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Abstract21

Every austral spring when Antarctic sea ice melts, favorable growing conditions lead to22

an intense phytoplankton bloom, which supports much of the local marine ecosystem.23

Recent studies have found that Antarctic sea ice is predictable several years in advance,24

suggesting that the spring bloom might exhibit similar predictability. Using a suite of25

perfect model predictability experiments, we find that November net primary produc-26

tion (NPP) is potentially predictable seven to ten years in advance in many Southern27

Ocean regions. Sea ice extent predictability peaks in late winter, followed by absorbed28

shortwave radiation and NPP with a two to three months lag. This seasonal progression29

of predictability supports our hypothesis that sea ice and light limitation control the in-30

herent predictability of the spring bloom. Our results suggest skillful interannual pre-31

dictions of NPP may be achievable, with implications for managing fisheries and the ma-32

rine ecosystem, and guiding conservation policy in the Southern Ocean.33

Plain Language Summary34

In very much the same way as we do for the weather, we can make forecasts of many35

aspects of the earth system. For example, rather than trying to predict how much rain36

will fall next Tuesday, we can explore how much algal growth might take place in the37

oceans around Antarctica in several months time. Such predictions could be extremely38

useful for managing the fragile ecosystems of these regions, for example informing fish-39

ing quotas in an upcoming season. However, just like for weather forecasts, there are up-40

per limits for how far into the future we can expect to accurately make such predictions.41

It’s this upper limit that we try to understand in this theoretical modeling study. We42

find that the upper limit is actually rather long (as much as 10 years!), and show that43

this is because of the close relationship between algal growth and sea ice (ice formed at44

the ocean surface) in this cold polar region. In turn, the extent of the sea ice can be pre-45

dicted a long time in advance because there is a lot “memory“ in this component of the46

earth system.47

1 Introduction48

Marine ecosystems are sustained at their base by net primary production (NPP).49

Variations in NPP cascade upward to higher trophic levels, driving variations in living50

marine organisms (e.g., zooplankton, or krill), which are sensitive to changing environ-51

mental conditions (Chassot et al., 2010; Stock et al., 2014; Tagliabue et al., 2021). In52

the Southern Ocean’s seasonal ice zone, where sea ice seasonally extends and retreats,53

phytoplankton grow intensely for a relatively short period (<10 weeks) during the aus-54

tral spring, resulting in a rapid increase in NPP (Moore & Abbott, 2000; Arrigo et al.,55

2008; Uchida et al., 2019; Arteaga et al., 2020; Douglas et al., 2023). In the subpolar South-56

ern Ocean, across both the seasonal ice zone and Antarctic coastal polynyas (a region57

that we collectively call the sea ice zone), the spring increase in NPP from intense phy-58

toplankton growth accounts for as much as 15% of total annual NPP in the Southern59

Ocean (Arrigo et al., 2008; Taylor et al., 2013). These short annual periods of intense60

growth, or blooms, are thus an important driver of the Southern Ocean marine ecosys-61

tem. Even though the relationship between NPP and upper trophic level biomass is com-62

plex (Friedland et al., 2012; Stock et al., 2017), skillful predictions of monthly NPP on63

seasonal-to-interannual time scales that capture the fluctuations in spring bloom pro-64

duction may help to better constrain predictions of ecological quantities and assist stake-65

holders in fishery management and marine conservation (Deppeler & Davidson, 2017;66

Moreau et al., 2020; Brooks & Ainley, 2022).67

The spring bloom is closely linked to the seasonal retreat of sea ice (Moore & Ab-68

bott, 2000; Arrigo et al., 2008; Uchida et al., 2019; Arteaga et al., 2020), which has been69

shown to be predictable. Perfect model (PM) experiments, which assess the “potential70

–2–



manuscript submitted to Geophysical Research Letters

predictability” of the climate state assuming perfectly known initial conditions and per-71

fectly known model physics, show that the Antarctic sea ice edge location has interan-72

nual predictability with lead times of up to three years (Holland et al., 2013; Marchi et73

al., 2019). Using suites of initialized hindcasts from a General Circulation Model (GCM),74

