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Abstract16

Data assimilation (DA) techniques have recently gained traction in the ionospheric community,17
particularly at regional operational centers where more precise data are becoming prevalent. At18
centre stage is the argument over which technique or scheme merits realization. At 4DSpace, we19
have in-house developed and assessed the performance of two regional flavors of short-term20
forecast strong constraint four-dimensional (4D, space and time) variational (SC4DVar) DA21
schemes; the orthodox incremental (SC4DVar-Inc) and ensemble-based (SC4DEnVar) approach.22
SC4DVar-Inc is bottled-necked by expensive Tangent Linear Models (TLMs) and model Ad-23
joints (MAs), while SC4DEnVar design mitigates these limitations. Both schemes initialize from24
the same background (IRI-2016), and electron densities forward propagated (30-min) by a Gauss25
Markov filter- the densities take on a log-normal distribution to assert the mandatory ionosphere26
density positive definiteness. Preliminary assimilation is performed only with ubiquitous Global27
Navigation Satellite System observables from ground-based receivers, with a focus on28
moderately stable mid-latitudes, specifically the Japanese archipelago and neighboring areas.29
Using a simulation analysis, we find that under model space localization, 30 member Ensembles30
are sufficient for regional SC4DEnVar. Verification of reconstructions is with independent31
observations from ground-based ionosonde and satellite radio occultations: the performance of32
both schemes is fairly adequate during the quiet period when the background has a better33
estimation of the hmF2. SC4DVar-Inc is slightly better over areas densely populated with34
measurements, but SC4DEnVar estimates the overall 3D ionosphere picture better, particularly35
in remote areas and during severe conditions. These results warrant SC4DEnVar as a better36
candidate for precise short-time regional forecasts.37

38

Plain Language Summary39
We have developed and assessed the performance of two flavors of short-term forecast four-40
dimensional (space and time) variational schemes. The first scheme relies on the quality of41
Tangent Linear Models and model Ad-joints in its design. The second scheme adopts an42
ensemble-based approach. Both schemes initialize from the same background and electron43
densities propagated by a Gauss Markov filter. Our verification analysis indicates that the44
ensemble approach approximates peak density-height variations better and offers improved45
estimates of the overall 3D ionosphere picture, particularly in remote areas and during severe46
conditions. Therefore, we recommend employing the ensemble-based approach for precise short-47
time regional forecasts.48

49

1 Introduction50

In most applications the direct and precise measurement of a required state of a system is51

generally not feasible. More so, the measurements are usually imperfect and spotty in space52

(three-dimensional) and time. Data assimilation (DA) techniques optimally combine53

measurements with prior information (via models, either physics‐based model or empirical54

model), to obtain a consistent picture (completeness) of the state while taking into account the55
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theoretical underpinnings. DA techniques have strong roots in the meteorological and56

oceanographic communities, where they have continuously matured and successfully tuned for57

applications suited to these communities. By contrast, in the ionospheric community, DA58

techniques were often neglected and have only recently taken centre stage due to the growing59

number of synergistic ionospheric observations and advances in computation power. More60

specifically, the advent of cost-effective dual-frequency, multichannel and high temporal61

resolution GNSS (Global Navigation Satellite System) receivers has drastically increased the62

volume of ionospheric data available for scientific analysis. There is a growing interest to borrow63

and customize DA techniques from meteorology and oceanography for ionospheric applications;64

for example, optimal interpolation, weighted least squares, Kalman filters and variational65

methods (Hajj et al., 2004; Pi et al., 2004; Schunk et al., 2004, 2016; Scherliess et al., 2004,66

2006; Thompson et al., 2006; Matsuo and Araujo‐Pradere, 2011; Lee et al., 2012, 2013; Hsu et67

al., 2014; Ssessanga et la., 2019; Mengist et al., 2023). Variational methods, heavily based on the68

calculus of variations, have advantages over other techniques: a) the analysis formulation can69

globally include modeled 3D background model error covariances. b) there is flexibility to70

include nonlinear observation operators - this is a limitation for optimal interpolation methods71

mainly restricted to linear observation operators. c) the mismatch between a model state and the72

measurements can be formulated into a global error/cost function (J) and minimized. Variational73

methods exist in a multitude of flavors based on the level of complexity or simplification. Here,74

the focus is on the strong-constraint four-dimensional Variational (SC4DVar) technique: a75

smoother, which in theory, seeks a solution that optimizes the errors in 3D space and trajectory76

within a specified time window on the assumption of a perfect prognostic model (Evensen et al.,77

2022). The temporal component edges 4DVar over observation filter variation schemes such as78
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3DVar that are restricted per analysis assimilation cycle to observations within a window less79

than the time scales associated with the model error. Moreover, the 4DVar scheme limits the80

averaging ionospheric dynamics because the time dimension allows for the simultaneous81

assimilation of asynchronous observations at their appropriate times.82

For the past few decades, a variant of SC4DVar, based on the incremental (-Inc) approach that83

involves the non-trivial requirement to compute the Tangent Linear Model (TLM) and Models84

Ad-joints (MA), has been the standard application in most fields, but TLMs and MAs85

implementation and maintenance is generally a bottleneck. The recent introduction of the86

ensemble-based variational schemes, SC4DEnVar, has alleviated some of these hindrances and87

thus motivated this study; using the readily available ground GNSS data, we analyze the fidelity88

of SC4DVar-Inc and SC4DEnVar in reconstructing a 4D regional mid-latitude ionosphere. (Note89

that, for most cases, the abbreviation for both full-field 4DVar and the incremental approach is90

“4DVar”, and the prefix (SC) and suffix(-Inc) appended in this work are coined to avoid91

ambiguity in interpretation.) The performance analysis is during quiet (days before the storm)92

and severe conditions during the St. Patrick’s Day 2015 geomagnetic storm.93

The paper is organized as follows: section 2 describes the mathematical formulation of a94

SC4DVar while assuming a simplified Gauss Markov propagation (Gelb, 1974) and log-normal95

distribution for ionosphere electron densities (Garner et al., 2005) and summaries the SC4DVar96

based on Lagrangian formulation. It further provides a derivation of the SC4DVar-Inc and97

SC4DEnVar. In the latter, an extended emphasis is on tuning the ensemble covariance central in98

defining the scheme's fidelity. Section 3 details the experimental setup and compares99

reconstructions to independent observations from ionosondes and low earth orbit satellites100

(COSMIC radio occultation densities). Section 4 discusses and summarizes the findings of this101
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work. The section also includes recommendations and future work to improve the SC4DEnVar102

scheme for ionospheric applications.103

2 Strong constrained 4DVar formulation (SC4DVar)104

We assume the volumetric regional ionosphere to be composed of P finite105

elements/voxels, n�� = (�1, �2, ⋯, ��, ⋯, ��) each with a uniform electron density distribution.106

Element )( in are assumed to be random variables sampled from independent identical random107

distributions, such that n is a random vector.108

Usually, a schematic/simplified assumption is that n follows Gaussian statistics, however in the109

ionosphere perspective, this has a few unrealistic implications: i) A Gaussian distribution is110

symmetric, and can take values between (−∞,∞). If in is close to zero (particularly electron111

densities in E-region and topside/plasmasphere), then the Gaussian distribution can assign112

probability to 0in - hence violating the positive definite ( n > 0) requirement for ionosphere113

electron densities. ii) In reality, ionospheric electron densities are better represented by other114

probability density functions rather “off the shelf” Gaussian statistics. Moreover, in Kotova et al.115

(2022), distributions of electron densities measured by the Swarm satellite mission (Olsen et116

al., 2013) in the Northern and Southern hemispheres were best described mainly by117

exponentiated Weibull, log-normal, and chi distributions. Therefore, to still utilize Gaussian118

statistics in our work and better approximate density distributions, we assume in to take on a log-119

normal distribution - whose natural logarithm then assumes Gaussian statistics (Garner et120

al., 2005); that is, we take the natural logarithm of each element, �� = log(��) , such that the new121

random vector is expressed as X�� = (�1, �2, ⋯, ��, ⋯, ��), and at convergence, the analysis log122

densities are projected back into �� space via �����. This argument also has a flaw - in123
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derivations that follow, the analysis is the mode or maximum likelihood in the Gaussian space.124

However, if the variance is large enough, the assumption that the mode in Gaussian space maps125

onto the mode in log-normal space ceases to hold (Fletcha 2006a; 2006b). The atmospheric126

community faces the same issue, and there is literature and developing studies proposing a better127

representation with mixed Gaussian-log-normal distributions. Such proposals are worth a future128

investigation in the ionospheric community but fall out of the scope of the current study. The129

assertion here is that even with the flaws, the log-normal distribution is a better statistical130

representation than a direct Gaussian approach.131

Forward Model: In a 4DVar assimilation schemes, the propagation of the state from time kt to132

1kt within an assimilation window, �0≤ �� ≤ ��, is assumed to be governed by a prognostic133

model �� : ℝ� → ℝ�. That is to say134

X�� k+1 = �k X�� k + ω��� k, (1)

where ω��� k ∈ ℝ�are model errors. In a strong constrained (perfect model) 4DVar, these errors are135

considered negligible (ω��� k = 0). Therefore, the accuracy of all density states (X�� k, k= 0,1,2,…N)136

within the assimilation window are entirely dependent on the accuracy of �k and the control137

vector (X�� k=0). For the perfect model assumption to hold, assimilation must be limited to short-138

time windows. Otherwise, the integrated ω��� k could grow inexorably. There are sophisticated weak139

constraint 4DVar schemes that cater for ω��� k and can forecast over long periods; however, their140

realization is still challenging in the ionospheric community because of a lack of a basic141

understanding of the size and structure of the error covariance matrix associated with ω��� k .142

In the ionosphere community, �k is generally a first principle physics-based models (Fuller-143

Rowell and Rees, 1980; Huba et al., 2000; Pi et al., 2003; Qian et al., 2014). However, this144

approach is still challenging or limited especially during geomagnetic storms conditions due to145

