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Introduction  

This document provides the governing equations that underlies the simulation model 

used for the paper ‘Crustal conditions favoring convective downward migration of 

fractures in deep hydrothermal systems’, referred to below as ‘the paper’. It is divided 

into the following subsections: 

• Thermo-poroelasticity, energy and mass balance in the rock matrix 

• Fracture deformation and energy and mass balance in the fracture 

• Tensile stress and fracture propagation 

• Notes on the numerical implementation 

Text S1. 

For the modelling of hydrothermal reservoirs, we use a mathematical model based 

on a discrete fracture matrix method, that describes energy transport and fluid flow in a 

fractured deformable porous medium. The medium is 3D, consisting of rock matrix and 
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embedded fractures modelled as 2D planes. Single phase fluid is assumed, fully 

saturating the reservoir rock. Furthermore, local thermal equilibrium between the fluid 

and the solid is assumed. Effective coefficients for the fluid saturated rock matrix are 

estimated based on the fluid and rock coefficients and the porosity, 𝜙, according to: 

 (coeff. )e = 𝜙(coeff. )f + (1 − 𝜙)(coeff. )s. (1) 

We impose a balance of momentum, mass and energy in the rock matrix and balance of 

mass and energy in the fractures. The conservation equations described in this section 

are complemented by appropriate boundary conditions on the domain boundary (both 

matrix and fracture) described in section 4 of the paper. 

Thermo-poroelasticity, energy and mass balance in the rock matrix 

For quasi-static conditions, the linear momentum balance equation for an 

elementary volume in the rock matrix is given as 

 ∇ ∙ 𝛔 = −𝐅, (2) 

with F being the body force per unit volume, and the total stress 𝛔 being composed of 

thermal, hydraulic and mechanical (THM) terms. By assuming linearity and using the 

convention that tensile stresses are positive, the stress-strain relationship for thermo-

poroelasticity, resulting from perturbations from an initial temperature 𝑇0 can be written 

 𝛔 = D: (∇𝐮 + ∇𝐮T) 2⁄ − 𝛼𝑝𝐈 − 𝛽𝑠𝐵𝑠(𝑇 − 𝑇0)𝐈, (3) 

where D is the drained stiffness matrix and the strain is related to the displacement 

vector of the rock, 𝐮 by the symmetric gradient (∇𝐮 +  ∇𝐮T) 2⁄ . Furthermore, 

𝛼 is the Biot coefficient, 𝑝 is fluid the pressure, 𝐈 is the identity matrix, 𝛽𝑠 and 𝐵𝑠 are the 

volumetric thermal expansion and the bulk modulus of the rock, respectively, and ‘:‘ 

denotes the double dot product. Finally, we assume an isotropic medium and use 

D: (∇𝐮 +  ∇𝐮T) 2⁄ = 𝜆 tr(∇𝐮) + 𝜇(∇𝐮 +  ∇𝐮T), where 𝜇 is the shear modulus of the rock, 

and 𝜆 the Lame coefficient. Using that 𝜆 = 𝐵𝑠 − 2𝜇/3, the momentum balance for 

thermo-poroelasticity becomes 

 ∇ ∙ [(𝐵𝑠 −
2

3
𝜇) tr(∇𝐮)𝐈 + 𝜇(∇𝐮 +  ∇𝐮T) − 𝛽𝑠𝐵𝑠(𝑇 − 𝑇0)𝐈 − 𝛼𝑝𝐈] = −𝐅. (4) 

The fluid is assumed to be pure water and is modelled as slightly compressible 

 
𝜌𝑓 = 𝜌0exp [

1

𝐵𝑓

(𝑝 − 𝑝0) − 𝛽𝑓(𝑇 − 𝑇0)], 
(5) 

with 𝛽𝑓 and 𝐵𝑓, the thermal expansion and the bulk modulus of the fluid, respectively. 

The Darcy velocity of the fluid within the rock is given by 

 
𝐯 = −

𝑘

𝜂
(∇𝑝 − 𝜌𝑓𝐠).  

(6) 

Here k is the matrix permeability, 𝜂 is the fluid dynamic viscosity, and g the gravity 

vector. 

