., Mondal, B., Khan, I. N., . . . Cho, W. C. (2022). Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer cell international, 22 (1), 1-16.
Ansari, M. Y., Ball, H. C., Wase, S. J., Novak, K., & Haqqi, T. M. (2021). Lysosomal dysfunction in osteoarthritis and aged cartilage triggers apoptosis in chondrocytes through BAX mediated release of Cytochrome c. Osteoarthritis and cartilage, 29 (1), 100-112.
Antoniou, A., Khudayberdiev, S., Idziak, A., Bicker, S., Jacob, R., & Schratt, G. (2018). The dynamic recruitment of TRBP to neuronal membranes mediates dendritogenesis during development. EMBO reports, 19 (3), e44853.
Asci, R., Vallefuoco, F., Andolfo, I., Bruno, M., De Falco, L., & Iolascon, A. (2013). Trasferrin receptor 2 gene regulation by microRNA 221 in SH-SY5Y cells treated with MPP+ as Parkinson’s disease cellular model. Neuroscience Research, 77 (3), 121-127.
Bandopadhyay, R., Mishra, N., Rana, R., Kaur, G., Ghoneim, M. M., Alshehri, S., . . . Mishra, A. (2022). Molecular mechanisms and therapeutic strategies for levodopa-induced dyskinesia in Parkinson’s disease: a perspective through preclinical and clinical evidence.Frontiers in Pharmacology, 13 .
Bao, W.-D., Fan, Y., Deng, Y.-Z., Long, L.-Y., Wang, J.-j., Guan, D.-X., . . . He, Z.-Y. (2016). Iron overload in hereditary tyrosinemia type 1 induces liver injury through the Sp1/Tfr2/hepcidin axis. Journal of hepatology, 65 (1), 137-145.
Barzegar Behrooz, A., Talaie, Z., Jusheghani, F., Łos, M. J., Klonisch, T., & Ghavami, S. (2022). Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. International journal of molecular sciences, 23 (3), 1353.
Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson’s disease.Lancet, 397 (10291), 2284-2303. doi:10.1016/S0140-6736(21)00218-X
Boice, A., & Bouchier-Hayes, L. (2020). Targeting apoptotic caspases in cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1867 (6), 118688.
Canet-Avilés, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon, C., Bandyopadhyay, S., . . . Cookson, M. R. (2004). The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences, 101 (24), 9103-9108.
Cerri, S., & Blandini, F. (2019). Role of autophagy in Parkinson’s disease. Current Medicinal Chemistry, 26 (20), 3702-3718.
Chen, Y., Gao, C., Sun, Q., Pan, H., Huang, P., Ding, J., & Chen, S. (2017). MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Frontiers in Aging Neuroscience, 9 , 232.
Cheung, Z. H., & Ip, N. Y. (2009). The emerging role of autophagy in Parkinson’s disease. Molecular brain, 2 , 1-6.
Chylinski, K., Le Rhun, A., & Charpentier, E. (2013). The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA biology, 10 (5), 726-737.
D’arcy, M. S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell biology international, 43 (6), 582-592.
Deng, H., & Yuan, L. (2014). Genetic variants and animal models in SNCA and Parkinson disease. Ageing research reviews, 15 , 161-176.
Di Martino, M. T., Arbitrio, M., Caracciolo, D., Cordua, A., Cuomo, O., Grillone, K., . . . Tassone, P. (2022). miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. Molecular Therapy - Nucleic Acids, 27 , 1191-1224. doi:10.1016/j.omtn.2022.02.005
Dickson, L. M., & Rhodes, C. J. (2004). Pancreatic β-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? American Journal of Physiology-Endocrinology and Metabolism, 287 (2), E192-E198.
Doxakis, E. (2010). Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. Journal of Biological Chemistry, 285 (17), 12726-12734.
Du, H., Cui, S., Li, Y., Yang, G., Wang, P., Fikrig, E., & You, F. (2018). MiR-221 negatively regulates innate anti-viral response.PLoS One, 13 (8), e0200385. doi:10.1371/journal.pone.0200385
Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S.-M., García-Echeverría, C., . . . Reddy, V. A. (2009). The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proceedings of the National Academy of Sciences, 106 (1), 268-273.
Ebina, J., Ebihara, S., & Kano, O. (2022). Similarities, differences and overlaps between frailty and Parkinson’s disease. Geriatrics & Gerontology International, 22 (4), 259-270.