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047070/
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the difficulty in tracking the rapid changes of forcings such as electric fields, auroral particle146

precipitations, and Joule heating. Moreover, the dynamics that govern physical and chemical147

processes are far from being fully understood and represented in physics-based models. To148

circumvent some of the above limitations, Bust et al. (2004); Bust and Datta-Barua (2014),149

developed different DA flavour, Ionospheric Data Assimilation Four-Dimensional (IDA4D),150

based on a three-dimensional variational data assimilation (3DVar) derived in Daley (1991) and151

references therein. In IDA4D, rather than using a Physics based forward propagation or forecast,152

densities are drawn from an empirical model (for example NeQuick (Nava et al., 2006) or153

International reference ionosphere (IRI, Bilitza et al., 2022)), but then assumed to propagate for154

short time periods (15 minutes) following a Gauss Markov filter. We follow the same approach155

in this study with densities at ��+1 define as156

X�� k+1 = X�� b
k+1 + (X�� k − X�� b

k) ∗ exp ( − dT/τ) (2)

where dT is the length of the time sample ( kk tt 1 ). τ is the correlation time along the time157

trajectory that determines how much predictions at time sample k influence the predictions at158

k+1. All entities with subscript b are a background state (prior information from the empirical159

model) at that time sample. In this setup, the scheme is not confined to the grid of the160

background state: the upside is that the grid can easily get computed externally and the161

background interpolated or generated from previous analyses or any other ionospheric model162

(either empirical or physics) without modifications to the whole setup.163

Cost function: consider at each time sample k, to have a random vector Y�� k∈ ℝ� of noisy164

observations sampled from a Gaussian distributions, and hk: ℝ�→� a non linear operator that165

maps (X�� k) into the observational space at time tk. Then we can write166
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Y�� k = hk X�� k + ε�� k (3)

where ε�� k is a combination of instrumental and the representativeness errors, assumed to be167

Gaussian, unbiased and with covariance �k ∈ ℝ�×� (a square positive definite matrix). A168

typical assumption in data assimilation applications, and hereafter, is that ε�� k elements are169

uncorrelated (�kis diagonal): this assumption has a consequence similar in a way to the effect of170

the ratio of background to observation variances; if the background errors are more correlated171

than the observation errors (the case here), the consequence in spectral space, is that scheme172

mainly corrects large scales while ignoring the small scales (Stonebridge et al., 2018). Besides,173

even when the observational correlations are known, their implementation in a scheme is usually174

challenging and better off ignored (mostly horizontal correlations) - most applications somewhat175

avoid large-scale over-fitting by compensating for the neglected off-diagonal terms by inflating176

the �k diagonal elements.177

If the multivariate X�� k=0 is considered to have a background error covariance � ∈ ℝP×P (a178

positive definite matrix), such that X�� k=0~ N(X�� k=o
b , B), then the goal is to find X�� k=0 that minimizes179

the global scalar function180

J X�� o =
1
2

X�� o − X�� o
b T

�−1 X�� o − X�� o
b +

1
2

k=0

k=N

Y�� k − hk X�� k
T

�k
−1 Y�� k − hk X�� k� (3)

where, the superscripts “–1” and “T” denote the inverse and the transpose of a matrix,181

respectively, and the observational and the background model errors are assumed to be182

independent. In the nutshell, 4DVar minimizes the mismatch between model state and the183

measurements, in both space and time: the background term (first term) acts as constraint to the184

“inverse problem problem” with no unique solution because the observations (second term) are185

not sufficient to cover all degrees of freedom.186
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2.1 Lagrange multipliers approach to the solution (SC4Dvar-L)187

In preparation for the discussion on SC4DVar-Inc and SC4DEnVar, we lay a foundation with a188

strong constraint 4DVar solved through a Lagrange multiplier approach. Results from this189

approach are not presented or discussed here - in the sequel we only exploit the terminologies190

and bottlenecks to justify why the incremental and ensemble flavors are necessary. The 4DVar191

equations and formulation follow those in Ssessanga et al. (2019) and the references therein, but192

with an added complexity that we solve for log densities. For the analysis to strictly follow193

model dynamics, the perfect model constraints are appended to equation (3), with the resultant194

Lagrangian to solve as195

L = J X�� o +
k=1

k=N

λk
Tg(X�� k)�

g X�� k = (X�� k − �k−1(X�� k−1))

(4)

The multipliers (λk ∈ ℝ�) are associated with the constraint to satisfy, g X�� k .196

Asserting a boundary condition λN+1 = 0, and through variational calculus, it is easy to show197

that at extreme when ∇αL = 0, where α: X�� o, X�� k, λk (e.g., Zou et al., 1997; Ssessanga et al.,198

2018;2019), then199

λN = ��N
T�N

−1 Y�� N − hN X�� N (5)

λk = �� k
Tλk+1 − ��k

T�k
−1 hk X�� k − Y�� k , k

= N − 1, N − 2, ⋯0
(6)

X�� o = X�� b + �λ0 (7)

Where �� k ∈ ℝP×P and ��k ∈ ℝM×Pare the Jacobians of the forward operator �k and the200

observation operator hk, evaluated at X�� k,201
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�� k =
∂�k

∂X�� X�� k

, ��k =
∂hk

∂X�� X�� k

Note that to make corrections to the background in (7) the whole process is run backwards in202

time. That is, the prognostic model is run forward in time �o→N(X�� o), to obtain λN; and the203

information about disagreements between estimates and observations integrated back to tk=0. λk's204

are somewhat a measure the sensitivity to changes in the solutions X�� k at kt . The whole process is205

repeated until convergence.206

Certainly, it is obvious that in cases of high dimensions (P) SC4DVar-L is expensive, since every207

iteration, we have to compute �o→N(X�� o) along the trajectory, store all X�� k, and then perform a208

backward integration. In addition, without preconditioning and �k and hk non-linear, in real-209

time applications quick convergence is generally uncertain due to ellipsoidal cost function iso-210

surfaces; the path to convergence is short if iso-surfaces are spherical.211

2.2 Incremental approach to the solution (SC4DVar-Inc)212

The incremental approach addresses some of the SC4DVar-L shortfalls. Rather than solving for213

the full-field, the control vector X�� o is expressed as an increment to the background X��� o
b at tk=0,214

The intuition is that we have a good approximation to the true trajectory from a nonlinear215

prognostic model, and what is sought is a small change or increment in the initial condition (∂X�� o)216

to minimize a cost function through a period of time (Courtier et al., 1994). An advantage of this217

approach is that ∂X�� o can be represented in terms of modes that satisfy linear evolution (and218

neglect small scales that are nonlinear), which is a requirement for the Gaussian probability219

distribution assumptions (see equation 9). In a way, this is preconditioning of the increment or a220

X�� o= X�� o
b + ∂X�� o (8)
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control variable transform (CVT). Our choice of precondition here is to use the square root of the221

background covariance matrix B (corresponding to time tk=0)222

∂X�� o = �1
2W��� (9)

Substituting the above back into the original cost function223

J W��� =
1
2

W��� T
W���

+
1
2

k=0

k=N

Y�� k − hk �0→k X�� o
b + �1

2W���
T

�k
−1 Y�� k�

− hk �0→k X�� o
b + �1

2W���

(10)

Through Taylor expansion to the first order, we can express224

M0→k X�� o
b + �1

2W��� ≈ �0→k X�� o
b + �� k�1

2W��� ; ∂X�� k ≈ �� k�1
2W���

Y�� k − hk �0→k X�� o
b + �1

2W��� ≈ Y�� k − hk �0→k X�� o
b + ��k�� k �1

2W���

where, in the second equation, the extreme right expression is TLM approximation to a225

composite of two functions. In taking the above approximations and remembering that this is a226

strong-constraint formulation, a condition required is that ∂X�� k = �0→k ∂X�� o ≈ �� ��1
2W��� must227

be sufficiently small so that �� k seamlessly approximates the evolution of these perturbations228

throughout the assimilation window.229

If we let the departure of the observations with respect to the evolution of the background guess230

at tk equal to D�� k= Y�� k- hk M0→k X�� o
b then231

J W��� =
1
2

W��� T
W��� +

1
2

k=0

k=N

D�� k − ��k�� k �1
2W���

T
�k

−1 D�� k − ��k�� k�1
2W���� (11).

Obvious, in the first term of equation (9), is the omission of an expensive �−1 (with a condition232

number κ ≫ 1) - to an identity matrix (I) with the best condition number κ = 1 and errors in W���233
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uncorrelated. Computational-wise, rather than dealing with a full field X�� o with all sorts of234

correlations, as in SC4DVar-L, the cost function is now explicitly expressed in the affordable235

control variable W��� - under the assumption that the full field analysis increments, ∂X�� o, are the236

linear combinations of the column vectors of �1
2. The gradient to the quadratic in equation (11),237

and at extreme when ∇J W��� = 0238

W��� = k=0
k=N ��k�� k �1

2
T
�k

−1D�� k�

I + k=0
k=N ��k�� k �1

2
T
�k

−1 ��k�� k �1
2�

(13)

Then, X�� o= X�� o
b + �1

2W��� at convergence, after a few of iterations.239

In equation 13, the merit consequent to preconditioning is reflected in the denominator term, to240

which an inverse is required to solve for the control variables W��� : the additive identity matrix, I,241

has all eigenvalues (λi = 1), and the term in the brackets takes on (λi ≥ 0) due its positive242

definiteness (or semi-positive definiteness) following �k being symmetric and positive definite.243

Therefore, the inverse of the resulting matrix is more stable with all λi ≥ 1. In fact, if the244

assimilation is limited to time (k=0), it can easily be shown that the denominator term in245

equation 13 is the Hessian matrix in a preconditioned (using �1
2) 3DVar scheme; reducing246

Hessian matrix condition number accelerates the convergence rate. Further, because all the247

eigenvalues are greater than 0, the Gaussian curvature (product of all eigenvalues) and mean248

curvature (mean of all eigenvalues) are constrained to greater than zero, implying that the249

∇J W��� = W��� +
k=0

k=N

��k�� k �1
2

T
�k

−1 D�� k − ��k�� k �1
2W���� (12)
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curvature in any direction is positive and the iso-surfaces of the cost function are nearly spherical250

(or the shape of the J W��� is convex).251

Still in equation 13, there is an implicit propagation of Background errors through �� k��� k
� .252