To complete the thermo-poromechanics descriptions of the reservoir matrix 

balance of mass and energy is imposed. The mass balance equation is given by 

 
(

𝜙

𝐵𝑓
+

𝛼 − 𝜙

𝐵𝑠
)

∂𝑝

∂t
+ 𝛼

∂

∂t
(∇ ⋅ 𝐮) − 𝛽𝑒

∂𝑇

∂t
+ ∇ ⋅ 𝐯 = Qp, 

(7) 

while the energy balance is governed by 
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𝜌𝑒𝑐𝑒

∂𝑇

∂t
+ 𝛽𝑠𝐾𝑠𝑇0

∂

∂t
(∇ ⋅ 𝐮) + ∇ ⋅ [𝜌𝑓𝑐𝑓𝑇𝐯 − 𝜅𝑒∇𝑇] = QT. 

(8) 

Heat and volumetric sources and sinks are represented by QT and Qp respectively. The 

effective thermal expansion and conductivity tensors of the rock matrix are given by 𝛽𝑒 

and 𝜅𝑒, respectively, the effective density and specific heat by 𝜌𝑒 and 𝑐𝑒, respectively, and 

the specific heat of the fluid is given by 𝑐𝑓. Based on the assumption that the fluid is all in 

liquid phase, a low enthalpy description is used, that is, the internal energy of the fluid 

takes the same form as the internal energy of the rock. This results in a simplification in 

the energy equation, with, 𝜌𝑒𝑐𝑒, being the effective heat capacity of the rock matrix.  

The primary variables in the rock matrix are the temperature 𝑇, the pressure 𝑝 and 

the displacement 𝐮. 

Fracture deformation and energy and mass balance in the fracture 

Dimension reduction for the mass and energy equations is necessary to derive the 

flow of mass and energy in the fluid-filled fractures. The dimension reduction is detailed 

in Stefansson et al., (2021a) and Keilegavlen et al. (2021a). For the mechanical forces on 

the fracture, we consider balance between the fracture contact traction force, 𝝀𝐹, and 

fracture fluid pressure, 𝑝𝐹 , and the higher-dimensional THM traction on the opposing 

fracture walls (fracture-matrix interfaces): 

 𝝀𝐹 − 𝑝𝐹𝐈 ⋅ 𝒏𝑀
+ =    𝝈𝑀 ⋅ 𝒏𝑀

+ ,

𝝀𝐹 − 𝑝𝐹𝐈 ⋅ 𝒏𝑀
+ = −𝝈𝑀 ⋅ 𝒏𝑀

− .
 (9) 

Here, 𝝈𝑀 denotes the matrix thermo-poroelastic stress tensor, and 𝒏𝑀
±  are the matrix 

outward normal vectors on each side of the fracture. The two sides of the fracture are 

denoted by “+” and “-“, respectively. The normal to the fracture is chosen to be equal to 

the matrix normal on the (+) side. Consequently, the primary variables in the fracture are 

the temperature 𝑇, the pressure 𝑝, the displacement 𝐮 and the contact traction 𝝀𝐹. 

The fracture aperture of a dimensionally reduced fracture will be affected by fluid 

pressure as well as thermo-poromechanical forces in the matrix. It is given by 

 𝑎 = 𝑎0 + ⟦𝐮⟧n, (10) 

with 𝑎0 denoting the residual hydraulic aperture in the undeformed state, and ⟦𝐮⟧n the 

normal component of a displacement-jump over the fracture, defined as  

 ⟦𝐮⟧ = 𝐮+ − 𝐮−, (11) 

i.e., the difference in the displacement computed on the fracture walls on each side of 

the fracture (Figure 1b). A vector 𝐛𝐹 can be decomposed into 𝑏𝑛 = 𝒃𝑭 ⋅ 𝒏𝑀
+  and 𝐛𝜏 =

𝒃𝑭 − 𝑏𝑛𝒏𝑀
+ , that is the normal and tangential components relative to the fracture. 

