Magma emplacement in the top unconsolidated sediments of rift basins is poorly constrained in terms of mechanics and associated hydrothermal activity. Our study compares two shallow sills from the Guaymas Basin (Gulf of California) using core data and analyses from IODP Expedition 385, and high-resolution 2D seismic data. We show that magma stalling in the top uncemented sediment layer is controlled by the transition from siliceous claystone to uncemented silica-rich sediment, promoting flat sill formation. Space is created through a combination of viscous indentation, magma-sediment mingling and fluidization processes. In low magma input regions, sills form above the opal-A/CT diagenetic barrier, while high magma input leads to upward stacking of sills, forming funnel-shaped intrusions near the seafloor. Our petrophysical, petrographic, and textural analyses show that magma-sediment mingling creates significant porosity (up to 20%) through thermal cracking of the assimilated sediment. Stable isotope data of carbonate precipitates indicate formation temperatures of 70−90°C, consistent with the current background geothermal gradient at 250−325 m depth. The unconsolidated, water-rich host sediments produce little thermogenic gas through contact metamorphism, but deep diagenetically formed gas bypasses the low-permeability top sediments via hydrothermal fluids flowing through the magma plumbing system. This hydrothermal system provides a steady supply of hydrocarbons at temperatures amendable for microbial life, acting as a major microbial incubator. Similar hydrothermal systems are expected to be abundant in magma-rich young rift basins and play a key role in sustaining subseafloor ecosystems.

Yan Zhang

and 7 more

Studying tropical hydroclimate and productivity change in the past is critical for understanding global climate dynamics. Northwest Australia is an ideal location for investigating Australian monsoon dynamics, the variability of the Indonesian Throughflow (ITF), and their impact on past productivity and warm pool evolution, which remain poorly understood during the 40 kyr world in the mid-early Pleistocene. In this study, we present multi-proxy records from International Ocean Discovery Program (IODP) Site U1483 in the Timor Sea spanning the last 2000 ka, including orbitally-resolved records from the 40 kyr world between 2000 and 1300 ka. Our results suggest that northwest Australia underwent a step of increased aridification and that productivity in the Timor Sea declined during the transition from ~ 1700 to ~ 1400 ka. We attribute this aridification to the reduced moisture supply to this region caused by the ITF restriction and warm pool contraction. We ascribe the declined productivity to a decrease in the nutrient supply of the Pacific source water associated with global nutrient redistribution. At orbital timescale, multiple mechanisms, including sea level changes, monsoon, and the Intertropical Convergence Zone (ITCZ) dynamics, and variations in the ITF and Walker circulation could control variations of productivity and terrigenous input in the Timor Sea during the 40 kyr world. Our bulk nitrogen and benthic carbon isotope records suggest a strong coupling to biogeochemical changes in the Pacific during this period. This research contributes to a better understanding of tropical hydroclimate and productivity changes during the 40 kyr world.