Materials and Methods
Observations and CMIP data
Temperature, dew point temperature, and surface pressure data at a
spatial resolution of 0.25 and a three-hourly temporal resolution were
taken from the ERA5 reanalysis (48). Daily temperature
projections over the 1976–2100 were obtained from 31 CMIP5 models and
32 bias-corrected NASA Earth Exchange (NEX) Global Daily Downscaled
Projections (NEX-GDDP-CMIP6 models at a spatial resolution of 0.25). The
CMIP5 models are driven by historical forcing and Representative
Concentration Pathway 8.5 (RCP8.5) scenario (49) and the CMIP6
and NEX-GDDP-CMIP6 models are driven by historical forcing, Shared
Socioeconomic Pathway 1-2.6 (SSP1-2.6), and SSP5-8.5 scenarios
(50). The radiative forcing in RCP8.5 (referred to as a ‘business
as usual scenario’) rises continuously to reach 8.5
Wm-2 by the year 2100. RCP8.5 is approximately
equivalent to SSP5-8.5 (51). As an optimistic climate change
scenario, SSP1-2.6 was applied (51). Only one ensemble member was
used for each model run. The list of GCMs used in this study was
provided in Table S1 with more details.
Wet-bulb temperature (TW) was computed using 3-hourly surface
temperature, humidity, and pressure derived from the CMIP outputs and
the ERA5 reanalysis based on the Davies-Jones method (52).
Outputs from CMIP5 and CMIP6 models were re-gridded to 1.5° × 1.5° grid
and 1° × 1° grid, respectively.
Definition of ‘Outdoor days’
The concept of an “outdoor day” in this study was defined as a day
with thermal comfort conditions enabling most people to do outdoor
activities. Specifically, it is determined based on the daily dry-bulb
temperature falling in the range of 10 to 25 ℃, or alternatively, the
daily wet-bulb temperature lying within the range of 8 to 15 ℃ (Fig.
S16). While our study primarily reported results on the range of
dry-bulb temperature from 10 ℃ to 25 ℃ as the one possible defining
criterion for outdoor days, we introduced a more flexible definition
compared to previous works (Fig. 5; refer to
https://eltahir.mit.edu/globaloutdoordays/). This flexibility in
defining outdoor days is a novel contribution, making the concept more
advanced and applicable in the field for investigating pleasant weather
conditions.
By considering dry-bulb and wet-bulb temperature ranges in addition to
precipitation and providing a more adaptable definition, this study
enhances the understanding and assessment of outdoor days in relation to
thermal comfort, allowing for a more comprehensive evaluation of weather
conditions suitable for outdoor activities.
REFERENCES AND NOTES
1. Y. Hirabayashi, R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki,
S. Watanabe, H. Kim, S. Kanae, Global flood risk under climate change.Nature Clim Change . 3 , 816–821 (2013).
2. C.-E. Park, S.-J. Jeong, M. Joshi, T. J. Osborn, C.-H. Ho, S. Piao,
D. Chen, J. Liu, H. Yang, H. Park, B.-M. Kim, S. Feng, Keeping global
warming within 1.5 °C constrains emergence of aridification.Nature Clim Change . 8 , 70–74 (2018).
3. H. Shiogama, T. Hasegawa, S. Fujimori, D. Murakami, K. Takahashi, K.
Tanaka, S. Emori, I. Kubota, M. Abe, Y. Imada, M. Watanabe, D. Mitchell,
N. Schaller, J. Sillmann, E. M. Fischer, J. F. Scinocca, I. Bethke, L.
Lierhammer, J. Takakura, T. Trautmann, P. Döll, S. Ostberg, H. M.
Schmied, F. Saeed, C.-F. Schleussner, Limiting global warming to 1.5 °C
will lower increases in inequalities of four hazard indicators of
climate change. Environ. Res. Lett. 14 , 124022 (2019).
4. G. Althor, J. E. M. Watson, R. A. Fuller, Global mismatch between
greenhouse gas emissions and the burden of climate change. Sci
Rep . 6 , 20281 (2016).
5. R. Mendelsohn, A. Dinar, L. Williams, The distributional impact of
climate change on rich and poor countries. Environment and
Development Economics . 11 , 159–178 (2006).
6. N. S. Diffenbaugh, M. Burke, Global warming has increased global
economic inequality. Proceedings of the National Academy of
Sciences . 116 , 9808–9813 (2019).
7. USGCRP, 2017: Climate Science Special Report: Fourth National Climate
Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J.
Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change
Research Program, Washington, DC, USA, 470 pp., doi: 10.7930/J0J964J6.
8. C. N. Jenkins, K. S. Van Houtan, S. L. Pimm, J. O. Sexton, US
protected lands mismatch biodiversity priorities. Proc. Natl.
Acad. Sci. U.S.A. 112 , 5081–5086 (2015).
9. K. E. Salinas, H. B. Nguyen, S. C. Kamran, The invisible minority: A
call to address the persistent socioeconomic diversity gap in U.S.
medical schools and the physician workforce. Front. Public
Health . 10 , 924746 (2022).