Bushuk et al. (2021) found that observed winter Antarctic sea ice extent can be skill-75

fully predicted with an 11-month lead in the Weddell, Amundsen/Bellingshausen, Indian,76

and West Pacific sectors. These PM experiments and GCM-based hindcasts attribute77

the predictability and prediction skill of Antarctic sea ice to the significant thermal in-78

ertia of the ocean which causes ocean heat content anomalies to remain at depth over79

the summer and reemerge during the autumnal sea ice advance, while being transported80

by the mean ocean circulation (Holland et al., 2013; Marchi et al., 2019; Bushuk et al.,81

2021).82

Over the past decade, the potential for skillful seasonal-to-interannual predictions83

of marine primary production has been shown (Séférian et al., 2014; Park et al., 2019;84

Frölicher et al., 2020). This work has revealed that skill exists in locations where the rate85

of phytoplankton growth is determined by a process that itself exhibits predictability,86

e.g. nutrient supply (Krumhardt et al., 2020; Ham et al., 2021; Brune et al., 2022). To87

date, no study has focused on the sea ice zone. Given the robust seasonal prediction skill88

of Antarctic sea ice extent and the importance of sea ice to the sea ice zone spring bloom,89

we ask the question: How predictable is spring bloom NPP in the Southern Ocean sea90

ice zone and what are the main drivers of spring bloom predictability?91

In this study, we assess the regional potential predictability of spring bloom NPP92

in the Southern Ocean using a suite of PM experiments performed with an ESM. After93

finding that spring bloom NPP and its associated physical drivers are predictable on seasonal-94

to-interannual time scales, we use a lead/lag diagnostic correlation analysis to elucidate95

the mechanisms of NPP predictability in this model.96

2 Methodology97

Model simulations were performed with the Earth System Model ESM2M (Dunne98

et al., 2012, 2013) developed by the Geophysical Fluid Dynamics Laboratory (GFDL).99

The GFDL-ESM2M model is a fully-coupled ESM with atmosphere, land, ocean, and100

sea ice components, and includes interactive ocean biogeochemistry. The atmosphere com-101

ponent is nearly identical to that in the GFDL Climate Model 2.1 (Delworth et al., 2006)102

and has 24 vertical layers with a horizontal resolution of 2° latitude by 2.5° longitude.103

The ocean component uses the MOM4 model (Griffies et al., 2005) with 50 vertical lay-104

ers and a nominal horizontal grid resolution of 1° latitude by 1° longitude, refined smoothly105

to 1/3° resolution at the equator. The sea ice component uses the same grid as the ocean106

component and simulates three thermodynamic layers, five ice thickness categories, and107

elastic-viscous-plastic sea ice dynamics (Winton, 1999).108

The GFDL-ESM2M model simulates ocean biogeochemistry using the Tracers of109

Ocean Phytoplankton with Allometric Zooplankton version 2.0 (TOPAZv2), which mod-110

els 30 tracers to describe cycles of carbon, nitrogen, phosphorus, silicon, iron, oxygen,111

alkalinity, lithogenic material, and surface sediment calcite (Dunne et al., 2013). TOPAZv2112

resolves three phytoplankton groups: small (cyanobacteria and picoeukaryotes), large113

(diatoms and other eukaryotes), and diazotrophs (nitrogen-fixing phytoplankton). The114

rate of phytoplankton growth depends on irradiance, nutrient availability, and temper-115

ature. Organic biomass is lost through grazing by zooplankton and direct bacterial res-116

piration. In this study, we consider NPP integrated over the top 100 m of the ocean, where117

the majority of phytoplankton growth takes place.118

We use a preindustrial control simulation and a suite of PM experiments conducted119

with GFDL-ESM2M as described in Frölicher et al. (2020). A 300-year preindustrial con-120
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trol simulation is branched from a 1000-year quasi-steady-state simulation initialized with121

conditions from 1860 (Dunne et al., 2012). The PM experiments branch off from the prein-122

dustrial control simulation at six different start dates: January 1st in the years 22, 64,123