The dilation of the fracture associated with a tangential (sharing) displacement ⟦𝐮⟧τ 

due to the rough fracture surfaces is defined by a gap function (Stefansson, et al., 2021a): 

 𝑔 = tan(𝛹) ||⟦𝐮⟧τ||, (12) 

with 𝛹 as the dilation angle described by (Barton, 1976). Hence, 𝑔, is the normal distance 

between the fracture walls when in mechanical contact. The relative motion between the 

fracture walls is described by a nonpenetration condition which constrains the fracture 

deformation in the normal direction: 

 ⟦𝐮⟧n − 𝑔 ≥ 0,

𝜆𝑛(⟦𝐮⟧n − 𝑔) = 0
𝜆𝑛 ≤ 0.

, (13) 
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It follows that the normal contact force, 𝜆𝑛, is zero when a fracture is mechanically open 

and there is no mechanical contact across the fracture. Finally, a Coulomb friction law 

that governs sliding of the fracture is given: 

 ||𝝀𝜏|| ≤ −𝐹𝜆𝑛 ,

||𝝀𝜏|| < −𝐹 𝜆𝑛 → ⟦𝐮̇⟧τ = 𝟎,

||𝝀𝜏|| = −𝐹 𝜆𝑛 → ∃ 𝜁 ∈ ℝ+: ⟦𝐮̇⟧τ = 𝜁𝝀𝜏.

 (14) 

With, 𝝀𝜏, and ⟦𝐮̇⟧τ respectively, denoting the tangential contact force and displacement 

increment, and F denoting the friction coefficient. 

The the Darcy velocity in the fracture is given by  

 
𝐯𝐹 = −

𝑘𝐹

𝜂
(∇∥𝑝𝐹 − 𝜌𝑓,𝐹𝐠∥), (15) 

where the permeability in the fracture, 𝑘𝐹 , is related to the aperture by the cubic law by 

𝑘𝐹 =  𝑎2/12. Here, ∇∥𝑝𝐹 denotes the pressure gradient and 𝒈∥ the component of the 

gravity vector, both in the plane of the fracture. The subscript F refers to quantities 

specific to the fracture. The cubic law gives a strongly non-linear relation between 

fracture aperture and fluid flow in the fracture. The mass balance equation for the 

fracture becomes 

 
𝑎 (

1

𝐵𝑓

∂𝑝𝐹

∂t
−𝛽𝑓

∂𝑇𝐹

∂t
) +

∂𝑎

∂t
+ ∇∥ ⋅ (𝑎𝐯𝐹) − 𝑣+ − 𝑣− = 𝑎Qp,F, (16) 

where 𝑣+ and 𝑣− are volumetric fluxes into the fracture on each side of the fracture 

(Figure 1b). The energy balance equation for the fracture is 

 
𝜌𝑓,𝐹𝑐𝑓𝑇𝐹

∂𝑎

∂t
+ 𝑐𝑓𝑎

∂(𝜌𝑓,𝐹𝑇𝐹)

∂t
+ ∇∥ ⋅ [𝑎(𝜌𝑓,𝐹𝑐𝑓𝑇𝐹𝐯𝐹 − 𝜅𝑓∇𝑇𝐹)] − 𝑤± − 𝑞±

= 𝑎QT,F, 
(17)  

where 𝜅𝑓 is the heat conductivity of the fluid and 𝑤± and 𝑞± are advective and 

conductive heat interface fluxes into to the fracture on each side. 

The interface fluxes describe the flow of mass and energy between the fracture and 

rock matrix and are given with the following equations (Martin et al., 2005; Jaffré et al., 

2011; Stefansson et al., 2021b): 

 
𝑣± = −

𝑘𝐹

𝜂
(

2

𝑎
(𝑝𝐹 − 𝑝𝑀

± ) − 𝜌𝑓,𝐹𝐠 ⋅ 𝐧𝑴
± ), (18) 

 
𝑞± = −

2𝜅𝑓

𝑎
(𝑇𝐹 − 𝑇𝑀

±), (19) 

 
𝑤± = {

𝑣±𝜌𝑓,𝑀
± 𝑐𝑓𝑇𝑀

±    if  𝑣± > 0

𝑣±𝜌𝑓,𝐹𝑐𝑓𝑇𝐹      if  𝑣± ≤ 0
 . (20) 

Where the subscript F and M refers to properties in the fracture and matrix respectively, 

and the superscript ± refers to which side of the fracture those properties are taken. On 

the matrix boundary, the internal boundary conditions, 

 𝐮𝑀
± = 𝐮±,   𝐯𝑀

± ⋅ 𝐧𝑴
± = 𝑣±,   𝐪𝑀

± ⋅ 𝐧𝑀
± = 𝑞±   and   𝐰𝑀

± ⋅ 𝐧𝑀
± = 𝑤±, (21) 

ensure coupling from the variables in the matrix to the variables on the fracture wall. 

