Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Guo Lin

and 11 more

The spatiotemporal variability of latent heat flux (LE) and water vapor mixing ratio (rv) variability are not well understood due to the scale-dependent and nonlinear atmospheric energy balance responses to land surface heterogeneity. Airborne in situ and profiling Raman lidar measurements with the wavelet technique are utilized to investigate scale-dependent relationships among LE, vertical velocity (w) variance (s2w), and rv variance (s2wv) over a heterogeneous surface in the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign. Our findings reveal distinct scale distributions of LE, s2w, and s2wv at 100 m height, with a majority scale range of 120m-4km in LE, 32m-2km in s2w, and 200 m – 8 km in s2wv. The scales are classified into three scale ranges, the turbulent scale (8m–200m), large-eddy scale (200m–2km), and mesoscale (2 km–8km) to evaluate scale-resolved LE contributed by s2w and s2wv. In the large-eddy scale in Planetary Boundary Layer (PBL), 69-75% of total LE comes from 31-51% of the total sw and 39-59% of the total s2wv. Variations exist in LE, s2w, and s2wv, with a range of 1.7-11.1% of total values in monthly-mean variation, and 0.6–7.8% of total values in flight legs from July to September. These results confirm the dominant role of the large-eddy scale in the PBL in the vertical moisture transport from the surface to the PBL. This analysis complements published scale-dependent LE variations, which lack detailed scale-dependent vertical velocity and moisture information.