106, 170, 232, and 295 (years chosen at random). Each start date contains 40 ensemble124

members, each initialized with an infinitesimal perturbation in SST added to a single125

grid cell in the Weddell Sea. The perturbations applied to the ensemble members were126

evenly distributed between 0.002 and −0.002°C. Each ensemble member was forced with127

identical preindustrial boundary conditions and was run for a duration of 10 years with128

the last ensemble group extending beyond the preindustrial control simulation by five129

years. The temporal resolution of all variables analyzed here is monthly mean.130

We use the prognostic potential predictability (PPP) metric to assess the predictabil-131

ity of NPP and quantities relevant to the spring bloom. The PPP is an estimate of the132

inherent upper limit of prediction skill of a given model. From Pohlmann et al. (2004),133

PPP is given by the following equation:134

PPP (τ) = 1−
1

N(M−1)

∑N
j=1

∑M
i=1

(
Xij(τ)−Xj(τ)

)2
σ2
c

where Xij is the value of a given variable for the ith ensemble member of the jth ensem-135

ble, Xj is the jth ensemble mean, σ2
c is the variance of the control simulation for a given136

target month, N is the number of ensembles (N = 6), M is the number of ensemble137

members (M = 40), and τ is the forecast lead time. Intuitively, PPP assesses how en-138

semble members chaotically diverge over time by comparing the ensemble spread to the139

natural variability of the control simulation. When PPP is equal to zero, the ensemble140

spread is identical to the simulated natural variability of the control simulation, which141

indicates that the variable could not have been skillfully predicted from the initial con-142

ditions. When PPP is equal to one, the spread of the ensemble members is perfectly dis-143

tinguishable from the simulated natural variability which indicates that the model is ca-144

pable of perfectly predicting the variable given accurate initial conditions.145

For our diagnostic analysis, we compute the Pearson correlation coefficient between146

NPP at a target month and a predictor variable at months leading the target month.147

We perform this correlation analysis for all twelve target months with a maximum lead148

time of 13 months. For both the PM predictability assessment and diagnostic correla-149

tion analysis, we consider six sectors of the Southern Ocean in our study: Weddell (60°W-150

20°E), Indian (20°E-90°E), West Pacific (90°E-160°E), Ross (160°E-130°W), and Amund-151

sen and Bellingshausen (130°W-60°W), plus the pan-Antarctic region, which encompasses152

all aforementioned sectors, following Bushuk et al. (2021). To capture the sea ice zone,153

the northern boundary for all sectors is 55°S and the southern boundary is the Antarc-154

tic continent. The sector boundaries are shown in Supporting Fig. S1, and seasonal cli-155

matologies of relevant variables in each sector are shown in Supporting Fig. S2. We per-156

form an F -test with the ensemble and control run variances to determine significant PPP157

values above the 95% confidence level (PPP> 0.183), and use a t-test that accounts for158

autocorrelation following Bretherton et al. (1999) to determine significant correlation co-159

efficients above the 95% confidence level.160

3 Results161

Fig. 1 shows PPP time series for NPP over the ten-year forecast period. Since the162

suite of PM experiments are initialized on January 1st, near perfect NPP potential pre-163

dictability (PPP>0.9) exists in January of the first year (Fig. 1; see bottom-left corner164

of each panel). At longer forecast times, NPP potential predictability decreases as the165

initial perturbations of the ensemble members grow chaotically and diverge, making it166

more difficult to predict their future state from the initial conditions. Across all regions,167

the highest PPP values occur in spring, from October to December, indicating that spring168

NPP is potentially predictable. NPP in the Weddell sector (Fig. 1b) has the highest spring169
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PPP throughout the forecast period, maintaining predictability for NPP in September170

through December beyond the 10 year lead times. The Indian (Fig. 1c) and West Pa-171

cific sectors (Fig. 1d) have lower PPP than the Weddell sector, but PPP remains sig-172

nificant in November for several years. NPP in the Amundsen/Bellingshausen sector (Fig. 1f)173

has high PPP for up to ten years in the spring with maximum PPP in December. Un-174

like the other sectors, Ross sector NPP does not have consistently significant PPP in the175

spring (Fig. 1e). While we show that NPP is predictable on interannual time scales, the176

highest PPP values (>0.4) occur in November of the first forecast year, suggesting that177

nearly half of the spring NPP variance can be predicted almost one year in advance. We178

focus our further analysis on this first-year November maximum to elucidate the key drivers179

of NPP predictability.180
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Figure 1. Regional predictability of net primary production (NPP) given by the prognostic

potential predictability (PPP) metric computed from a suite of perfect model (PM) experiments

with the GFDL-ESM2M model. The full ten-year forecast period from the PM ensembles is dis-

played with forecast years on the x-axis and months on the y-axis. PPP values above the 0.183

significance threshold are hatched and have a 95% confidence level based on an F -test.