10. D. R. Williams, S. A. Mohammed, J. Leavell, C. Collins, Race,
socioeconomic status, and health: Complexities, ongoing challenges, and
research opportunities: Race, SES, and health. Annals of the New
York Academy of Sciences . 1186 , 69–101 (2010).
11. A. G. Berberian, D. J. X. Gonzalez, L. J. Cushing, Racial
Disparities in Climate Change-Related Health Effects in the United
States. Curr Envir Health Rpt . 9 , 451–464 (2022).
12. E.-L. Marjakangas, A. Santangeli, A. Johnston, N. L. Michel, K.
Princé, A. Lehikoinen, Effects of diversity on thermal niche variation
in bird communities under climate change. Sci Rep . 12 ,
21810 (2022).
13. K. T. Smiley, I. Noy, M. F. Wehner, D. Frame, C. C. Sampson, O. E.
J. Wing, Social inequalities in climate change-attributed impacts of
Hurricane Harvey. Nat Commun . 13 , 3418 (2022).
14. C. Zanocco, J. Flora, H. Boudet, Disparities in self-reported
extreme weather impacts by race, ethnicity, and income in the United
States. PLOS Clim . 1 , e0000026 (2022).
15. N. A. Fisichelli, G. W. Schuurman, W. B. Monahan, P. S. Ziesler,
Protected Area Tourism in a Changing Climate: Will Visitation at US
National Parks Warm Up or Overheat? PLoS ONE . 10 ,
e0128226 (2015).
16. J. Day, N. Chin, S. Sydnor, M. Widhalm, K. U. Shah, L. Dorworth,
Implications of climate change for tourism and outdoor recreation: an
Indiana, USA, case study. Climatic Change . 169 , 29
(2021).
17. L. Lin, E. Ge, C. Chen, M. Luo, Mild weather changes over China
during 1971–2014: Climatology, trends, and interannual variability.Sci Rep . 9 , 2419 (2019).
18. K. van der Wiel, S. B. Kapnick, G. A. Vecchi, Shifting patterns of
mild weather in response to projected radiative forcing. Climatic
Change . 140 , 649–658 (2017).
19. J. Zhang, Q. You, G. Ren, S. Ullah, Projected changes in mild
weather frequency over China under a warmer climate. Environ. Res.
Lett. 17 , 114042 (2022).
20. J. Zhang, Q. You, G. Ren, S. Ullah, I. Normatov, D. Chen, Inequality
of Global Thermal Comfort Conditions Changes in a Warmer World.Earth’s Future . 11 (2023), doi:10.1029/2022EF003109.
21. X.-J. Gao, J. Wu, Y. Shi, J. Wu, Z.-Y. Han, D.-F. Zhang, Y. Tong,
R.-K. Li, Y. Xu, F. Giorgi, Future changes in thermal comfort conditions
over China based on multi-RegCM4 simulations. Atmospheric and
Oceanic Science Letters . 11 , 291–299 (2018).
22. H. M. Hanlon, D. Bernie, G. Carigi, J. A. Lowe, Future changes to
high impact weather in the UK. Climatic Change . 166 , 50
(2021).
23. J. Wu, X. Gao, F. Giorgi, D. Chen, Changes of effective temperature
and cold/hot days in late decades over China based on a high resolution
gridded observation dataset. International Journal of
Climatology . 37 , 788–800 (2017).
24. S. L. Heng, W. T. L. Chow, How ‘hot’ is too hot? Evaluating
acceptable outdoor thermal comfort ranges in an equatorial urban park.Int J Biometeorol . 63 , 801–816 (2019).
25. J. Spagnolo, R. de Dear, A field study of thermal comfort in outdoor
and semi-outdoor environments in subtropical Sydney Australia.Building and Environment . 38 , 721–738 (2003).
26. T. H. Zhang, Weather Effects on Social Movements: Evidence from
Washington, D.C., and New York City, 1960–95. Weather, Climate,
and Society . 8 , 299–311 (2016).
27. Intergovernmental Panel On Climate Change, Climate Change 2021
– The Physical Science Basis: Working Group I Contribution to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change(Cambridge University Press, ed. 1, 2023;
https://www.cambridge.org/core/product/identifier/9781009157896/type/book).
28. P. D. Howe, M. Mildenberger, J. R. Marlon, A. Leiserowitz,
Geographic variation in opinions on climate change at state and local
scales in the USA. Nature Clim Change . 5 , 596–603
(2015).
29. G. Sparkman, N. Geiger, E. U. Weber, Americans experience a false
social reality by underestimating popular climate policy support by
nearly half. Nat Commun . 13 , 4779 (2022).
30. D. Sarathchandra, K. Haltinner, How Believing Climate Change is a
“Hoax” Shapes Climate Skepticism in the United States.Environmental Sociology . 7 , 225–238 (2021).
31. M. Brenan, L. Saad, Global warming concern steady despite some
partisan shifts. Gallup Politics . 8 (2018).
32. E. W. Maibach, J. M. Kreslake, C. Roser-Renouf, S. Rosenthal, G.
Feinberg, A. A. Leiserowitz, Do Americans Understand That Global Warming
Is Harmful to Human Health? Evidence From a National Survey.Annals of Global Health . 81 , 396 (2015).