This leads to the quasi generation of flow-dependent covariance structures through the data253

assimilation window (Lorenc, 2003). This is considered as one of the reason why 4DVar is254

expected to perform better than 3DVar schemes that strictly implement static time-invariant255

background error covariance. At high spatial resolution, with enough computation power, such256

flow structures could be vital in resolving small scale ionosphere density structures: the257

downside in the SC4DVar-Inc is that the evolved structures are not utilized in the next258

assimilation cycle, which initializes with a new static �. Hybrid data assimilation techniques (in259

which B is a linear combination of climatological and ensemble covariances) have been260

proposed as remedy and are worth investigating in the future. In this work, we try to estimate the261

analysis errors (Ba) and forecast of background errors(Bf) for the next cycle by using the262

traditional Kalman filter approach and a Gauss Markov filter (Bust et al., 2004):263

The inverse in equation 14 is efficiently computed after a Cholesky decomposition of the matrix.264

The process of estimating Bf is continued for a 2-hour analysis period, during which the265

ionosphere temporal correlation coefficient falls to 70% (Jonathan, 1997; Klobuchar 1980;266

Ssessanga et al., 2019). After this period, the covariance and background initial guess are267

initialized to climatological settings.268

Covariance design (B)269

�a = � + ���k=0
T ��k=0���k=0

T + �k=0
−1��k=0�

�f = [1 − exp ( − 2dT/τ)]� + exp ( − 2dT/τ)�a
(14)

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019SW002321
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019SW002321
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The result from the preconditioning requires that column of �1
2 span the analysis model space -270

which implies that an incorrect B would have a direct negative impact on the final analysis271

solution. However, primarily, the actual structure of B is not know, and for ionospheric studies,272

3-D analyses are mainly of high dimension such that B in most cases is too large to be stored or273

even calculate explicitly. In addition, a full field B matrix is quite dense such that optimized large274

parse matrix solvers are inapplicable. Therefore, the B matrix utilized in this work is an275

approximation with some a prior information (dynamics and physics we know about the system).276

For example, the plasma structure is based on an a climatological model with knowledge that the277

plasma is magnetized and any existing correlations imposed in the geomagnetic coordinate278

system; we presume the variance and correlation fields are separable and define the entries of the279

former as280

where i and j are indices of the grid points in geomagnetic coordinate system using AACGM281

(Altitude-adjusted corrected geomagnetic coordinates, Shepherd, (2014)); Sb
α (α = i, j), is the282

standard deviation at grid points α, assumed to be 40% of the background density (Xb
α). Although283

the Sb
α values seems high, from our experience it is better to start off with inflated background284

errors such that in situations where the observation errors are overestimated the scheme does not285

entirely ignore the observations and revert the analysis to Xb
α.286

To build 3D correlations, the horizontal h(dij) and vertical V(zi, zj) components between any287

two grid points are also assumed separable and modeled independently288

Σij = Sb
i ∗ Sb

j (15)

CVℎ
ij = h(dij) ∗ V(zi, zj) (15)
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where dij is the horizontal distance between the two points and zi, zj are the associated vertical289

levels. dij is measured in great circle distance on a sphere.290

To define the shapes of h(dij) and V(zi, zj), the correlation is assumed to decrease with291

increasing distance of separation between points i and j. The tapering off in the horizontal and292

vertical is described with elliptical and normal Gaussian, respectively;293

ℎ(���) = exp − ���
2

��
�� 2

�ℎ(zi, zj) = exp − zi−zj
2

Lz
ij 2

(16)

LH
ij and Lz

ij are the horizontal and vertical scale lengths, with LH
ij defined as294

1

LH
ij 2 = (sin α)2

L∅
2 + (cos α)2

Lθ
2 (17)

where α is azimuth angle between i and j points, and Lθ and L∅ are latitude and longitude scale295

lengths (Bust et al., (2004)). For more sparseness, we also add a filter that forces the covariance296

to go to zero if CVℎ
ij is less than 0.05. There exits other forms of decorrelations that need future297

investigation, particularly the second and third order auto regressive models (Gaspari and Cohn298

(1999)), generally because, compared to the Gaussian, the former have a quicker taper off, hence299

introducing more sparseness and less variability.300

Based on the parameters in Bust et al. (2004) together with experience from our previous301

analyses, we fined tuned Lθ(L∅) for mid-latitudes as 8 (15) degrees. Vertically, Lz is set to vary302

from 100 km in the E and F regions to 500 km in the plasmasphere. Albeit in reality these length303

scales should vary with changing ionospheric conditions or external deriving factors, we could304

not find literature extensively discussing ionospheric correlations in 4D-space under different305

ionospheric dynamics: such an extensive study would be outside the scope of this work. Thus,306
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what is presented is the static component of in-house tuned parameters learned from experience.307

Of course a severe mismatch is expected to arise when the ionosphere is populated with small308

scale density irregularities or in low density ionosphere with sharp gradients particularly in E-309

region; an algorithm weakness that needs to be addressed in future investigations.310

The final entries of B are defined as311

Bij = Sb
i ∗ Sb

j ∗ CVℎ
ij (18)

2.3 Strong constrained 4D ensemble -Var (SC4DEn-Var) formulation312

In both the Lagrangian and incremental approach, the designing, realization and maintenance of313

the TLMs and MAs is complicated and computationally expensive: operational wise, these are314

some of the major drawbacks of the SC4DVar-Inc. The notion here is to circumvent these315

cumbersome steps: the increment ∂X�� o in (8), is assumed to be made up of a weighted linear316

combination of perturbations computed as scaled differences between ensemble members and the317

ensemble mean, as discussed below.318

Consider an ensemble (�o
b) made up of “q” regional electron density ionospheres at time tk=0319

�o
b = X�� o1

b , X�� o2
b , ⋯, X�� oj

b , ⋯, X�� oq
b (19)

The normalized ensemble of perturbations is expressed as320

��o
b = X�� o1

b −X�

q−1
, X�� o2

b −X�

q−1
, ⋯,

X�� oj
b −X�

q−1
, ⋯, X�� oq

b −X�

q−1
where X� = 1

q j=1
q X�� oj

b� (20)

The normalization is by q − 1 because one degree of freedom is lost (the sum of perturbations321

now equal to zero (unbiased)). If the q column vectors of rectangular matrix, ��o
b, are random322

samples from a distribution with a covariance ���, then, we can estimate the later (at tk=0) as323
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��� ≈ ��o
b��o

bT

���

1
2 ≈ ��o

b
(20)

This is where SC4DVar-Inc and SC4DEnVar precisely start to differ. Subscript “en” indicates324

that this is ensemble covariance. Substituting these new entities into (13)325

W��� = k=0
k=N ��k

b T
�k

−1D�� k�

I + k=0
k=N ��k

b T
�k

−1��k
b�

(21)

326

where we have assumed327

��k�� k ��o
b ≈ ��k ��k

b = ��k
b (22)

and the ensemble of perturbations ��k
b can in a simplified form be estimated as follows328

��k
b = hk(M0→k(X�� o1

b ))−Y�

q−1
, hk(M0→k(X�� o2

b ))−Y�

q−1
, ⋯,

hk(M0→k(X�� oj
b ))−Y�

q−1
, ⋯, hk(M0→k(X�� oq

b ))−Y�

q−1

Y� = 1
q j=1

q hk(M0→k(X�� oj
b ))�

(23)

The advantage of utilizing ensemble perturbations are eminent in equation 21: the computation329

becomes inexpensive with no need to compute the TLMs and MAs.330

In particular, in equation 23 (used in 21) hk is applied directly to each ensemble member or331

background fields (X�� oj
b ), implying that different types of observations with a non-linear332

relationship with electron density can now easily get incorporated into the algorithm (e.g.,333

satellite UV radiances related to the O+ density that is a major ion of the F-layer). Flow-334

dependence: note that in equation 22, each ensemble member, (X�� oj
b ), is propagated to time sample335

tk through the full-field prognostic model, M0→k(X�� oj
b ), and the associated covariance �en

k at tk336

is expressible as �k
b− ��k

b �k
b− ��k

b T
q−1 = ��k

b ��k
b: this is a significant difference from the337

SC4DVar-Inc that implicitly evolves the covariance through �� k��� k
� ; this difference is338
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apparent when nonlinear processes dominate the ionosphere (and the SC4DVar-Inc TLM339

approximations become erroneous) or when SC4DEnVar ensemble members are very diverse.340

Indeed, results from our experimental run show SC4DVar-Inc as having an inferior performance341

in reconstructing ionosphere densities during severe storm conditions (see section 3).342

The disadvantage of SC4DEnVar approach is the loss of information on the sensitivities (we no-343

longer compute MA’s), which are vital when analysing the sensitivity of the model state to an344

arbitrary change to input parameters (particularly vital if the prognostic model is switched to a345

physics-based model with multiple input drivers).346

Ensemble preparation: to obtain the jtℎ ensemble member, we run the climatological empirical347

International reference ionosphere model (IRI; version-2016, Bilitza et al., 2017) using a set of348

parameters/indices (pr) randomly sampled from Gaussian distributions: the original parameters349

contained in IRI-2016 are set as the best-guess or mean (μj
pr) and the variance specified as350

σj
pr 2

= 0.3 ∗ μj
pr 2

. The value 0.3 was determined from experience. Because IRI-2016 only351

extends to a maximum of 2,000 km in altitude, the extension to GNSS orbital altitudes352

(≈ 22,000 km) is covered by the NeQuick model. The perturbed parameters (pr) include solar353

(Rz12, F10.7), magnetic (Kp), and ionospheric indices (IG12).354

R12 is the 12-month running mean of sunspot number used to describe the solar activity: utilized355

in estimating hmF2, foF2 (when using the CCIR (1967) recommended for continent areas), foF1,356

the bottom-side thickness and topside (if using NeQuick option).357

F10.7 is a measure of solar radio flux at 10.7 cm wavelength and correlates better with EUV358

irradiance from the Sun. Among the many uses in IRI, a variation of the F10.7 index is used in359

computing hmF2 with the model of choice as SDMF2 (Satellite and Digisonde Model of the F2-360

Layer Height; developed based on a large amount of radio occultation (RO) and data from361
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digisondes (Shubin et al., 2013; Shubin, 2015)). Evaluations of the different hmF2 models in362