Elangovan, A., Venkatesan, D., Selvaraj, P., Pasha, M. Y., Babu, H. W. S., Iyer, M., . . . Kumar, N. S. (2023). miRNA in Parkinson’s disease: From pathogenesis to theranostic approaches. Journal of cellular physiology, 238 (2), 329-354.
Emamzadeh, F. N., & Surguchov, A. (2018). Parkinson’s Disease: Biomarkers, Treatment, and Risk Factors. Front Neurosci, 12 , 612. doi:10.3389/fnins.2018.00612
Eyermann, C., Czaplinski, K., & Colognato, H. (2012). Dystroglycan promotes filopodial formation and process branching in differentiating oligodendroglia. Journal of neurochemistry, 120 (6), 928-947.
Fields, C. R., Bengoa-Vergniory, N., & Wade-Martins, R. (2019). Targeting alpha-synuclein as a therapy for Parkinson’s disease.Frontiers in Molecular Neuroscience, 12 , 299.
Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G., . . . Bolondi, L. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27 (43), 5651-5661.
Gao, W., Yuan, L., Zhang, Y., Si, Y., Wang, X., Lv, T., & Wang, Y. S. (2023). miR-221/222 Promote Endothelial Differentiation of Adipose-Derived Stem Cells by Regulation of PTEN/PI3K/AKT/mTOR Pathway.Appl Biochem Biotechnol . doi:10.1007/s12010-023-04335-x
Garofalo, M., & Croce, C. M. (2011). microRNAs: Master regulators as potential therapeutics in cancer. Annual review of pharmacology and toxicology, 51 , 25-43.
Gentile, G., Morello, G., La Cognata, V., Guarnaccia, M., Conforti, F. L., & Cavallaro, S. (2022). Dysregulated miRNAs as biomarkers and therapeutical targets in neurodegenerative diseases. Journal of Personalized Medicine, 12 (5), 770.
Ghit, A., & Deeb, H. E. (2022). Cytokines, miRNAs, and Antioxidants as Combined Non-invasive Biomarkers for Parkinson’s Disease. Journal of Molecular Neuroscience, 72 (5), 1133-1140.
Goiran, T., Eldeeb, M. A., Zorca, C. E., & Fon, E. A. (2022). Hallmarks and molecular tools for the study of mitophagy in Parkinson’s disease.Cells, 11 (13), 2097.
Guiley, K. Z., Stevenson, J. W., Lou, K., Barkovich, K. J., Kumarasamy, V., Wijeratne, T. U., . . . Witkiewicz, A. K. (2019). p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science, 366 (6471), eaaw2106.
Guo, Y., Wang, G., Wang, Z., Ding, X., Qian, L., Li, Y., . . . Yu, Z. (2021). Reck-Notch1 Signaling Mediates miR-221/222 Regulation of Lung Cancer Stem Cells in NSCLC. Front Cell Dev Biol, 9 , 663279. doi:10.3389/fcell.2021.663279
Hu, K., Huang, Q., Liu, C., Li, Y., Liu, Y., Wang, H., . . . Ma, S. (2019). c-Jun/Bim upregulation in dopaminergic neurons promotes neurodegeneration in the MPTP mouse model of Parkinson’s disease.Neuroscience, 399 , 117-124.
Im, H.-I., & Kenny, P. J. (2012). MicroRNAs in neuronal function and dysfunction. Trends in neurosciences, 35 (5), 325-334.
Jhanwar-Uniyal, M., Dominguez, J. F., Mohan, A. L., Tobias, M. E., & Gandhi, C. D. (2022). Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma.Advances in Biological Regulation, 83 , 100854.
Jiang, Y., Liu, J., Chen, L., Jin, Y., Zhang, G., Lin, Z., . . . Qin, Y. (2019). Serum secreted miR-137-containing exosomes affects oxidative stress of neurons by regulating OXR1 in Parkinson’s disease. Brain research, 1722 , 146331.
Juntilla, M. M., & Koretzky, G. A. (2008). Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunology letters, 116 (2), 104-110.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., . . . Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.The EMBO journal, 19 (21), 5720-5728.
Kahle, P. J., Waak, J., & Gasser, T. (2009). DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders.Free Radical Biology and Medicine, 47 (10), 1354-1361.
Kawaguchi, T., Komatsu, S., Ichikawa, D., Morimura, R., Tsujiura, M., Konishi, H., . . . Hirajima, S. (2013). Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. British journal of cancer, 108 (2), 361-369.
