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Supporting Text S1: Impact of temperature on NPP predictability

Temperature mediates the rate of phytoplankton growth, and in the upper ocean ex-

hibits predictability characteristics aligned with that of SIE and MLD (Supporting Fig.

S3). However, temperature is not a limiting factor (phytoplankton growth is possible at

all temperatures), and thus is not acting to directly control the timing and magnitude

of the spring bloom, but simply modifying its evolution. Consequently, unlike SIE and

IRRSFC, for which anomalies in prior months indicate preconditioning for an extensive or

muted spring bloom, SST acts only to amplify or diminish rates of NPP during the growth

season itself. In some regions (e.g. the Weddell and Indian sectors), this could indeed

be impacting NPP predictability, with significant SST predictability apparent during the

month of peak NPP predictability (Supporting. Fig. S3). Notably, however, this never

occurs without concomitant evidence of a role for the predictability in SIE and IRRSFC

(Fig. 2). Additionally, analysis of the variance in the growth rate impacts of light and

SST indicates that light limitation is significantly more impactful in regions of NPP vari-

ability (Supporting Fig. S4). This suggests that although SST predictability might play

an important role, its impact is secondary relative to the predictability of light availability

mediated by SIE.

Supporting Text S2: Impact of ensemble initialization date in relation to model

multi-decadal variability

The Weddell and Ross gyres are regions of well-known, persistent positive biases in deep

convective mixing and mixed layer depths in many ESMs. In GFDL-ESM2M, persistent
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multi-decadal variability in deep convective mixing occurs in the Weddell sector (Dunne

et al., 2012, 2013). This variability is associated with the persistent opening-up of a large

ice-free area in the central gyre region. Work by Marchi et al. (2019) has found that such

biases can impact the potential predictability of sea ice in these regions. In our results,

the Weddell sector exhibits consistently higher predictability than other sectors, both in

NPP and other state variables, and pan-Antarctic predictability is somewhat dominated

by this pattern (Fig. 1). An assessment of each ensemble start date showed that the

predictability was not sensitive to the transitional state of the mixed layer depth and sea

ice cover, i.e. the timing of the initialization relative to the progression of the multi-

decadal variability (Supporting Figure S7; compare ENS04 and ENS05 — initialized just

prior to periods of significant mixed layer shoaling — with other start dates). Thus, while

predictability in the Weddell sector is likely impacted by mixed layer depth variability,

its anomalously high values are not the result of sampling bias. Further research into

the impact of mixed layer depth biases on NPP predictability is required, particularly

assessing ESMs with different modes of variability in this region.
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Figure S1. Regional map showing the boundaries of sectors adopted for regional analysis.
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Figure S2. Seasonal climatology for relevant, model diagnostics for the Pan-Antarctic (black)

and each sector (colors), computed from the 300-year pre-industrial control simulation. Sea

surface temperature (SST), sea surface salinity (SSS), net primary production (NPP), mixed

layer depth (MLD), surface pCO2, sea-ice concentration (SIC), sea-ice extent (SIE), sea-ice

volume (SIV), surface biomass (SFC BIOMASS), surface chlorophyll (SFC CHL), surface iron

(SFC FED), surface irradiance (SFC IRR).
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Time series of first year PM predictability

Figure S3. Progression of potential prognostic predictability for sea-ice extent (SIE), sea

surface temperature (SST), surface irradiance (IRRSFC), and depth-integrated net primary pro-

duction (NPP) over the first 13 forecast months, for (a) the Pan-Antarctic and (b-f) each of the

regional sectors.
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(a) Light limitation (Large phyto) (d) Primary production (Large phyto)

(b) Light limitation (Small phyto) (e) Primary production (Small phyto)

(c) Normalized temperature factor for growth rate
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Figure S4. November-time variance for (a and b) the light-limitation factor for large and

small phytoplankton (c), the temperature growth factor (e0.063∗T ; (Dunne et al., 2013)) for sea

surface temperature, normalized by its time-mean value, and (d and e) surface net primary

production (NPP) for large and small phytoplankton. See Le Grix et al. (2022) for derivation of

the growth limitation terms. Note that the color scaling is logarithmic. For both large and small

phytoplankton, regions of high variability in NPP align with those regions where variability

in the light limitation factor dominates over the temperature growth factor. Note that these

diagnostics were taken from a different 500-year period of the preindustrial control simulation

to that in which the predictability experiments were initialized (Burger et al., 2022). The mean

climate state is consistent across the two periods.
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PM predictability of spring bloom drivers

Figure S5. (a-f) Regional predictability of MLD, surface iron (SFC FED), NPP, Chl a

(SFC CHL), and surface biomass (SFC BIOMASS) given by the PPP metric computed from a

suite of PM experiments. Here, we display the first year of forecast time and arrange the variables

on the x-axis. This figure is equivalent to Fig. 3 in the main text.
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Figure S6. Pearson correlation coefficient of net primary production (NPP) anomalies at

target months January through December and surface dissolved iron (SFC FED) at 0-13 lead

months in the (a) Weddell, (b) Indian, (c) West Pacific, (d) pan-Antarctic, (e) Ross, and (f)

Amundsen/Bellingshausen sectors. Correlation values are computed from the 300-year preindus-

trial control simulation. The dotting indicates Pearson correlation coefficient values significant

at the 95% confidence level according to a t-test accounting for autocorrelation.
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Figure S7. (a) Time-series of annual-mean Weddell sector mixed layer depth in the control

run (black) and each of the ensemble members (red). (b) Potential prognostic predictability for

depth-integrated NPP, evaluated separately for each of the 6 start year initializations. Ensembles

ENS01 (start year 170) and ENS05 (start year 232) in particular were initialized just prior to

periods of significant changes in Weddell sector convective activity (panel a), i.e. before periods

of dominant decadal variability. They do not exhibit substantially greater predictability than

other years, indicating that the chosen start dates for the ensemble initialization are unlikely to

have introduced sampling bias to our results.

June 22, 2023, 11:32pm