IRI-2016 have found SDMF2 a better candidate (Bilitza et al., 2021; Moses et al., 2021; Huang363

et al., 2021 and Mengist et al., 2020) and therefore selected for use in this work.364

IG12 is a 12-month running mean index of IG (Ionosonde Global) determined with data from365

four reference stations distributed in the Northern (UK (Port Stanley) and Canada (Canberra))366

and Southern (Japan (Kokubunji) and UK (Chilton)) Hemispheres. In IRI-2016, IG12 is crucial367

in estimating foF2 since it is from ionospheric measurements and thus includes solar cycle368

changes in the F-region ionosphere.369

Kp is the planetary activity index indicating the level of global geomagnetic field disturbance. It370

is a 3-hr index derived from measurements collected at 13 sub-auroral magnetic observatories.371

IRI-2016 uses Kp when specifying auroral boundaries: it is vital to include the Kp index372

variations because, during extreme geomagnetic storms, the aurora boundaries can extend to373

mid-latitudes latitudes introducing electron density gradient at those latitudes.374

Localization: equation 21 has highlighted some of the advantages of using ensembles. However,375

the same has problems associated rank deficiency and under-sampling noise. Rank deficiencies-376

in the denominator of equation 21, the maximum associated rank of the term in the brackets is377

the minimum between m and q. Therefore, if we consider that the assimilated observations are378

only available at time sample k, and the number of observations (m) is greater than q,379

��k
b T

�k
−1��k

b will be a singular matrix.380

Under-sampling- the ionosphere hosts a wide range of frequencies, which for the most part, if the381

imperfect observations and an inaccurate model (probably because the ensemble sample size is382

too small to capture all the dynamics) describe the evolution of high-frequency modes, the383
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resultant uncontrolled spurious modes can inexorably grow and introduce artefacts in the384

analysis.385

The simple cure to rank deficiency and under-sampling noise is to increase the ensemble sample386

size (q). However, the dimensionality scales with increasing q, and thus for operational387

applications, the computation expense and time constraints tied to this simple approach limit its388

realization. An elegant way is through localization (Houtekamer and Mitchell (2001)); a matrix389

L∈ ℝP×P is employed such that in Ben, correlations between grid points are gradually dumped390

with increasing geomagnetic distance of separation (the general physical interpretation is that391

grid points far apart should have no statistical relationship; although their could be situations392

where distant points are correlated):393

��� ≈ ��o
b��o

bT
∘ � (23)

where ∘ symbolizes the Schur (element-wise) product. To maintain the positive definiteness of394

Ben,L is a square matrix that is symmetric and positive definite, here designed with entries395

similar to CVℎ
ij as in the SC4DVar-Inc. The tuning of L or selection of length-scales is discussed396

later in subsection 2.3.1.397

Effects of localization: the top panel in Figure 1 illustrates an example of Ben non-localized (left)398

and localized (right) versions; the insets are a zoom-in to the first 200 × 200 grid points. The399

colour bar is in the far right bottom corner. Unlike in the non-localized version, a taper-off of400

long-distance correlations is eminent in the right panel, with maximum power (variance) along401

the diagonal where correlation is maximum. The middle panel is an extraction of the associated402

singular values in descending order, with red (blue) corresponding to localized (non-localized) B;403

broken axes in the left subplot indicate the extreme ends of the spectrum. The left subplot shows404

the cumulative percentage of the variance captured by a given number of modes. Before405
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localization, a large proportion of the total power is concentrated probably within the first six406

modes and then a sharp decay into the high frequency or noisy regime; indeed, the cumulative407

curve indicates that the first two modes describe ~ 98% (blue dashed vertical lines) of the408

variance in Ben - in reference to equations 8 and 9, this implies that the freedom of choice on the409

number of modes that could span our regional ionosphere is significantly limited. After410

localization, the decay in the variance of the leading modes is slower, and the total number411

contributing 98% (red dashed vertical lines) of total variance has increased to more than 100;412

thus extending the flexibility. Since ��o
b��o

bT
and L are positive definite matrices and later has all413

diagonal entries as 1, the trace of Tr ��o
b��o

bT
∘ � = Tr ��o

b��o
bT

is also equivalent to the sum414

of all singular values of ��o
b��o

bT
. Therefore, the L matrix redistributes or balances the energy415

across the spectrum - not altering the total signal strength but taking energy from the trailing416

modes and “pouring” it into major leading mod; this explains the drop in the amplitudes of the417

first two and trailing singular values. With a flattened spectrum, the distance between the418

singular values significantly reduces, and Ben becomes more numerically stable, as indicated here419

with condition number (κ) reducing nearly by two orders of magnitude (see upper right hand420

corner of the left subplot). The downside to localization is the significant reduction in the weight421

of the leading modes; that is, the approximated Ben after localization is now of lower amplitude if422

only estimated from the first few modes; for our application, this implies an underestimation of423

electron densities, and actually observed in our simulation analysis (sub-subsection, 2.3.1).424

The bottom panel shows the first three leading orthogonal modes. Left: is the vertical extraction,425

and for clarity, we limit the extent to 1000km in altitude. Right: is horizontal extraction. Modes426

in the upper (lower) plate are from a non-localized (localized) Ben. In the non-localized Ben, the427

modes are diverse in frequency and nearly infiltrate the whole domain, pointing to the aspect of428
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the presence of various modes that can negatively impact the analysis. After localization,429

infiltration is only to a few grid points, and the structure of the modes tends toward the shape of430

the slow manifold. Therefore, localization acts as a filter for high frequencies and bends the431

analysis towards the low frequencies. In the localized vertical modes, diverse variation is quasi-432

limited to the F-region (200~700km) and nearly zero elsewhere. Thus, we expect minor433

corrections to the E-region and the plasmasphere. With this understanding, the aim is to select434

the appropriate number (r) of modes that can resolve low-frequency waves of interest and neglect435

the noisy high-frequency variations, possibly due to under-sampling.436
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Figure 1: Ensemble covariance (B) analysis: top panel illustrates an example of a non-localized438
(left) and localized (right) B matrix; inset axes zoom in to the first 200 × 200 grid points. Middle439
panel: left is an extract of B matrix singular values, with broken axes indicating extreme ends of440
the spectrum - Blue (red) is non-localized (localized). Right is captured variance441
in B (represented in percentage) as the number of representative orthogonal modes increases -442
left(right) y-scale is for non-localized (localized) B. Blue (red) dashed vertical lines indicate the443
points where the variance captured is at 98% in non-localized (localized). Bottom panel: an444
example of the three leading orthogonal modes of B; left (right) is vertical (horizontal) modes -445
bottom and top represented modes from localized and non-localized B, respectively.446

447

For brevity, we will not give a mathematical derivation, but after localization448

���

1
2 = ��oL

b = diag(X�� o1
b )�1/2, diag(X�� o1

b )�1/2 , ⋯, diag(X�� oq
b )�1/2 (24)

where �1/2 ∈ ℝP×r and ��oL
b ∈ ℝP×qr, subscript L indicates a localized version of the ensemble449

and diag ∙ represents a diagonal matrix with diagonal elements as entries of the vector (Buehner,450

2005). Notice that the increase in dimension from “q” to q*r abates the rank deficiency but also451

increases computation expense. However, because q*r is generally much less than the size of the452

ensemble sufficient to capture all dynamics without localization, this approach is more453

computationally efficient. Another note is the implementation of the same �1/2 through the454

assimilation window. This unique localization is a common approach that lowers the expense,455

but correlations should have a spatial-temporal change as the errors evolve through the456

assimilation window - this weakness needs to be addressed if the SC4DEnVar scheme is to457

resolve small-scale fast-evolving ionosphere density structures. Next, we discuss realization of458

�1/2 and the selection of appropriate modes.459

Computing the square root B: in equation 13 and 24 we are required to compute �1
2 and �1/2,460

respectively. Since B and L are square symmetric positive definite matrices, then there should461

exist non-negative unique square roots matrices �1
2 and �1/2; to compute the square roots we462

decompose a matrix A∈ ℝP×P into left (right) U∈ ℝP×P (V∈ ℝP×P) singular vectors (e.g., Figure463
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1 bottom panel) and a symmetric diagonal matrix (D ∈ ℝP×P) comprising of singular values (e.g.,464

Figure 1 middle panel)- using singular value decomposition (SVD); SVD(�) = ���T. For465

square symmetric positive definite matrices � = �, �−1=�Tsuch that466

SVD(�) = ��1
2 ��1

2
T

and �1
2 = �P×P�P×P

1
2

(25)

As mentioned earlier, only a subset of the spectrum that captures the low frequencies is required.467

Then, �1/2 ≈ �p×r �r×r

1
2.468

The SVD algorithm is numerically stable and freely available in most scientific computation469

packages, but the high computation cost limits its utilization when large dimensions are involved.470

As a mitigation, we use randomized linear algebra (hereinafter referred to as randomized SVD;471

Halko et al., 2011; Boullé & Townsend, 2021): the idea is to find an orthonomal matrix Q472

∈ ℝP×r, with columns that form an approximate basis for the column space of A. In other words,473