Kermanshahi, S., Ghanavati, G., Abbasi-Mesrabadi, M., Gholami, M., Ulloa, L., Motaghinejad, M., & Safari, S. (2020). Novel neuroprotective potential of crocin in neurodegenerative disorders: an illustrated mechanistic review. Neurochemical Research, 45 , 2573-2585.
Khoo, S. K., Petillo, D., Kang, U. J., Resau, J. H., Berryhill, B., Linder, J., . . . Tan, A. C. (2012). Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. Journal of Parkinson’s disease, 2 (4), 321-331.
Kilarski, L. L., Pearson, J. P., Newsway, V., Majounie, E., Knipe, M. D. W., Misbahuddin, A., . . . Marion, M. H. (2012). Systematic review and UK‐based study of PARK2 (parkin), PINK1, PARK7 (DJ‐1) and LRRK2 in early‐onset Parkinson’s disease. Movement Disorders, 27 (12), 1522-1529.
Kim, B. W., Cho, H., Ylaya, K., Kitano, H., Chung, J.-Y., Hewitt, S. M., & Kim, J.-H. (2017). Bcl-2-like protein 11 (BIM) expression is associated with favorable prognosis for patients with cervical cancer.Anticancer research, 37 (9), 4873-4879.
Kleven, M. D., Jue, S., & Enns, C. A. (2018). Transferrin receptors TfR1 and TfR2 bind transferrin through differing mechanisms.Biochemistry, 57 (9), 1552-1559.
Kocaturk, N. M., & Gozuacik, D. (2018). Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Frontiers in cell and developmental biology , 128.
Kotur-Stevuljevic, J., Bogavac-Stanojevic, N., Jelic-Ivanovic, Z., Stefanovic, A., Gojkovic, T., Joksic, J., . . . Milosevic, S. (2015). Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients. Atherosclerosis, 241 (1), 192-198.
Kumar, M. D., Karthikeyan, M., Sharma, N., Raju, V., Vatsalarani, J., Kalivendi, S. V., & Karunakaran, C. (2022). Molecular imprinting synthetic receptor based sensor for determination of Parkinson’s disease biomarker DJ-1. Microchemical Journal, 183 , 107959.
Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current biology, 12 (9), 735-739.
Lang, Y., Li, Y., Yu, H., Lin, L., Chen, X., Wang, S., & Zhang, H. (2020). HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson’s disease by elevating NPTX2 via miR-221-3p binding. Aging (albany NY), 12 (9), 7660.
Leggio, L., Vivarelli, S., L’Episcopo, F., Tirolo, C., Caniglia, S., Testa, N., . . . Iraci, N. (2017). microRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches.International journal of molecular sciences, 18 (12), 2698.
Lehéricy, S., Sharman, M. A., Santos, C. L. D., Paquin, R., & Gallea, C. (2012). Magnetic resonance imaging of the substantia nigra in Parkinson’s disease. Movement Disorders, 27 (7), 822-830.
Lendeckel, L.-Q. M. R. R. W Tuschl T 2001 Identification of novel genes coding for small expressed RNAs. Science, 294 (853858), 10.1126.
Li, B.-G., Hasselgren, P.-O., & Fang, C.-H. (2005). Insulin-like growth factor-I inhibits dexamethasone-induced proteolysis in cultured L6 myotubes through PI3K/Akt/GSK-3β and PI3K/Akt/mTOR-dependent mechanisms.The international journal of biochemistry & cell biology, 37 (10), 2207-2216.
Li, H.-m., Yang, H., Wen, D.-y., Luo, Y.-h., Liang, C.-y., Pan, D.-h., . . . Chen, J.-q. (2017). Overexpression of LncRNA HOTAIR is associated with poor prognosis in thyroid carcinoma: a study based on TCGA and GEO data. Hormone and Metabolic Research, 49 (05), 388-399.
Li, L., Xu, J., Wu, M., & Hu, J. (2018). Protective role of microRNA-221 in Parkinson’s disease. Bratislavske lekarske listy, 119 (1), 22-27.
Li, S., Bi, G., Han, S., & Huang, R. (2022). MicroRNAs Play a Role in Parkinson’s Disease by Regulating Microglia Function: From Pathogenetic Involvement to Therapeutic Potential. Frontiers in Molecular Neuroscience, 14 , 744942.
Linseman, D. A., Phelps, R. A., Bouchard, R. J., Le, S. S., Laessig, T. A., McClure, M. L., & Heidenreich, K. A. (2002). Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons.Journal of Neuroscience, 22 (21), 9287-9297.
