loading page

Ice loss in the European Alps until 2050 using a fully assimilated, deep-learning-aided 3D ice-flow model
  • +3
  • Samuel Cook,
  • Guillaume Jouvet,
  • Romain Millan,
  • Antoine Rabatel,
  • Harry Zekollari,
  • Ines Dussaillant
Samuel Cook
University of Lausanne

Corresponding Author:[email protected]

Author Profile
Guillaume Jouvet
University of Lausanne
Author Profile
Romain Millan
Université Grenoble Alpes, CNRS, IGE
Author Profile
Antoine Rabatel
UJF-Grenoble 1 / CNRS, LGGE UMR 5183
Author Profile
Harry Zekollari
ETH Zürich
Author Profile
Ines Dussaillant
Unknown
Author Profile

Abstract

Modelling the short-term (<50 years) evolution of glaciers is difficult because of issues related to model initialisation and data assimilation. However, this timescale is critical, particularly for water resources, natural hazards, and ecology. Using a unique record of satellite remote-sensing data, combined with a novel optimisation and SMB-calculation method within the framework of the deep-learning-based Instructed Glacier Model, we are able to resolve initialisation issues. We thus model the evolution of all glaciers in the European Alps up to 2050 under present-day climate conditions, assuming no future climate change. We find that the resulting committed ice loss exceeds a third of the present-day ice volume by 2050, with multi-kilometre frontal retreats for even the largest glaciers. Our results show the importance of modelling ice dynamics to accurately retrieve the ice-thickness distribution and to predict future mass changes. Thanks to high-performance GPU processing, we also demonstrate our method’s global potential.
29 Jun 2023Submitted to ESS Open Archive
08 Jul 2023Published in ESS Open Archive