� ≈ ��∗�, and “r” singular values and right singular vectors of �∗� are the same as those of A;474

where �∗is the conjugate transpose of Q. Notice that the computational burden is now shifted475

from SVD of a high dimensional A ∈ ℝP×P to SVD of much lower dimensional �∗� ∈ ℝr×p476

matrix. Also, in terms of storage, because Q ∈ ℝP×r and �∗� ∈ ℝr×p, only space for r∗(P+P)477

elements is required instead of space for (P∗P) elements in full A. Randomness becomes478

important when establishing the Q matrix: a high probability exist that randomly selected vectors479

are linearly independent, and, as such, these vectors are used to randomly sample the column480

space of A, with the sketch matrix computed as Y = AO; O ∈ ℝp×r consists of r column vectors481

randomly selected from a stand normal distribution. Finally, the required orthonomal matrix Q is482

obtained from the QR-decomposition of Y = QR. If the selected number of modes r is not483

enough to describe A, r is updated by a factor d, r = r+d and algorithm run again. To484
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automatically terminate the algorithm, the following crude method is hard-wired into the our485

algorithm: we normalize all the extracted singular values by the maximum value, and the curve486

described by these values is shifted by a constant value above 1. From experience, the487

consequent cumulative will start to saturate when the total captured variance is more than 98 %,488

and the natural log of the absolute gradient to curve starts to get negative - this is the termination489

point. The randomized SVD approach, reduces computation complexity of extracting the major490

modes from O P2 ∗ r for traditional SVD, to O P2 ∗ log r . Figure 2 shows an example of491

singular values extracted using traditional SVD (red) and Randomized SVD (black). The singular492

values are nearly equal, but a zoom-in (see the insert axes; the blue dashed square curve with the493

scale on the right-hand side is the relative change in the singular values (Δσr)) shows that494

singular values produced by randomization tend to be a bit noisy, though from our analysis, the495

noise amplitude decreases as “r” is increased and the inaccuracy does not affect our final results.496
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Figure 2: A comparison of singular values obtained using Randomized Singular Value497
Decomposition (SVD) used in the algorithms against the traditional SVD (red, considered as the498
"truth"). The zoom-in shows how close the two SVDs match- the blue square-dashed line is the499

relative change [Randomized SVD − truth]
truth

.500

501

2.3.1 Tuning of parameters502

Formally under covariance analysis, we underscored the importance of localization but a correct503

choice of scale lengths is still a primary challenge in ionospheric data assimilation: the504

observation data available on a global and regional scale are insufficient to precisely resolve505

localized correlation parameters in spatial (horizontal, vertical) and temporal domains,506

particularly during geomagnetic storms when the ionosphere gets highly chaotic due to an507

injection of a broad spectrum of energy.508

Alternatively, we presume that an understanding from a simulation analysis, in addition to prior509

knowledge, can guide us and shorten the tedious intricate tuning process: we simulate and510

analyse the fidelity of reconstructing a dynamic parcel of density in the region of interest while511

disregarding the underlying physics and chemistry that could seed such an ionospheric response.512

The interpretation is that the optimal parameters in reconstructing the induced synthetic density513

gradients are transferable to the real world within an acceptable error range. Because the514

ionosphere is a chaotic system, it is complex to tune both horizontal and vertical parameters; for515

simplicity, we limit ourselves to the horizontal parameters and the vertical scales set as in516

SC4DVar-Inc. The vertical turning will be addressed elsewhere when the focus is on perfecting517

the performance of SC4DEnVar (the future idea is to estimate localized vertical scales by518

augmenting on a new set of vertical correlations published by Forsythe et al., 2020;2021, and519

recently applied in the work of Mengist et al., 2023).520



manuscript submitted to replace this text with name of AGU journal

521
Figure 3: Blue asterisks: geographic location of 50 ground GNSS receivers considered in this522
study. The minimum separation distance between receivers is 1 degree. Red solid circles: ground523
ionosondes station in the region of interest. Only labeled stations (location and four-character524
code) are adopted in our analysis.525

526

Simulation setup: the utilized grid extends 110o-160o in longitude and 20o-65o in latitude at a527

resolution of 5o degrees. Vertically the resolution is irregular 25 km, and≧ 200km, for height528

ranges 100-1000km, 1000-20,000 km, respectively. The resolution is highest in the region where529

we expect the most electron density variability. To facilitate the reconstructions, we use the exact530

geometry of GNSS and ground receivers to generate synthetic STEC measurements by531
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integrating densities along different lines of sight. White noise (standard deviation = 10% of the532

synthetic STEC) is added to each STEC value to mimic real-world observations. Blue asterisks533

in Figure 1 show the distribution of ground GNSS receivers in use. The Japanese archipelago has534

a dense network of more than 1000 ground GNSS receivers, but only use 50 stations with a535

minimum separation distance of 1 degree: because our focus is on resolving low frequencies on a536

coarse grid, it is better to use a few well-distributed stations and avoid data redundancy. In a way,537

this also acts as a spatial data thinning process that lowers the chances of observation538

correlations and mitigates some of the difficulties associated with misrepresentation of the539

observation covariance, �k (earlier mentioned in section 2). Moreover, neglecting some data540

speeds up the quality control process and may act to improve the stability of the inverse matrix in541

equations 13 and 21.542

The initial condition is from IRI-2016, and the simulation is run for two 2 hours starting at 04:00543

UT 2015-03-14. Figure 4 upper subplots show the target (parcel of density) to reconstruct, with544

the background removed. The structure is in 3-D, but only the peak layer is shown here with545

snapshots taken at early, intermediate and late stages of development: at the base (Figure 4 upper546

left subplot), a density enhancement (30% more than the background densities) develops at low-547

latitudes F-region with the vertical centre horizontally varying with hmF2-indicated as solid blue548

contour lines. Outward the parcel extends vertically 100 km and 10 degrees horizontally. With549

time (Figure 5 middle and far-right subplots), the parcel quasi-spirally migrates northwestward550

through the moderate densities at mid-latitudes while diffusing out at 2% per 2.5 minutes. As the551

parcel diffuses, sharp edges become eminent; purposefully designed in this way to monitor the552

extent to which localization affects fidelity.553
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Reconstructions were performed for different horizontal scale lengths and ensemble sample sizes,554

and the root mean square error (RMSE) determined as a function of time. The algorithm was555

defined to have converged if the chi-squared value was less or equal to 0.5. Otherwise, from our556

preliminary trials, the maximum number of iterations is set to 20; from experience, the optimal557

solution is generally within the first six iterations. Figure 5 shows the results; in each panel558

different colours indicate a change in ensemble size from 3 to 33 (in step size of 6). Vertical bars559

and appended numbers indicate the extent of the spread in RMSE. In nearly all plots, specifically560

in the left upper panel, RMSE generally increases for 1 hour and then slightly decreases: the561

increase is due to the compounding errors as the prognostic model fails to describe the correct562

trajectory of the parcel. As the parcel densities diffuse to other locations with good data coverage,563

we observe a slight decrease in RMSE. At this point, the prognostic model errors are immense564

such that the impact of good data coverage is not enough to reproduce the parcel. Therefore, our565

first draw from the simulation is that the current forward model is not applicable for assimilation566

windows longer than 1 hour. As a balance between the time-integrated impact of the567

observations and a limitation of model errors, in this work, we set all assimilation windows to 30568

minutes.569

In Figure 5 bottom subplots, the increase in horizontal scale lengths beyond 5(8) degrees in570

latitude (longitude) exacerbates the reconstruction errors; the RMSE at the base is nearly equal or571

greater than the RMSE after the structure has evolved for 1.5 hours in Figure 5 top panels.572

Therefore, we can disregard the bottom panel scale lengths because the base errors should be573

minimal before prognostic model errors infiltrate the analysis. Besides, the poor estimates in574

bottom panels can also be associated with spurious correlations due to a weak localization of the575

ensemble.576
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In Figure 5 left upper subplot, the scales are smaller than the assigned horizontal grid size -577

implying ��� is a diagonal matrix with little or no correlation among grid points. Although this578

case offers the lowest RMSE in the simulation, such a severe localization is not desirable at the579

operational level; for exactness and completeness, we need the observation at a given location to580

impact data-void areas. Therefore, the intermediate scales selected as optimal for analysis were581

5(8) degrees in latitude(longitude); see the top right panel.582

Ensemble size analysis: the focus is on Figure 5 top right panel and a maximum time window of583

30 minutes; we observe poor skill when the ensemble size is small (q=3). We anticipate this584

result following the earlier discussed under-sampling limitations. When the ensemble size585

increases, we notice an improvement in RMSE, but more than a sample size of 30 does not have586

a significant improvement on the analysis; the effect of localization is eminent, with the whole587

pool of ensemble sizes (9-33) nearly falling within the same error range. Thus, with localization,588

there is no advantage in using large ensemble sample sizes. In application, we chose an ensemble589

size of 30 members as a balance between the computation expense and sufficiently capturing the590

ionospheric variability.591
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Figure 4: SC4DEnVar simulation reconstruction analysis; top panels show the target to592
reconstruct; a density parcel extending vertically 100 km and 10 degrees horizontally spirally593
migrates northwestward through the moderate densities at mid-latitudes while diffusing out. Blue594
contours represent hmF2 variation through the region. The bottom panels are reconstructs from a595
tuned SC4DEnVar.596
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Figure 5: Ensemble tuning using simulation data to reconstruct the target structure in Figure 4597
upper panels: each subplot shows a variation of RMSE as the assimilation time window is598
extended from 0 to 1.5 hours; different colors indicate the ensemble sizes varied under a fixed set599
of horizontal scale parameters.Vertical bars and appended numbers illustrate the measure of the600
spread in RMSE at that assimilation window length.601
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Simulation results: back to Figure 4; results in the lower panels are reconstructions of the parcel602

while using the optimal settings from analyses; assimilation window length is 30 minutes,603

horizontal length scales are 5 × 8 degrees, and ensemble size is 30. The background has been604

subtracted for easy comparison with the target in the top panels. In each image, the intensity605

colour bar is in the far upper left-hand corner and solid blue lines indicate contours of estimated606

hmF2. We can ignore the random ghost structures attributed to reconstruction errors. At the base,607

the assimilation captures the parcel shape but underestimates the maximum amplitude by ~ 45%:608

at this stage, most parcel densities are concentrated at the centre within a tiny region, not609

adequately traversed by the spotty GNSS rays (observations) used in the reconstruction. Because610

the fitting is not exact, the algorithm compensates by spreading energy over a wider area than in611

the target, hence the inconsistency in amplitude estimation. In addition, ratio of the background612

to observation variance can influences quality or the amplitude of the analysis.613

In the second row plots, when the parcel has evolved for 30 minutes and densities partially614

diffused, the assimilation horizontally relatively tracks the changing density but falls short of615

reproducing the sharp edges; the current localization is filtering or suppressing a subset of high616

frequencies that could be representative of the sharp edges. Therefore, there is still room for617

some future gross tuning, and the current settings are only utilizable when relatively tracking the618

position of large-density structures but not defining the exact shape. In the north-eastward619

direction, the reconstruction starts to suffer from ghost pockets of hmF2; this is a well-known620

error in ionosphere ground-based GNSS data 3D reconstructions - mainly due to the luck621

horizontal rays to constrain the vertical structure. In northern high latitudes where least GNSS622

rays are expected, the scheme reverts to the background values, and indeed the hmF2 values are623
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well reproduced - pointing to the critical importance of utilizing an accurate background in624

analysis.625

In the panels on the right, the parcel has evolved for 1.5 hours and aligned northwest-southeast.626