Fig. 2 shows the regional predictability of NPP and potential key drivers of the sea181

ice zone spring bloom (SIE, mixed-layer depth, surface irradiance, and surface dissolved182

iron) for the first 13 months of the forecast period. As in Fig. 1, NPP predictability peaks183

in November for the pan-Antarctic (Fig. 2a), Weddell (Fig. 2b), Indian (Fig. 2c), and184

West Pacific (Fig. 2d) sectors while the Amundsen/Bellingshausen (A/B; Fig. 2f) sec-185

tor has maximum NPP predictability in December. Spring NPP is generally unpredictable186

in the Ross sector (Fig. 2e). In the Pan-Antarctic case, as well as prominently in the Wed-187

dell, Indian, West Pacific, and A/B, the November peak in NPP predictability is pre-188

ceded by — at one to two month leads — that of SIE and surface irradiance, indicat-189

ing that the alleviation of light limitation could be a prominent source of NPP predictabil-190

ity. Peaks in SIE predictability are accompanied, or slightly preceded, by peaks in MLD191

predictability (in all except the West Pacific and Ross sectors) consistent with the link192

between SIE predictability and the upward mixing of subsurface heat (Bushuk et al., 2021).193

In the A/B and, to a lesser extent, Indian sectors, the timing of high surface iron pre-194
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dictability — which follows that of the MLD and precedes that of NPP — indicates that195

alleviation of nutrient limitation could be an important source of NPP predictability in196

that area. While wintertime iron predictability is high in other areas (specifically the Wed-197

dell and Ross sectors), its alignment with spring bloom NPP predictability is less clear.198

In the following, we highlight the potential role played by SIE and surface irradiance as199

a source of NPP predictability, and revisit the role of iron in the discussion. The role of200

temperature in mediating NPP and its predictability is addressed in Supporting Text201
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Figure 2. Regional predictability of sea ice extent (SIE), mixed layer depth (MLD), surface

irradiance (IRRSFC), surface dissolved iron (FEDSFC), and net primary production (NPP) de-

termined by the PPP metric. The dotted vertical line marks November in the first forecast year.

PPP values above 0.183 (horizontal dashed line) are significant at a 95% confidence level based

on an F -test. PPP values above the significance threshold indicate that anomalies of the given

variable are predictable with the ESM2M model given perfect initial conditions.

In Fig. 3, we arrange key spring bloom drivers and NPP according to the timing203

of their respective peaks in predictability. We also add the PM predictability of surface204

chlorophyll a (Chl a) concentration and surface biomass since these metrics can be es-205

timated using satellite (Behrenfeld et al., 2017) and biogeochemical float (Arteaga et al.,206

2020) data, and could be integrated into operational forecasts informed by these PM pre-207

dictability results. Aside from the Ross sector, all regions exhibit a diagonal structure208

in their predictability peaks in Fig. 3, suggesting a progression of predictability start-209

ing with SIE and MLD, followed by surface irradiance, and finally NPP. The pan-Antarctic210

(Fig. 3a), Weddell (Fig. 3b), and Indian (Fig. 3c) sectors have the most defined progres-211

sion of predictability with a two to three months lag between maximum SIE and NPP212

predictability. In these regions, we also see maximum predictability for Chl a and sur-213

face biomass lagging the November peak in NPP predictability by one to three months.214

The West Pacific (Fig. 3d) and Amundsen/Bellingshausen (Fig. 3f) sectors display a less215

defined diagonal structure but still exhibit a two to three months lag between maximum216