33. T. M. Lee, E. M. Markowitz, P. D. Howe, C.-Y. Ko, A. A. Leiserowitz,
Predictors of public climate change awareness and risk perception around
the world. Nature Clim Change . 5 , 1014–1020 (2015).
34. Y.-W. Choi, D. J. Campbell, J. C. Aldridge, E. A. B. Eltahir,
Near-term regional climate change over Bangladesh. Clim Dyn .57 , 3055–3073 (2021).
35. Y.-W. Choi, D. J. Campbell, E. A. B. Eltahir, Near-term regional
climate change in East Africa. Clim Dyn (2022),
doi:10.1007/s00382-022-06591-9.
36. Y. Choi, E. A. B. Eltahir, Heat Stress During Arba’een
Foot‐Pilgrimage (World’s Largest Gathering) Projected to Reach
“Dangerous” Levels Due To Climate Change. Geophysical Research
Letters . 49 (2022), doi:10.1029/2022GL099755.
37. Y.-W. Choi, E. A. B. Eltahir, Uncertainty in Future Projections of
Precipitation Decline over Mesopotamia. Journal of Climate .36 , 1213–1228 (2023).
38. A. Tuel, E. A. B. Eltahir, Why Is the Mediterranean a Climate Change
Hot Spot? Journal of Climate . 33 , 5829–5843 (2020).
39. W. Thiery, S. Lange, J. Rogelj, C.-F. Schleussner, L. Gudmundsson,
S. I. Seneviratne, M. Andrijevic, K. Frieler, K. Emanuel, T. Geiger, D.
N. Bresch, F. Zhao, S. N. Willner, M. Büchner, J. Volkholz, N. Bauer, J.
Chang, P. Ciais, M. Dury, L. François, M. Grillakis, S. N. Gosling, N.
Hanasaki, T. Hickler, V. Huber, A. Ito, J. Jägermeyr, N. Khabarov, A.
Koutroulis, W. Liu, W. Lutz, M. Mengel, C. Müller, S. Ostberg, C. P. O.
Reyer, T. Stacke, Y. Wada, Intergenerational inequities in exposure to
climate extremes. Science . 374 , 158–160 (2021).
40. E. M. Fischer, R. Knutti, Anthropogenic contribution to global
occurrence of heavy-precipitation and high-temperature extremes.Nature Clim Change . 5 , 560–564 (2015).
41. E.-S. Im, J. S. Pal, E. A. B. Eltahir, Deadly heat waves projected
in the densely populated agricultural regions of South Asia. Sci.
Adv. 3 , e1603322 (2017).
42. S. Kang, E. A. B. Eltahir, North China Plain threatened by deadly
heatwaves due to climate change and irrigation. Nat Commun .9 , 2894 (2018).
43. J. S. Pal, E. A. B. Eltahir, Future temperature in southwest Asia
projected to exceed a threshold for human adaptability. Nature
Clim Change . 6 , 197–200 (2016).
44. S. Pfahl, P. A. O’Gorman, E. M. Fischer, Understanding the regional
pattern of projected future changes in extreme precipitation.Nature Clim Change . 7 , 423–427 (2017).
45. M. J. Hornsey, E. A. Harris, P. G. Bain, K. S. Fielding,
Meta-analyses of the determinants and outcomes of belief in climate
change. Nature Clim Change . 6 , 622–626 (2016).
46. A. M. McCright, S. T. Marquart-Pyatt, R. L. Shwom, S. R. Brechin, S.
Allen, Ideology, capitalism, and climate: Explaining public views about
climate change in the United States. Energy Research & Social
Science . 21 , 180–189 (2016).
47. J. Marlon, L. Neyens, P. Howe, M. Mildenberger, A. Leiserowitz, Yale
climate opinion maps 2021. Yale Program on Climate Change Communication.
(2022), (available at
https://climatecommunication.yale.edu/visualizations-data/ycom-us/).
48. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J.
Muñoz‐Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons,
C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J.
Bidlot, M. Bonavita, G. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R.
Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S.
Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P.
Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F. Vamborg, S.
Villaume, J. Thépaut, The ERA5 global reanalysis. Q.J.R. Meteorol.
Soc. 146 , 1999–2049 (2020).
49. K. E. Taylor, R. J. Stouffer, G. A. Meehl, An Overview of CMIP5 and
the Experiment Design. Bulletin of the American Meteorological
Society . 93 , 485–498 (2012).
50. V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J.
Stouffer, K. E. Taylor, Overview of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) experimental design and organization.Geoscientific Model Development . 9 , 1937–1958 (2016).
51. S. Russo, J. Sillmann, S. Sippel, M. J. Barcikowska, C. Ghisetti, M.
Smid, B. O’Neill, Half a degree and rapid socioeconomic development
matter for heatwave risk. Nat Commun . 10 , 136 (2019).
52. R. Davies-Jones, An Efficient and Accurate Method for Computing the
Wet-Bulb Temperature along Pseudoadiabats. Monthly Weather
Review . 136 , 2764–2785 (2008).