The sharp edges are still not well recovered, but the gradient in density and orientation of the627

structure are noticeable. The location of the maximum density is now displaced toward higher628

latitudes, and the hmF2 error is ubiquitous throughout the image. An indication that better results629

are in the early stages of analysis and marginally worse towards the later stages; the exacerbation630

might be the influence of the non-adaptive localization matrix (L) as the errors evolve. That is to631

say, at the initial stage, nearly all ensemble spurious correlations are eliminated since L is well632

suited. On the contrary, at the later stages, the spurious correlations might have shifted beyond633

the width of a static L; in such instances, deleterious effects of non-suppressed spurious634

correlations start emanating in the analysis.635

3 Experimental run636

To qualitatively analyse and assess the performance of the two schemes, SC4DVar-Inc637

and SC4DEnVar, we attempt to reconstruct the ionosphere 3-D structure during quiet and638

strongly disturbed periods and compare the results to independent observations from ionosondes639

and radio occultation. The experimental setup follows the grid setting and optimal parameters640

discussed in section 2. Although both schemes are generalized to accept different types of641

observations (linear and non-linear), we only assimilate ground-based GNSS observations. Of642

course, having different types of measurements that complement each other can ameliorate the643

analysis. However, the complexity of defining, understanding and balancing the errors to spread644

the correct information in space makes the process intricate. For instance, Forsythe et al. (2022)645

show that if horizontal gradients exist in the ionosphere, the ingestion of radio occultation STEC646
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can introduce a fictitious F3-layer in the analysis. Thus, sequentially assessing the impact of the647

different types of observations can highlight the areas to improve; here, ground GNSS data are648

the base starting point to improve as the scheme(s) mature. Specifically, only observables from649

the GPS (Global Positioning System) constellation are utilized, though most receivers are650

multichannel and can track other constellations (e.g., BDS, Galileo, and GLONASS). The GPS651

satellites transmit signals at two L-band frequencies (f1 = 1.57542 GHz; f2 = 1.22760 GHz). To652

derive the relative STEC utilized in our assimilation, we use the L1 and L2 phase measurements:653

in a continuous transmitter-receiver arc that spans a maximum length of 2.5 minutes, the654

associated biases and phase observation ambiguities are assumed invariant and removed by655

subtracting the arc’s average STEC from each STEC value in that arc. This approach has656

advantages: 1) phase observations have high precision. 2) because each continuous arc is657

analyzed independently, we do not have to worry about fixing cycle slips.658

Quality control: all GNSS data are subject to data quality control (QC) procedures before659

assimilation. However, the decision on which observations to retain or throw away is one of the660

challenging steps in ionospheric data assimilation; when the ionosphere is highly non-linear, it is661

difficult to decide whether observations considered as outliers are representative of an event662

(maybe instabilities) or errors as a result of inherent measurement processes. Therefore, the663

decisions made at the QC step can determine the success or failure of the scheme.664

Here, first we, check the GNSS observable (L1 and L2) against the corresponding signal to noise665

ratio projected into the interval 1-9; if the flag is set to a value below 2, that ray is rejected. This666

is followed up with a simple “buddy check” procedure previously utilized in Ssessanga et al.667

(2019). An observation or datum is an outlier if the magnitude of the innovation,668

|∆Y�� k − ∆hk X�� k
b |, exceeds a threshold C ∗ σk

o + σk
b , where C is a predefined multiple (set to 2;669
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this is a coverage of 95% of the total area under the distribution, for an inherent assumption that670

error statistics are Gaussian) and σk
o, σk

b are observation and model (in observation space) error671

variances, respectively, at time tk (see, e.g., Dee et al., 2011). At this stage the outliers,are not672

entirely rejected, but the corresponding observational variance is inflated (5 times more than the673

surrounding observations).674

Analysis period: the analysis period covers the 15 - 20th of March 2015, which includes the675

strongest geomagnetic storm in the solar cycle 24 known as the St. Patrick's Day geomagnetic676

storm in the ionospheric community. There is already a multitude of literature detailing and677

attempting to explain the dynamics and physics relating to the St. Patrick's Day geomagnetic678

storm (e.g., Astafyeva et al., 2015; Cherniak et al., 2015; Sripathi et al., 2015; Chen et al., 2016;679

Nava et al., 2016; Huang et al., 2016; Wu et al., 2016; Joshi et al., 2016; Patra et al., 2016;680

Venkatesh et al., 2017; Dmitriev et al., 2017; Amaechi et al., 2018; Yasyukevich et al., 2018;681

Tulasi et al., 2016;2019). Therefore, the focus here is on the fidelity of the schemes rather than682

an explanation for the observed dynamics.683

3.1 Bottom side assessment with Ionosonde data684

Ground Ionosondes measurements are prime on probing the ionosphere vertical bottom-side685

plasma density structure and are typically used for calibrating other complex methods such as686

tomography and data assimilation (e.g., Decker and McNamara, 2007; McNamara et al., 2011;687

Ssessanga et al., 2017). Solid red circles in Figure 1 indicate the ionosondes stations in the region688

of interest, but we only select four for analysis: Okinawa, Kokubunji, Wakannai and Beijing.689

Refer to Table 1 for the locations, five-character code names, geographic coordinates and690

geomagnetic latitude of each ionosonde used in the analysis. Hereafter, we refer to stations by691

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019SW002321
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019SW002321
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019SW002321
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the five-character code names. OK426-TO536-WK546 (TO536-BP440) offer a sample of the692

latitudinal (longitudinal) bottom-side ionosphere variations.693

Table 1. A summary of ionosonde stations used when verifying variational scheme reconstructs.694
Location Five character Code Geographic location

(degree)
Mag Latitude
(degree)

Okinawa OK426 26.68 , 128.15 17.43
Wakannai WK546 45.16 , 141.75 36.75
Kokubunji TO536 35.71 , 139.49 27.18
Beijing BP440 40.30 , 116.20 30.80

695

Comparison is with automatically scaled profile data since raw data or manually-scaled profiles696

were not readily available. The data are accessible at ftp://ftp.ngdc.noaa.gov/ionosonde/data/. It697

is cautionary, however, to interpret the results while putting into consideration the error bounds698

associated with auto-scaled data; Bamford et al. (2008) and Stankov et al. (2012) have reported699

on these error bounds with a 95% probability - foF2 (–0.75, +0.85 MHz), foF1(–0.25, +0.35700

MHz), foE (–0.35, +0.40 MHz), h′F2 (–68, +67 km), h′F (–38, +32 km), and h′E (–26, +2 km).701

ftp://ftp.ngdc.noaa.gov/ionosonde/data/
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702
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Figure 6: Time series images of the vertical profiles at each ionosonde location in Table 1,703
covering a period of four days; before (DOY 75), during (DOY 76-77) and recovery (DOY 78)704
after the 2015 St. Patrick’s Day geomagnetic storm. In each subplot, the top, middle and bottom705
are ionosonde observations, SC4DVar-Inc and SC4DEnVar reconstructs. For clarity, the images706
only extend to 1000 km. Each ionosonde panel includes the variation in Dst (asterisks black707
curve) and Kp (solid orange line) indices to track the ionosphere response due to energy injected708
into the ionosphere system during this period; the scales are on the right-hand side, and vertical709
dashed lines mark the main events of the storm. In SC4DVar-Inc and SC4DEnVar710
reconstructions, the red (blue) line is a time variation of ionosonde (scheme) hmF2 at that711
location. Gaps in ionosonde hmF2 correspond to periods when observations were non-available712
or failed to pass the quality control test. In the reconstructs, hmF2 values above 700km are713
considered void. The colour scale for all reconstructs is in the far right-hand corner.714

715

Figure 6 presents time series images of the vertical density profiles recorded at the selected716

ionosonde station. The sample rate is 15 minutes. On the x-axis, tick labels at the top and bottom717

indicate time expressed in DOY (day of the year) and UT (universal time, the East Asian sector718

local time (LT) is ~ 9 h ahead of UT), respectively. In each ionosonde plot, observed bottomed-719

side recordings are in the top panel; on the left y-scale is altitude in km; on the right-hand is Kp720

(orange) and Dst (black) indices that show a measure of geomagnetic variations and strength of721

the ring current, respectively, in response to the energy injected into the terrestrial system (both722

indices are accessible at http://wdc.kugi.kyoto-u.ac.jp/ or723

https://omniweb.gsfc.nasa.gov/form/dx1.html). We assume a quiet terrestrial ionosphere when724

Kp < 4 and the magnitude of Dst < 50 nT. Vertical dashed grey lines indicate the main events of725

the storm. The middle and bottom panels in each subplot are reconstructions from SC4DVar-Inc726

and SC4DEnVar, respectively, at that ionosonde location: ionosonde observations (frequency in727

MHz) have been converted to electrons densities per cubic meters (elec/m3) for easy comparison728

with reconstructions. The colour scale is in the far right bottom corner. Albeit our reconstructions729

extend to GPS orbital altitudes (22,000 km), for clarity, the altitude range is limited to the region730

of uttermost interest (~ 100-1000 km). Red dots and blue asterisks lines are variations of731

ionosonde and reconstructed hmF2. Ssessanga et al. (2021) generated analogous images for the732

http://wdc.kugi.kyoto-u.ac.jp/
https://omniweb.gsfc.nasa.gov/form/dx1.html
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same storm period, but in that work, assimilation (using a 3DVar) is with ionosonde data into733

tomography reconstructions at only those voxels intersected by GNSS rays. The downside in734

their results is the lack of completeness due to empty patches in areas where measurements are735

lacking.736

Before discussing the reconstructed results, a brief review of the chronological highlights of the737

storm is necessary: on the DOY 075, before the storm, the ionosphere was quiet, with Kp and738

Dst below 4 and 50 nT, respectively. Early, at 04:45 UT, on DOY 076, the Dst increases > 50 nT;739

this is the SSC (storm sudden commencement) following a coronal mass ejection (CME) that740

was observed erupting between ~ 00:30 UT and 00:40 UT the day before and predicted to741

encounter the Earth’s magnetosphere on DOY 076. The main phase of the storm starts at ~ 07:30742