Liu, H., Lan, S., Shi, X.-J., Fan, F.-C., Liu, Q.-S., Cong, L., & Cheng, Y. (2023). Systematic review and meta-analysis on microRNAs in Amyotrophic Lateral Sclerosis. Brain Research Bulletin .
Liu, S., Fan, M., Zheng, Q., Hao, S., Yang, L., Xia, Q., . . . Ge, J. (2022). MicroRNAs in Alzheimer’s disease: Potential diagnostic markers and therapeutic targets. Biomedicine & Pharmacotherapy, 148 , 112681.
Lu, J., Xu, Y., Quan, Z., Chen, Z., Sun, Z., & Qing, H. (2017). Dysregulated microRNAs in neural system: Implication in pathogenesis and biomarker development in Parkinson’s disease. Neuroscience, 365 , 70-82.
Lu, M., Poston, K., Pfefferbaum, A., Sullivan, E. V., Fei-Fei, L., Pohl, K. M., . . . Adeli, E. (2020). Vision-based estimation of MDS-UPDRS gait scores for assessing Parkinson’s disease motor severity.Paper presented at the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23.
Luo, J., Manning, B. D., & Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer cell, 4 (4), 257-262.
Lv, Q., Wang, Z., Zhong, Z., & Huang, W. (2020). Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinson’s disease, 2020 .
Ma, M.-z., Li, C.-x., Zhang, Y., Weng, M.-z., Zhang, M.-d., Qin, Y.-y., . . . Quan, Z.-w. (2014). Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer. Molecular cancer, 13 , 1-14.
Ma, W., Li, Y., Wang, C., Xu, F., Wang, M., & Liu, Y. (2016). Serum miR‐221 serves as a biomarker for Parkinson’s disease. Cell biochemistry and function, 34 (7), 511-515.
Macintyre, A. N., Finlay, D., Preston, G., Sinclair, L. V., Waugh, C. M., Tamas, P., . . . Cantrell, D. A. (2011). Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity, 34 (2), 224-236.
Markovic, J., Sharma, A. D., & Balakrishnan, A. (2020). MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury. Cells, 9 (8), 1767. doi:10.3390/cells9081767
Martinez, B., & Peplow, P. V. (2017). MicroRNAs in Parkinson’s disease and emerging therapeutic targets. Neural Regeneration Research, 12 (12), 1945.
McMillan, K. J., Murray, T. K., Bengoa-Vergniory, N., Cordero-Llana, O., Cooper, J., Buckley, A., . . . Wong, L. F. (2017). Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Molecular Therapy, 25 (10), 2404-2414.
Menini, T., & Gugliucci, A. (2014). Paraoxonase 1 in neurological disorders. Redox Report, 19 (2), 49-58.
Mikami, Y., Philips, R. L., Sciumè, G., Petermann, F., Meylan, F., Nagashima, H., . . . O’Shea, J. J. (2021). MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity, 54 (3), 514-525.e516. doi:10.1016/j.immuni.2021.02.015
Minones-Moyano, E., Porta, S., Escaramís, G., Rabionet, R., Iraola, S., Kagerbauer, B., . . . Martí, E. (2011). MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Human molecular genetics, 20 (15), 3067-3078.
Moradi Vastegani, S., Nasrolahi, A., Ghaderi, S., Belali, R., Rashno, M., Farzaneh, M., & Khoshnam, S. E. (2023). Mitochondrial Dysfunction and Parkinson’s Disease: Pathogenesis and Therapeutic Strategies.Neurochemical Research , 1-24.
Moran, L. B., Hickey, L., Michael, G. J., Derkacs, M., Christian, L. M., Kalaitzakis, M. E., . . . Graeber, M. B. (2008). Neuronal pentraxin II is highly upregulated in Parkinson’s disease and a novel component of Lewy bodies. Acta neuropathologica, 115 , 471-478.
Mouradian, M. M. (2012). MicroRNAs in Parkinson’s disease.Neurobiology of disease, 46 (2), 279-284.
Movahhed, P., Saberiyan, M., Safi, A., Arshadi, Z., Kazerouni, F., & Teimori, H. (2022). The impact of DAPK1 and mTORC1 signaling association on autophagy in cancer. Molecular Biology Reports, 49 (6), 4959-4964.
Nam, K. N., Park, Y.-M., Jung, H.-J., Lee, J. Y., Min, B. D., Park, S.-U., . . . Kang, I. (2010). Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. European journal of pharmacology, 648 (1-3), 110-116.
