AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at
[email protected]
in case you face any issues.
Thomas L. Delworth
Public Documents
2
Exploring a data-driven approach to identify regions of change associated with future...
Zachary M. Labe
and 3 more
April 12, 2024
A key consideration for evaluating climate projections is uncertainty in radiative forcing scenarios. Although it is straightforward to monitor greenhouse gas concentrations and compare those observations with specified climate scenarios, it remains less obvious on how to connect regional climate patterns with these scenarios in real time. Here we introduce a machine learning approach for linking patterns of climate change with radiative forcing scenarios and use an attribution method to understand how these linkages are made. We train a neural network using output from the SPEAR Large Ensemble to classify whether temperature or precipitation maps are most likely to originate from one of several potential radiative forcing scenarios. The neural network learns to identify “fingerprint” patterns that associate signals of climate change with the scenarios. We illustrate this using output from additional mitigation experiments and highlight regions that are critical for associating the new simulations with likely radiative forcing scenarios.
Changes in United States summer temperatures revealed by explainable neural networks
Zachary M. Labe
and 2 more
July 20, 2023
To better understand the regional changes in summertime temperatures across the conterminous United States (CONUS), we adopt a recently developed machine learning framework that can be used to reveal the timing of emergence of forced climate signals from the noise of internal climate variability. Specifically, we train an artificial neural network (ANN) on seasonally-averaged temperatures across the CONUS and then task the ANN to output the year associated with an individual map. In order to correctly identify the year, the ANN must therefore learn time-evolving patterns of climate change amidst the noise of internal climate variability. The ANNs are first trained and tested on data from large ensembles and then evaluated using observations from a station-based dataset. To understand how the ANN is making its predictions, we leverage a collection of ad hoc feature attribution methods from explainable artificial intelligence (XAI). We find that anthropogenic signals in seasonal mean minimum temperature have emerged by the early 2000s for the CONUS, which occurred earliest in the Eastern United States. While our observational timing of emergence estimates are not as sensitive to the spatial resolution of the training data, we find a notable improvement in ANN skill using a higher resolution climate model, especially for its early 20th century predictions. Composites of XAI maps reveal that this improvement is linked to temperatures around higher topography. We find that increases in spatial resolution of the ANN training data may yield benefits for machine learning applications in climate science.