UT, and Dst continuously decreases to a local minimum of ~ − 80 nT; previous analyses of the743

same storm have illustrated that the interplanetary magnetic field (IMF) Bz component was744

southward during this period (see for example, Cherniak et al., 2015; Ssessanga et al., 2021).745

Between ~ 9:30 and 12:20 UT, the Dst index has a short-lived recovery to ~ − 50nT; due to the746

IMF Bz component turning Northward (Astafyeva et al., 2015). Thereon, Dst (Kp index)747

decreases (increases) to a minimum (maximum) of approximately − 223 nT (8) at 22:00 UT. The748

recovery phase follows through the next few days, with the Kp index below 6.749

Quiet period: in Figure 6, on DOY 075, both SC4DVar-Inc and SC4DEnVar reproduce the750

expected ionosphere variations during quiet conditions (Kp<4 and |Dst| < 50 nT): particularly, F-751

region densities (150 - 600 km in altitude) decrease from low to high latitudes; see stations752

OK426 - TO536 - WK546. Longitudinal-wise (TO536 -BP440), neglecting the slight difference753

in geomagnetic latitude (~ 3 degrees), high F-region densities are observed first at TO536 and ~754

2 hours later at BP440, mainly due to the solar zenith angle variations. At low- and mid-latitudes,755
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hmF2 time variation is stable around 350 km, while towards high latitudes values drop below the756

300 km mark. A cursory glance at the F-region maximum density intensity suggests that the757

SC4DEnVar picture correlates better with ionosondes observations - also visible in the days that758

follow the quiet period. Interestingly, particularly at OK426, in SC4DEnVar results, is the post-759

sunset up-welling of the plasma sludge to approximately 500km due to the prereversal760

enhancement in E × B drift.761

Disturbed period: in theory, at the onset of the storm, eastward prompt penetration electric fields762

(PPEF) were induced on the day side, with after-effects dominant at equatorial and low‐latitude763

and dumped towards high latitudes (Maruyama et al., 2004). Indeed this is observed in764

ionosonde and SC4DEnVar reconstructions: in reference to the quiet period, the F-region plasma765

has risen more than 200 km at OK426 (low-latitudes) and a mere ~ 100 km at Wakannai (~high766

latitudes). Specifically at OK426, notice the erratic pattern in ionosonde hmF2 in situations when767

the peak uplifts to altitudes > 600 km and shortly after gradually falls to the average peak altitude768

of ~ 300 km. An insight from SC4DEnVar reconstructions shows that as the plasma rises, the769

intensity levels reduce. We estimated the vertical drift velocity (Vz) of the F-layer at this station770

as the rate of change in the peak height (dh/dt) from a base value of ~ 350 km. On DOY 75 (Vz ≈771

150km/1.5hr ≈ 27m/s), and on DOY 76 (Vz ≈ 300km/1hr ≈ 83 m/s). These values are772

comparable to Joshi et al. (2016) Doppler sounding measurements over the Indian sector, using a773

Canadian Advanced Digital Ionosonde (CADI). This agreement lends confidence to our analyses,774

even in the absence of ionosonde observations. Consequently, we hypothesize that the rise in775

altitude by the plasma sludge creates conducive conditions for spread-F leading to the erratic776

nature of ionosonde observations.777

https://earth-planets-space.springeropen.com/articles/10.1186/s40623-021-01447-8
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Contrary to SC4DEnVar tracking of observed hmF2, SC4DVar-Inc reconstructions continuously778

reproduce hmF2 at levels of the quiet period (~300 km). This is the first noteworthy advantage779

that SC4DEnVar has over SC4DVar-Inc, with the following justification: 1) the ground GNSS780

measurements currently assimilated have little information on the vertical structuring of the781

densities. 2) The B matrix in SC4DVar-Inc, which spans the analysis solution, is based on the IRI782

model that is well known to underperform during geomagnetic storm conditions, even when783

optimized to storm condition settings. Conversely, in SC4DEnVar, the ensemble that spans the784

analysis solution, though generated from IRI, the perturbations include variations in hmF2, from785

which the scheme estimates the optimal value.786

On the day after the storm (DOY 077), at all stations, both schemes show that the plasma density787

(frequency) reduced ~ 60% below the values observed during the quiet period. Again,788

reconstructions show that the F-region plasma frequency was ranging below 4 MHz, hence the789

total or partial absence of data at all ionosonde stations: the reduction in plasma intensity is790

typical of ionosphere response after a major geomagnetic storm- courtesy of the composition of a791

composition bulge from high altitudes, that can persist for several hours (e.g., Fuller-Rowell et792

al., 1994; Prölss 1995; Tsagouri et al., 2000; Ssessanga et al., 2021a). Indeed, analyses of the793

thermospheric column integrated O/N2 ratio changes, measured by the GUVI (global ultraviolet794

imager) instrument onboard the TIMED satellite, found that the Asian sector had significant795

composition changes that could have led to the negative ionosphere response (Astafyeva et al.,796

(2015) and Nava et al., (2016)).797

During the recovery phase, on DOY 078, specifically at low latitudes (OK426), SC4DVar-Inc798

reconstructs densities as a moderate recovery from the previous day, while SC4DEnVar shows799

reinforced ionization. The paucity of ionosonde observations during this period, does not allow800
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for a concrete verification of such intensification. However, Ssessanga et al. (2021a) found the801

same while using different techniques and observation types. Klimenko et al. (2018) analyzed the802

same storm using a first principle physics-based model and TEC measurements; they attributed803

these after-storm daytime electron density increases to neutral composition changes; the n(O)804

increases and n (N2) depletes leading to a significant enhancement of n(O)/n (N2) ratio at low805

and equatorial latitudes. Note that in Klimenko et al. (2018), these positive effects are discussed806

as occurring on DOY 081-082, but our reconstructions show the enhancements starting earlier,807

on DOY 078. Because OK426 is close to the minimum bounding region (MBR), not easily808

populated with GNSS measurements, and the reconstructions from SC4DEnVar seem to match809

earlier independent reconstructions and theoretical analysis, it is therefore not premature to810

suggest that SC4DEnVar performs better than SC4DVar-Inc, in remote region lacking811

observations: we revisit this argument below when looking at individual vertical profiles.812
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813
Figure 7: Example of vertical profiles extracted at the four ionosonde stations in Table 1; the814
timestamp is within the period of the immense depletion in mid-latitude electron densities after815
the 2015 St. Patrick’s Day geomagnetic storm. IRI-2016 has a good fit for the mid-latitude816
average electron density profile and is included here as a reference for the extent of the depletion817
- at all stations, a near 60% reduction in plasma densities is apparent.818

819

Individual vertical profiles: in Figure 7, we have extracted vertical profiles at the ionosonde820

locations. The timestamp is within the depletion period when the ionosphere is most perturbed,821

and observations available for all ionosondes. Black, red, purple and green represent ionosonde822

observations, background from IRI-2016, SC4DVar-Inc and SC4DEnVar, respectively. IRI is the823
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reference because of its good approximation of the average profile - both schemes portray the824

earlier mentioned ~ 60% reduction in densities.825

At low latitudes (OK426), both schemes nearly identically track the relative deviation of the826

bottom-side F-layer from the average profile but underestimate the bottom-side thickness and827

NmF2 densities. Note that during this period, the plasma peak density at this location had828

returned to the average altitude, well estimated by the background model central in designing the829

climatological B matrix employed in SC4DVar-Inc; suggesting that under the current830

experimental settings, to match SC4DVar-Inc and SC4DEnVar performance in data void areas,831

our prior knowledge (in SC4DVar-Inc) of the location of the peak density has to be nearly exact.832

We argue that the inconsistencies in estimating the density by both schemes may be a combined833

outcome of a paucity of observations at these latitudes and improper vertical correlation lengths.834

Besides, during major geomagnetic storms, the horizontal extremes of the different geomagnetic835

ionospheric regions are highly altered; the low-equatorial and high-latitude aurora boundaries836

extend into mid-latitudes, thus introducing horizontal regional transitional zones not catered for837

in the current covariance matrices - in future, there is a possibility of using the new hourly or838

half-hourly planetary (Hp60/Hp30) index to estimate these boundary extensions; this index is839

similar to the Kp index in quantifying magnetic activity but is better suited for near-real-time840

applications because of the higher time resolution and no upper limit on the quantifiable level of841

geomagnetic activity (Yamazaki et al., 2022).842

In the E-region, both schemes tend towards the background (IRI) that agrees with observed843

values. We expect this behaviour because, 1) as mentioned earlier, this area is generally data void,844

and if any, due to the elevation angle limitations(>=20 degrees), compared to the F-region, the E-845

region is generally porously crossed by ground receiver - GNSS ray links. 2) the vertical846
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localization set in the E-region and F-region are small to the extent that observations in the F-847

region almost have no effect on the E-region (refer to localized vertical modes in the bottom848

panel of Figure 1). 3) the contribution of the E-region to GNSS STEC is minute (also see Saito et849

al., 2017) and can easily fall within the error range. In such situations, the algorithm dictates that850

the schemes revert to the background.851

Because the bottom-side layer is crucial in HF-trans-ionospheric applications and is known to852

contribute ~40% to TEC, it is essential to integrate another sensor in the network at these853

locations (for example the OK426 ionosonde). Ssessanga et al., 2021a; 2021b has already shown854

that the assimilation of ionosonde data significantly (>60%) improves the bottom side structure.855