Naren, P., Cholkar, A., Kamble, S., Khan, S. S., Srivastava, S., Madan, J., . . . Khatri, D. K. (2023). Pathological and therapeutic advances in Parkinson’s disease: mitochondria in the interplay. Journal of Alzheimer’s Disease, 94 (s1), S399-S428.
Nassirpour, R., Mehta, P. P., Baxi, S. M., & Yin, M.-J. (2013). miR-221 promotes tumorigenesis in human triple negative breast cancer cells.PloS one, 8 (4), e62170.
Nies, Y. H., Mohamad Najib, N. H., Lim, W. L., Kamaruzzaman, M. A., Yahaya, M. F., & Teoh, S. L. (2021). MicroRNA dysregulation in Parkinson’s disease: a narrative review. Frontiers in neuroscience, 15 , 660379.
Nuytemans, K., Theuns, J., Cruts, M., & Van Broeckhoven, C. (2010). Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update.Human mutation, 31 (7), 763-780.
Oh, S. E., Park, H.-J., He, L., Skibiel, C., Junn, E., & Mouradian, M. M. (2018). The Parkinson’s disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox biology, 19 , 62-73.
Pan, C., Wen, Q., Ma, L., Qin, X., & Feng, S. (2022). Green-emitting silicon nanoparticles as a fluorescent probe for highly-sensitive crocin detection and pH sensing. New Journal of Chemistry, 46 (26), 12729-12738.
Pang, S. Y.-Y., Ho, P. W.-L., Liu, H.-F., Leung, C.-T., Li, L., Chang, E. E. S., . . . Ho, S.-L. (2019). The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease.Translational Neurodegeneration, 8 (1). doi:10.1186/s40035-019-0165-9
Park, S., Chapuis, N., Tamburini, J., Bardet, V., Cornillet-Lefebvre, P., Willems, L., . . . Bouscary, D. (2010). Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. haematologica, 95 (5), 819.
Pearson, J. N., & Patel, M. (2016). The role of oxidative stress in organophosphate and nerve agent toxicity. Annals of the New York Academy of Sciences, 1378 (1), 17-24.
Pérez-Ramírez, C., Cañadas-Garre, M., Molina, M. Á., Faus-Dáder, M. J., & Calleja-Hernández, M. Á. (2015). PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics, 16 (16), 1843-1862.
Pinjala, P., Tryphena, K. P., Prasad, R., Khatri, D. K., Sun, W., Singh, S. B., . . . Vora, L. (2023). CRISPR/Cas9 assisted stem cell therapy in Parkinson’s disease. Biomaterials Research, 27 (1), 46.
Piperno, A., Roetto, A., Mariani, R., Pelucchi, S., Corengia, C., Daraio, F., . . . Camaschella, C. (2004). Homozygosity for transferrin receptor-2 Y250X mutation induces early iron overload.haematologica, 89 (3), 359-360.
Piras, I. S., Gabriele, S., Altieri, L., Lombardi, F., Sacco, R., Lintas, C., . . . Rigoletto, C. (2021). Reevaluation of serum arylesterase activity in neurodevelopmental disorders.Antioxidants, 10 (2), 164.
Postuma, R. B., & Lang, A. E. (2023). The Clinical Diagnosis of Parkinson’s Disease-We Are Getting Better. Mov Disord, 38 (4), 515-517. doi:10.1002/mds.29319
Qian, C., Ye, Y., Mao, H., Yao, L., Sun, X., Wang, B., . . . Zhang, Y. (2019). Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell death through the miR-221/222/p27/mTOR pathway in Parkinson’s disease.Experimental Cell Research, 384 (1), 111614.
Quinlan, S., Kenny, A., Medina, M., Engel, T., & Jimenez-Mateos, E. M. (2017). MicroRNAs in neurodegenerative diseases. International review of cell and molecular biology, 334 , 309-343.
Rahman, M. U., Bilal, M., Shah, J. A., Kaushik, A., Teissedre, P. L., & Kujawska, M. (2022). CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson’s Disease. Pharmaceutics, 14 (6). doi:10.3390/pharmaceutics14061252
Rajman, M., & Schratt, G. (2017). MicroRNAs in neural development: from master regulators to fine-tuners. Development, 144 (13), 2310-2322.
Rakowski, M., Porębski, S., & Grzelak, A. (2022). Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease.International journal of molecular sciences, 23 (7), 3625.
Razavipour, S. F., Harikumar, K. B., & Slingerland, J. M. (2020). p27 as a Transcriptional Regulator: New Roles in Development and Cancerp27 as Transcriptional Regulator. Cancer research, 80 (17), 3451-3458.