SIE and NPP predictability. An equivalent perspective for the progression of predictabil-217

ity from MLD, to surface iron, to NPP (Supporting Fig. S5) shows that while it may218
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be present in some sectors (specifically A/B, Weddell, and Indian), it is notably absent219

in others, and for the Pan-Antarctic. In either case, these results support the interpre-220

tation that the spring bloom mechanism (Fig. 3g, further discussed below) causes the221

elevated predictability of spring NPP in the model simulations.222
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(g) Spring bloom mechanism

Figure 3. (a-f) Regional predictability of SIE, MLD, surface irradiance, NPP, Chl a, and

surface biomass given by the PPP metric computed from a suite of PM experiments. Here, we

display the first year of forecast time and arrange the variables on the x-axis following what we

expect from the climatological spring bloom mechanism. (g) The mechanism of the climatological

spring phytoplankton bloom. 1) Accumulation of nutrients in mixed layer during winter. 2) Sea

ice melts and retreats. 3) Ocean surface receives more solar radiation, penetrates deeper into

the water column. 4) The MLD shoals due to an influx of fresh melt water and greater solar

radiation. 5) The shallow MLD traps phytoplankton and nutrients near the surface where light

is abundant. 6) Phytoplankton grows intensely in the favorable conditions, forming the spring

bloom.
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To further examine the spring bloom and the relationship between its drivers and223

NPP, we perform a correlation analysis of SIE and surface irradiance anomalies preced-224

ing NPP anomalies up to 13 months in advance using the 300-year preindustrial control225

simulation (Fig. 4). The colormap reveals the correlation of NPP in each target month226

(displayed along the x-axis) with SIE (top) and IRRSFC (bottom; positive downwards)227

for each lead time (displayed along the y-axis). For example, the value at target month228

November and lead three months provides the correlation between November NPP and229

SIE/IRRSFC in the previous August. Correlation values for NPP target months outside230

September to March should be viewed cautiously due to the low absolute magnitude and231

variance of NPP during those months. Consistent with our proposed spring bloom pre-232

dictability mechanism (Fig. 3g), we find a strong inverse relationship between NPP and233

earlier SIE in all sectors, which means anomalously low SIE leads to anomalously high234

NPP, and vice versa. The relationship is strongest in the Weddell sector (Fig. 4a) where235

November NPP anomalies have high correlation (r < −0.75) with SIE anomalies up236

to five lead months. The correlation is lower in the other sectors, but these sectors also237

exhibit statistically significant negative correlation of November NPP anomalies with ear-238

lier SIE anomalies up to five lead months. In all sectors aside from the Ross Sea, we also239

find significant correlation between November NPP anomalies and SIE anomalies from240

the previous year, corresponding to a winter-to-winter reemergence of SIE anomalies. When241

examining surface irradiance as a predictor of NPP, we find a strong direct relationship242

in all sectors, consistent with the expectation that increased light availability drives en-243

hanced NPP. The positive IRR correlations with November NPP anomalies are signif-244

icant at shorter lead times than the SIE correlations anomalies, but significant correla-245

tion is maintained up to four months lead, as well as lead time beyond one year in all246

regions except for the Ross Sea. This analysis suggests that if late winter and early spring247

SIE and surface irradiance can be skillfully predicted, they should provide associated pre-248

dictability for spring NPP, supporting the proposed predictability mechanism shown in249

Fig. 3. The same correlation analysis was carried out for surface iron (Supporting Fig.250

S6). Spring and summertime NPP is positively correlated with the previous winter’s sur-251

face iron concentrations in most sectors, but with correlation coefficients somewhat lower252

than that of surface irradiance and SIE, particularly for a target month of November,253

the month of maximum NPP predictability.254

4 Discussion and Conclusions255

Given the significant influence of NPP variations on marine ecosystems and emerg-256

ing capabilities in biogeochemical modelling and data assimilation, there have been mul-257

tiple recent studies assessing the predictability of NPP using ESMs on interannual time258

scales (e.g., Frölicher et al., 2020; Séférian et al., 2014; Park et al., 2019; Taboada et al.,259

2019; Chikamoto et al., 2015; Brune et al., 2022; Krumhardt et al., 2020). However, the260

Southern Ocean seasonal ice zone, which differs from other regions due to the seasonal261

advance and retreat of sea ice and associated drastic changes in the environmental con-262

ditions, has received little attention so far. Here, we use a suite of PM experiments per-263

formed with the GFDL-ESM2M model to assess the predictability of NPP and then ex-264

amine how variations in sea ice retreat influence the predictability of NPP. We find that265