Here, 𝐰𝑀 = 𝜌𝑓,𝑀𝑐𝑓𝑇𝐯 and 𝐪𝑀 = −κe∇𝑇 respectively defines the advective and conductive 

heat flux in the matrix. On the fracture tips zero Neumann conditions are imposed for 

the mass and energy balance. 
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Tensile stress and fracture propagation 

The base for our numerical study is the conceptual model for CDM described in 

Axelsson (1985). It assumes that reservoir fluid circulates at the bottom of a permeable 

hydrothermal reservoir, with the circulation extending through fractures into a less 

permeable layer below. The circulating fluid cools down the rock surrounding a single 

fracture (Figure 1a), creating tensile stresses and causing the rock to contract and the 

fracture to open and propagate—given that the tensile force is sufficient to overcome 

other forces holding the fracture closed. 

Following Stefansson et al. (2021b) we consider propagation due to tensile forces, 

modeled by the stress intensity factor, 𝑆𝐼I, given as a function of the normal component 

of the displacement-jump over the fracture: 

 
𝑆𝐼I = √

2𝜋

𝑅𝑑
(

𝜇

𝜅 + 1
⟦𝐮⟧n). (22) 

Where, 𝑅𝑑 is the distance between the point where the displacement jump is evaluated 

and the fracture tip, and the Kolosov constant for plain strain is given by 

 
𝜅 =

𝐵𝑆 + 7𝜇/3

𝐵𝑆 + 𝜇/3
. (23) 

For details, see for instance Nejati et al. (2015). Furthermore, introducing a propagation 

criterion (Stefansson et al. (2021b), with the fracture tip propagating when 𝑆𝐼I exceeds a 

critical value: 

 𝑆𝐼I ≥ 𝑆𝐼𝐼𝑐𝑟𝑖𝑡. (24) 

The critical value can be viewed as the rock toughness or the resistance of the rock to 

fracture. 

Notes on the numerical implementation 

The mathematical model for the thermo-poroelastic fractured medium with fracture 

mechanics and matrix-fracture mass and energy fluxes, is implemented in the open-

source simulation tool PorePy, which is tailored for representing complex multiphysics 

processes in fractured porous media, see Keilegavlen et al. (2021a) for more information. 

The fractures are explicitly represented in the computational grid which allows for 

detailed modelling and provides high resolution of processes in the fracture and on the 

fracture-matrix interface (fracture walls). Moreover, fracture propagation is represented 

by extending the fracture grid, with minimal adjustments needed to the rest of the 

computational model. 

In the computational grid, pressure and temperature are represented in both rock 

matrix and fracture, while the displacement is confined to the rock matrix and on the 

fracture walls and contact tractions are represented on the fractures (Figure 1b). The full 

set of degrees of freedom and their coupling structure is described in Stefansson, et al. 

(2021b), where implementation details including the algorithm for fracture propagation 

can also be found. In accordance with the conceptual model, we make the simplifying 

assumption that the propagation will be tensile and in the vertical direction. Therefore, 

the grid is aligned in the vertical direction, with the pre-existing fractures conforming to 

the grid, and the propagation is restricted to follow grid cell edges. 
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Figure S1. a) Conceptual model for CDM in a single open fracture, adapted from 

Axelsson (1985). b) Schematic of the mixed-dimensional computational grid: Pressure 

and temperature (blue and red) are modelled in both the rock matrix and the fracture, 

while the displacement (yellow) is computed in the rock matrix and on the opposing 

fracture walls (“+” and “-” side of the fracture). In the fracture contact traction force is 

shown (black) but not shown are the interface fluxes on the fracture walls, describing the 

flow of mass and energy between the fracture and rock matrix. c) Same schematic as b) 

but after the fracture has propagated one vertical grid-block downward. In the 

mathematical model and on the computational grid, there is no separation between the 

fracture and the fracture walls, still this is shown on b) and c) for visualization purposes. 

 