Rizzi, G., & Tan, K. R. (2017). Dopamine and acetylcholine, a circuit point of view in Parkinson’s disease. Frontiers in neural circuits, 11 , 110.
Robb, A., & Wessling-Resnick, M. (2004). Regulation of transferrin receptor 2 protein levels by transferrin. Blood, 104 (13), 4294-4299.
Russo, E., Citraro, R., Constanti, A., & De Sarro, G. (2012). The mTOR signaling pathway in the brain: focus on epilepsy and epileptogenesis.Molecular Neurobiology, 46 , 662-681.
Salama, R. M., Abdel-Latif, G. A., Abbas, S. S., Hekmat, M., & Schaalan, M. F. (2020). Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology, 164 , 107900.
Sastri, K. T., Gupta, N. V., Kannan, A., Balamuralidhara, V., & Ramkishan, A. (2022). Potential nanocarrier-mediated miRNA-based therapy approaches for multiple sclerosis. Drug Discovery Today , 103357.
Sato, M., Seki, T., Konno, A., Hirai, H., Kurauchi, Y., Hisatsune, A., & Katsuki, H. (2016). Fluorescent‐based evaluation of chaperone‐mediated autophagy and microautophagy activities in cultured cells. Genes to Cells, 21 (8), 861-873.
Scheper, M., Iyer, A., Anink, J. J., Mesarosova, L., Mills, J. D., & Aronica, E. (2023). Dysregulation of miR‐543 in Parkinson’s disease: Impact on the neuroprotective gene SIRT1. Neuropathology and Applied Neurobiology, 49 (1), e12864.
Schratt, G. (2009). microRNAs at the synapse. Nature Reviews Neuroscience, 10 (12), 842-849.
Seeley, J. J., Baker, R. G., Mohamed, G., Bruns, T., Hayden, M. S., Deshmukh, S. D., . . . Ghosh, S. (2018). Induction of innate immune memory via microRNA targeting of chromatin remodelling factors.Nature, 559 (7712), 114-119. doi:10.1038/s41586-018-0253-5
Shao, K., Shan, S., Ru, W., & Ma, C. (2020). Association between serum NPTX2 and cognitive function in patients with vascular dementia.Brain and Behavior, 10 (10), e01779.
Shu, Y., Qian, J., & Wang, C. (2020). Aberrant expression of microRNA-132-3p and microRNA-146a-5p in Parkinson’s disease patients.Open Life Sciences, 15 (1), 647-653.
Siderowf, A., Concha-Marambio, L., Lafontant, D. E., Farris, C. M., Ma, Y., Urenia, P. A., . . . Parkinson’s Progression Markers, I. (2023). Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using alpha-synuclein seed amplification: a cross-sectional study. Lancet Neurol, 22 (5), 407-417. doi:10.1016/S1474-4422(23)00109-6
Singh, A., & Sen, D. (2017). MicroRNAs in Parkinson’s disease.Experimental brain research, 235 , 2359-2374.
Song, Y., Ori-McKenney, K. M., Zheng, Y., Han, C., Jan, L. Y., & Jan, Y. N. (2012). Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam. Genes & development, 26 (14), 1612-1625.
Soto, M., Fernández, M., Bravo, P., Lahoz, S., Garrido, A., Sánchez-Rodríguez, A., . . . Roig-García, A. (2023). Differential serum microRNAs in premotor LRRK2 G2019S carriers from Parkinson’s disease.npj Parkinson’s Disease, 9 (1), 15.
Spokoini-Stern, R., Stamov, D., Jessel, H., Aharoni, L., Haschke, H., Giron, J., . . . Bachelet, I. (2020). Visualizing the structure and motion of the long noncoding RNA HOTAIR. Rna, 26 (5), 629-636.
Suhara, T., Baba, Y., Shimada, B. K., Higa, J. K., & Matsui, T. (2017). The mTOR signaling pathway in myocardial dysfunction in type 2 diabetes mellitus. Current diabetes reports, 17 , 1-10.
Sun, Q., Zhang, Y., Wang, S., Yang, F., Cai, H., Xing, Y., . . . Wang, Y. (2022). LncRNA HOTAIR promotes α-synuclein aggregation and apoptosis of SH-SY5Y cells by regulating miR-221-3p in Parkinson’s disease.Experimental Cell Research, 417 (1), 113132.
Sun, T., Wang, X., He, H., Sweeney, C., Liu, S., Brown, M., . . . Kantoff, P. (2014). MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene, 33 (21), 2790-2800.