NPP is predictable seven to ten years in advance in all regions except the Ross sector266

(Fig. 1). NPP predictability tends to peak in November (eleven months from the Jan-267

uary first initialization date), suggesting that skillful predictions of NPP on seasonal to268

interannual time scales could be possible given accurate initial conditions. Moreover, since269

SIE provides the dominant source of spring NPP predictability and recent studies have270

shown skillful operational seasonal predictions of Antarctic SIE (e.g., Morioka et al., 2019;271

Bushuk et al., 2021), skillful NPP predictions may be practically within reach.272

In a Pan-Antarctic sense, and across most sectors, the progression of predictabil-273

ity from SIE and MLD, to surface irradiance, and to NPP with a two to three months274
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Figure 4. In the upper row, the Pearson correlation coefficient of net primary production

(NPP) anomalies at target months January through December and sea ice extent (SIE) anoma-

lies at 0-13 lead months in the (a) pan-Antarctic, (b) Weddell, (c) Indian, (d) West Pacific, (e)

Ross, and (f) Amundsen/Bellingshausen sectors. In the lower row, the Pearson correlation coeffi-

cient of NPP anomalies at the same target months and surface irradiance (SFC IRR) anomalies

at the same lead months. Correlation values are computed from the 300-year preindustrial con-

trol simulation. The dotting indicates Pearson correlation coefficient values significant at the 95%

confidence level according to a t-test accounting for autocorrelation.

lag (Fig. 2 and 3a-f) supports our hypothesis that the spring bloom mechanism — re-275

lating the seasonal growth and melt of sea ice to both nutrient and light availability (Fig. 3g)276

— exerts control over the inherent predictability time scales of NPP and other spring277

bloom quantities. The correlation analysis (Fig. 4) shows a strong relationship between278

springtime NPP anomalies and earlier SIE and surface irradiance anomalies, support-279

ing the PM predictability results. The sequence of these relationships aligns with what280

we causally expect given the spring bloom mechanism. Negative correlation between NPP281

and earlier SIE is expected since greater SIE inhibits phytoplankton growth by limiting282

light. Positive correlation between surface irradiance and NPP also agrees with the spring283

bloom mechanism since greater surface irradiance increases light availability, which pro-284

motes phytoplankton growth.285

Nutrient availability could also play an important role in the predictability of NPP286

in some regions. The PM and correlation analyses (Fig. 2, and Supporting Fig. S5 and287

S6) indicate that predictability of wintertime nutrient concentrations are important for288

springtime NPP predictability in the A/B sector, and could play a role in the Weddell289

and Indian sectors. As prior work has indicated (Krumhardt et al., 2020), the major source290

of predictability is likely to come from whichever factor (light or nutrients) is most com-291

monly limiting growth during the month of the spring bloom. While the model diagnos-292

tics necessary to assess this comprehensively are not available, the model’s climatolog-293

ical seasonal cycle indicates that surface iron concentrations are not exhausted until Jan-294

uary or February, supporting the possibility that November-time growth is not iron lim-295

ited (Supporting Fig. S2). Further work, including assessing nutrient and light limita-296

tion within a PM framework, is required to fully assess the relative impact of these drivers297
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on NPP. The balance of these mechanisms has significant ramifications for the transla-298

tion of “potential predictability” into real world prediction skill, since observational con-299

straints for sea-ice extent and MLD are notably more abundant than those for nutrients.300

There are clear regional differences in the predictability of NPP and other spring301

bloom quantities. The Weddell sector is consistently more predictable than all other re-302

gions, while the Ross sector is consistently the least predictable. The low predictabil-303

ity of NPP in the Ross sector is accompanied by low predictability in sea-ice (Fig. 2).304