Sun, Y., Wang, H., Qu, T., Luo, J., An, P., Ren, F., . . . Li, Y. (2023). mTORC2: a multifaceted regulator of autophagy. Cell Communication and Signaling, 21 (1), 1-11.
Surguchov, A. (2022). Biomarkers in Parkinson’s disease.Neurodegenerative diseases biomarkers: Towards translating research to clinical practice , 155-180.
Tatura, R., Kraus, T., Giese, A., Arzberger, T., Buchholz, M., Höglinger, G., & Müller, U. (2016). Parkinson’s disease: SNCA-, PARK2-, and LRRK2-targeting microRNAs elevated in cingulate gyrus.Parkinsonism & Related Disorders, 33 , 115-121.
Thobois, S., Mertens, P., Guenot, M., Hermier, M., Mollion, H., Bouvard, M., . . . Sindou, M. (2002). Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. Journal of neurology, 249 , 529-534.
Tibar, H., El Bayad, K., Bouhouche, A., Ait Ben Haddou, E. H., Benomar, A., Yahyaoui, M., . . . Regragui, W. (2018). Non-motor symptoms of Parkinson’s disease and their impact on quality of life in a cohort of Moroccan patients. Frontiers in neurology, 9 , 170.
Tryphena, K. P., Anuradha, U., Kumar, R., Rajan, S., Srivastava, S., Singh, S. B., & Khatri, D. K. (2022). Understanding the involvement of microRNAs in mitochondrial dysfunction and their role as potential biomarkers and therapeutic targets in Parkinson’s disease. Journal of Alzheimer’s Disease (Preprint), 1-16.
Tryphena, K. P., Singh, G., Jain, N., Famta, P., Srivastava, S., Singh, S. B., & Khatri, D. K. (2023). Integration of miRNA’s theranostic potential with nanotechnology: Promises and challenges for Parkinson’s disease therapeutics. Mechanisms of Ageing and Development, 211 , 111800.
Uppala, S. N., Tryphena, K. P., Naren, P., Srivastava, S., Singh, S. B., & Khatri, D. K. (2023). Involvement of miRNA on epigenetics landscape of Parkinson’s disease: From pathogenesis to therapeutics.Mechanisms of Ageing and Development, 213 , 111826.
Valencia, J., Ferreira, M., Merino-Torres, J. F., Marcilla, A., & Soriano, J. M. (2022). The Potential Roles of Extracellular Vesicles as Biomarkers for Parkinson’s Disease: A Systematic Review.International journal of molecular sciences, 23 (19), 11508.
Vargas, J. N. S., Hamasaki, M., Kawabata, T., Youle, R. J., & Yoshimori, T. (2023). The mechanisms and roles of selective autophagy in mammals. Nature reviews Molecular cell biology, 24 (3), 167-185.
Veisi, A., Akbari, G., Mard, S. A., Badfar, G., Zarezade, V., & Mirshekar, M. A. (2020). Role of crocin in several cancer cell lines: An updated review. Iranian journal of basic medical sciences, 23 (1), 3.
Visone, R., Russo, L., Pallante, P., De Martino, I., Ferraro, A., Leone, V., . . . Croce, C. M. (2007). MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocrine-related cancer, 14 (3), 791-798.
Voruz, P., Constantin, I. M., & Péron, J. A. (2022). Biomarkers and non-motor symptoms as a function of motor symptom asymmetry in early Parkinson’s disease. Neuropsychologia, 177 , 108419.
Walter, S. D. (2005). The partial area under the summary ROC curve.Statistics in medicine, 24 (13), 2025-2040.
Wang, H., Wang, X., Zhang, Y., & Zhao, J. (2021). LncRNA SNHG1 promotes neuronal injury in Parkinson’s disease cell model by miR-181a-5p/CXCL12 axis. Journal of Molecular Histology, 52 (2), 153-163.
Wang, K., Yuan, Y., Cho, J.-H., McClarty, S., Baxter, D., & Galas, D. J. (2012). Comparing the MicroRNA spectrum between serum and plasma.
Wang, R., Shang, Y., Chen, B., Xu, F., Zhang, J., Zhang, Z., . . . Wu, L. (2022). Protein disulfide isomerase blocks the interaction of LC3II-PHB2 and promotes mTOR signaling to regulate autophagy and radio/chemo-sensitivity. Cell death & disease, 13 (10), 851.
Wang, S., Zhang, X., Guo, Y., Rong, H., & Liu, T. (2017). The long noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression. Oncotarget, 8 (15), 24449.
Wang, Y.-T., Tsai, P.-C., Liao, Y.-C., Hsu, C.-Y., & Juo, S.-H. H. (2013). Circulating microRNAs have a sex-specific association with metabolic syndrome. Journal of Biomedical Science, 20 (1), 72. doi:10.1186/1423-0127-20-72
Wolever, T. M. (2004). Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values. British Journal of Nutrition, 91 (2), 295-300.
Xia, X., Wang, Y., Huang, Y., Zhang, H., Lu, H., & Zheng, J. C. (2019). Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents.Progress in Neurobiology, 183 , 101694.
Xia, X., Wang, Y., & Zheng, J. C. (2020). The microRNA-17~ 92 family as a key regulator of neurogenesis and potential regenerative therapeutics of neurological disorders. Stem cell reviews and reports , 1-11.
Xie, B., Wang, C., Zheng, Z., Song, B., Ma, C., Thiel, G., & Li, M. (2011). Egr-1 transactivates Bim gene expression to promote neuronal apoptosis. Journal of Neuroscience, 31 (13), 5032-5044.
Yadav, P., Yadav, R., Jain, S., & Vaidya, A. (2021). Caspase‐3: a primary target for natural and synthetic compounds for cancer therapy.Chemical Biology & Drug Design, 98 (1), 144-165.
Yadav, S. K., Pandey, A., Sarkar, S., Yadav, S. S., Parmar, D., & Yadav, S. (2022). Identification of altered blood MicroRNAs and plasma proteins in a rat model of Parkinson’s disease. Molecular Neurobiology , 1-18.
Yamamoto, K., Yoshida, K., Miyagoe, Y., Ishikawa, A., Hanaoka, K., Nomoto, S., . . . Takeda, S. i. (2002). Quantitative evaluation of expression of iron-metabolism genes in ceruloplasmin-deficient mice.Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1588 (3), 195-202.
Yao, Y., Zhao, Z., Zhang, F., Miao, N., Wang, N., Xu, X., & Yang, C. (2023). microRNA‐221 rescues the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. Brain and Behavior, 13 (3), e2921.
Zamanian, M., Shamsizadeh, A., Esmaeili Nadimi, A., Hajizadeh, M., Allahtavakoli, F., Rahmani, M., . . . Allahtavakoli, M. (2017). Short-term effects of troxerutin (vitamin P4) on muscle fatigue and gene expression of Bcl-2 and Bax in the hepatic tissue of rats.Canadian journal of physiology and pharmacology, 95 (6), 708-713.
Zamanian, M. Y., Parra, R. M. R., Soltani, A., Kujawska, M., Mustafa, Y. F., Raheem, G., . . . Heidari, M. (2023). Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson’s disease: an overview and update on new developments. Molecular Biology Reports , 1-10.
Zamanian, M. Y., Terefe, E. M., Taheri, N., Kujawska, M., Tork, Y. J., Abdelbasset, W. K., . . . Alesaeidi, S. (2023). Neuroprotective and Anti-Inflammatory Effects of Pioglitazone on Parkinson’s Disease: A Comprehensive Narrative Review of Clinical and Experimental Findings.CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) .
Zhao, D., Zhuang, N., Ding, Y., Kang, Y., & Shi, L. (2016). MiR-221 activates the NF-kappaB pathway by targeting A20. Biochem Biophys Res Commun, 472 (1), 11-18. doi:10.1016/j.bbrc.2015.11.009
Zhao, L., & Wang, Z. (2019a). MicroRNAs: Game Changers in the Regulation of α-Synuclein in Parkinson’s Disease. Parkinson’s Disease, 2019 , 1-10. doi:10.1155/2019/1743183
Zhao, L., & Wang, Z. (2019b). MicroRNAs: Game changers in the regulation of α-synuclein in Parkinson’s disease. Parkinson’s disease, 2019 .
Zhu, L., Yu, T., Yang, L., Liu, T., Song, Z., Liu, S., . . . Tang, C. (2022). Polysaccharide from Cordyceps cicadae inhibit mitochondrial apoptosis to ameliorate drug-induced kidney injury via Bax/Bcl-2/Caspase-3 pathway. Journal of Functional Foods, 97 , 105244.
Zimmermann, M., & Brockmann, K. (2022). Blood and cerebrospinal fluid biomarkers of inflammation in Parkinson’s disease. Journal of Parkinson’s disease (Preprint), 1-18.
Zou, Z., Tao, T., Li, H., & Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell & bioscience, 10 (1), 1-11.