The anomalously low sea ice predictability of the Ross Sea has also been identified in305

earlier work on seasonal predictions with other GFDL models (Bushuk et al., 2021), PM306

experiments performed with CCSM3 (Holland et al., 2013), and multi-model predictions307

submitted to SIPN-South (Massonnet et al., 2020). (Bushuk et al., 2021) speculated that308

the low Ross Sea sea ice predictability could be related to the strong meridional ice drift309

in this region, which implies that sea ice dynamics have a larger influence on the Ross310

sea ice edge position compared to other Antarctic regions. Since these ice dynamics are311

largely driven by unpredictable winds, this potentially makes the sea ice edge more dif-312

ficult to predict in this region. The spring bloom mechanism described above suggests313

that the inherent challenges in predicting Ross sea ice may translate to inherently low314

predictability of Ross NPP. However, the robustness of low Ross Sea predictability is still315

quite uncertain, as the multi-model PM study of Marchi et al. (2019) shows that there316

is substantial model diversity in Ross sea ice predictability, with some models exhibit-317

ing high predictability in this region.318

While our PM framework allows us to examine the predictability of key variables319

in the GFDL-ESM2M model, it does have limitations. First, the ensemble members were320

initialized on a single date (January 1st) instead of choosing initialization dates through-321

out the year. The prediction skill of sea ice, for example, is highly dependent on the ini-322

tialization date of the dynamical prediction system (Bonan et al., 2019; Bushuk et al.,323

2021), which suggests that expanding our initialization dates could lead to different sea-324

sonal patterns of NPP predictability. Additionally, like many global models, GFDL-ESM2M325

exhibits multi-decadal variability in the subpolar Southern Ocean. In Supporting Text326

S2, we show that our results are not sensitive to the timing of initialization with respect327

to the phase of this variability. Second, our suite of PM experiments only uses a single328

model. While previous studies have shown that the GFDL-ESM2M model captures nat-329

ural variability and large-scale biogeochemical processes reasonably well (Dunne et al.,330

2012, 2013), there are unique features of the model that deviate from the real world and331

require us to interpret our results carefully. For example, it is questionable to what ex-332

tent current models are able to accurately capture the exact timing of the phytoplank-333

ton bloom in the Southern Ocean. While observations suggest that biomass starts in-334

creasing under sea ice prior to its retreat, peak biomass accumulation is expected in Novem-335

ber (Arteaga et al., 2020; Llort et al., 2015), which is consistent with the month of peak336

predictability in our experiments. Additionally, the biogeochemical model in ESM2M337

(TOPAZv2) lacks an explicit representation of zooplankton (Dunne et al., 2013), with338

phytoplankton loss via grazing represented as a function of phytoplankton abundance339

and temperature. Consequently, top-down controls, which could play an important role340

in the evolution of the spring bloom in the Southern Ocean (Rohr et al., 2017), are not341

fully represented.342

In summary, we have assessed the predictability of NPP in the GFDL-ESM2M model343

using a suite of PM experiments. Given the important role of sea ice retreat in the spring344

bloom mechanism and recent work indicating that sea ice is predictable on seasonal-to-345

interannual time scales, we hypothesized that NPP and quantities relevant to the spring346

bloom should be predictable on similar time scales. Supporting our hypothesis, we find347

that November NPP is potentially predictable in all regions except the Ross sector for348

seven to ten years in advance, with highest predictability in the Weddell sector. By ex-349

amining the timing of the peak in predictability across quantities relevant to the spring350

–10–



manuscript submitted to Geophysical Research Letters

bloom, we find a temporal progression of maximum predictability from SIE and MLD,351

to surface irradiance, and to NPP with a two to three months lag, aligning with the cli-352

matological spring bloom mechanism. Lead-time correlations of SIE predicting NPP and353

surface irradiance predicting NPP further support the progression of predictability. While354

the robustness of these results still must be corroborated with other ESMs, the existence355

of NPP predictability and the progression of predictability from SIE suggests that if we356

can initialize a model accurately and skillfully predict SIE, then prediction skill should357

exist for November NPP, potentially extending years in advance. Such skillful NPP pre-358

dictions would be critical for predicting ecosystem changes and the biomass of living ma-359

rine organisms, guiding fishery management, and informing marine conservation.360

5 Open Research361

Data and Jupyter notebooks to reproduce the figures in this manuscript are avail-362

able on Zenodo (Buchovecky et al., 2023, https://doi.org/10.5281/zenodo.8003803).363
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