Despite these inconsistencies, both schemes are better candidates at these locations than a stand-856

alone IRI model.857

At mid-latitudes (TO536), the region with the most data points, SC4DVar-Inc estimates the858

bottom-side structure better. SC4DEnVar underestimates the NmF2/F-region and overestimates859

the E-region. An obvious corollary is at WK546 (high latitudes) and BP440 (mid-latitude): at860

these locations, observations are scanty, yet SC4DEnVar has a superior estimation of the bottom-861

side structure. SC4DVar-Inc overestimates the F-region densities at both locations. This862

underscores our earlier argument that SC4DEnVar is well-suited for regions with spotty863

measurements.864

A possible argument for the SC4DEnVar under-performing in areas populated with observations865

is that we might have overestimated (underestimated) the background (observational)866

covariances. Nonetheless, these results confer a vital future aspect; for an overall improvement in867

accuracy, our scheme designs might need to evolve to hybrid covariance matrices to capture the868

advantages of SC4DVar-Inc and SC4DEnVar in one picture. Above the NmF2 point, the two869
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schemes suggest a different picture, with SC4DVar-Inc portraying a thinner layer; ground870

ionosondes do not sound beyond the NmF2 point, so no conclusive comment is made about the871

two pictures at this stage. However, since earlier analyses have already shown SC4DEn-Var as a872

better scheme at locations without observations, we are persuaded to choose SC4DEn-Var as the873

better picture.874

3.2 Radio occultation (RO) data assessment875

In this set of verification, the comparison is with COSMIC (constellation observing system for876

meteorology, climate, and ionosphere; orbital altitude  ~ 800 km) radio occultation (RO) density877

profiles and STEC. RO data are accessible in level 2 format at https://cdaac-878

www.cosmic.ucar.edu/cdaac/. Again, the analysis is during quiet and disturbed periods.879

RO density profiles are derived from RO STEC using the Abel inverse technique that assumes880

spherical symmetry in the ionosphere. The profiles have good accuracy, except in the E-region881

and low latitudes: in the E-region, rays have asymmetric contributions from the F-region portions882

of the rays and in the low latitudes large density gradients exist (Garcia-Fernandez et al., 2003;883

Wu et al., 2009; Yue et al., 2010). Consequently, this RO density profiles comparison is limited884

to reconstructions away from the low latitudes and above the 200 km altitude mark.885

In Figure 8, the area of the solid circles is proportional to the square of residuals between886

COSMIC (considered as “truth”) and reconstructed densities, normalized to the “truth”. The887

comparison is along the trace of RO tangent (ROT) points, which contribute the most density to888

the RO STECs used in the Abel inversion. The colour shade of the circles represents different889

altitude levels from 100-800km; see the colour bar in the upper corner of the left subplot.890

Therefore, the size of the circles corresponds to the size of the error for that scheme at that height891

https://cdaac-www.cosmic.ucar.edu/cdaac/
https://cdaac-www.cosmic.ucar.edu/cdaac/
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level and location. The left (right) subplot represents SC4DVar-Inc (SC4DEnVar). For reference892

purposes, we have added white circles (centered on ROT points) indicating a 3% error value.893

Quiet period (DOY 074): this day is not shown in time series images (in Figure 6), but |Dst| and894

Kp were less than 50nT and 5, respectively; selected for analysis here because that is when895

enough RO profile data that passed our quality control check were available. On average, circles896

in the left subplot have small radius; thus, SC4DVar-Inc has a better performance than897

SC4DEnVar, with a worse performance noticed in the bottom altitudes (~ < 300km) particularly898

in South East.899

In the right subplot, SC4DEnVar has a degradation in performance, with the errors worse mainly900

in the topside (500~800 km) and over the region where ground receiver GNSS network901

observations are dense (see Figure 1). To analyse and assess why this degradation occurs, we902

need a sense of whether the estimate is above or below the "background"; we use an extract of a903

sample density profile along the southeast ROT traces indicated in the zoomed-in windows -904

black asterisks indicate the original high resolution RO profile density data from COSMIC. Cyan905

squares are average values from the original profile that match the current grid. Red, purple and906

green represent the background, SC4DVar-Inc and SC4DEnVar, respectively: SC4DEnVar907

(SC4DVar-Inc) densities (~ 520-680 km) are larger (smaller) than the background values (IRI-908

2016). Thus, the analysis increments are positive (negative). Because the background is909

overestimating the “truth”, we are of the assumption that the innovation vector is generally910

negative, which implies that for the increments in the two schemes to have different signs, the911

error must arise from the vertical covariance terms that can take on either a positive or negative912

sign. In addition, in areas where observations are lacking, the analysis increments are913

proportional to the magnitude of the covariance term (between the grid point with and those914
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without the measurement). Since the vertical correlation lengths increase with height, and the915

error in SC4DEnVar follows the same trend, high-altitude vertical correlation lengths are916

probably the likely candidates to readjust. Also, because L is SC4DEnVar persistent (kept the917

same; refer to equation 24) through the assimilation window without including the error auto-918

correlations, this can introduce inappropriate cancellation of some analysis increments down the919

assimilation window, hence introducing errors in final analyses.920

Figure 8: Quiet period error analysis, DOY 75. A chi-square fit of reconstructs to COSMIC radio921
occultation (RO) electron densities from the Abel inversion scheme. Comparison is along the RO922
tangent point geographic locations. The colour indicates the altitude level; the scale is in the far923
upper left corner. The area of the solid circles is the extent of the error at that horizontal location924
and altitude level. For reference, white circles indicate a 3% error level. Left (right) is SC4DVar-925
Inc (SC4DEnVar): for further analysis, the in-set axes zoom into a set of profile points; black926
asterisks are high-resolution electron densities from Abel inversion, and cyan points are average927
points along the profile used in the analysis. Red is the background (IRI-2016), and purple (green)928
represent SC4DVar-Inc (SC4DEnVar) reconstructed densities.929
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Figure 9: Same as Figure 8 but for the ionosphere disturbed period, DOY 077, 2015930
931

Disturbed period: Figure 9 is the same as Figure 8 but for the storm period. The ROT traces are932

biased to the North West away from the region of dense data points. SC4DVar-Inc still performs933

better, with the error size nearly equal at the different altitudes. On the other hand, SC4DEnVar934

has good performance on the topside, but now the errors are pronounced in the height range of935

200~ 400km. In the North East, the few ROT traces show SC4DEnVar slightly performing better936

than SC4DVar-Inc.937

ROSTEC: remember that in Figures 6-9, assessments are at a particular grid point within the938

radius of influence of a given single observation point (either along ionosonde or occultation939

density profile), which limits the accuracy evaluation of the 3-D picture as whole. Also, from the940

simulation analysis, we saw that the SC4DEnVar scheme reconstructs approximate the correct941
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densities but overspreads or displaces the density structures from the actual position. Therefore, a942

point-wise verification might not be an appropriate conclusive score assessment. In what follows,943

rather than specific grid point evaluations, the comparison is with ROSTEC- an integration944

density along the different GNSS - LEO lines of sight (LOS) through the 3D picture, with945

different projection angles offering snip views into the 3D volume.946

In Figure 10 and 11, the calculation of the errors is the same as in Figures 8 and 9, but for947

ROSTEC. Figure 10(11) is the during the quiet (disturbed) period. Only ROSTEC data with ROT948

points within the 3D volume are analyzed. For some LOS, the transmitters or receivers are949

outside the MBR, but as mentioned earlier, the ROT point contributes the most density to950

ROSTEC, such that the extra contribution from outside the MBR can be considered negligible.951

In Figures 10 and 11, the SC4DEnVar error sizes are smaller, which is an improvement in the952

SC4DEnVar analyses relative to the SC4DVar-Inc results for quiet and disturbed periods. In both953

cases, the impact of SC4DEnVar was overall > 70% better than SC4DVar-Inc. This is a drastic954

change in the SC4DEnVar performance score, compared to RO density profile analyses: an955

indication that despite inconsistencies at specific locations, overall, the ensemble set has a better956

representation of the ionosphere 4D density distribution, with a significantly improved approach957

to the representation and evolution of the error covariances.958

In Figure 10 (during quiet period), the impact to the far North high latitudes (>50oN) is neutral959

between the two schemes. In the mid latitudes, there is tendency for the impact to get better with960

ROT traces towards Japanese archipelago; the area with the most ground GNSS data points. For961

a particular scheme, at mid-latitudes, at high altitudes (> 600 km), the impact is quasi-equal; this962

is because, at these altitudes, during quiet periods, the plasma smoothly varies without prevalent963
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sharp dynamical changes, and the correlations are high with vertical localization nearly non-964

existent. Subsequently, the assimilation impact is similar over a wide range.965

The larger error values are attained below ~ 500 km; this region engulfs the F-region, where966

large density gradients are ubiquitous. Therefore the under-performance of SC4DVar-Inc is likely967

due to the climatological background-error covariance that does not fully span the dynamics.968

Indeed, though SC4DEnVar is generally better than SC4DVar-Inc at these altitudes, the error is969

persistently sizeable compared to other altitude levels; thus, the source of error should be the970

shared climatological background and prognostic model between the two schemes, but probably971

with SC4DEnVar having a better handling of linearization (TLMs and MAs) errors than972

SC4DVar-Inc.973
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Figure 10: Same as Figure 8 but for RO STEC (quiet period DOY 75) - SC4DEnVar and974
SC4DVar-Inc STEC are an integration of electron densities along the GNSS - LEO (Low Earth975
Orbit) satellite link through the reconstructed 3D picture. The highest contribution to the STECs976
comes from the tangent point locations. The superiority of SC4DEnVar is distinct throughout the977
whole 3D region.978
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Figure 11: Same as Figure 10 but for the disturbed period (DOY 077, 2015).979
980

On the storm day, the impact of SC4DVar-Inc is comparable to the quiet period (the error size is981

nearly the same), while SC4DEnVar shows a drastic positive change in performance (smaller982

error size). We are of the view that the superior performance of SC4DEnVar is a consequence of983

the scheme's sensitiveness to altitude variations as evidenced by the analyses of vertical bottom-984

side structure using ionosondes (absent in SC4DVar-Inc); during storm conditions, spatial-985

temporal density altitude variations are ubiquitous and can lead to sharp density gradients986

resulting in sizeable ensemble covariance with an impact as noticed in the difference between987

SC4DEnVar quiet and storm results.988

Further, on the storm day, the impact of SC4DVar-Inc at altitudes >500km is nearly consistently989

the same throughout the region. Again the worst performance is at altitudes below 500 km. At990
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high latitudes (>50oN) SC4DEnVar impact is better than SC4DVar-Inc. The impact even gets991

better towards the mid-latitudes, with the exception of the lower altitudes (< 300 km) on westerly992

side. For some traces, the fit to observations is nearly exact, that error representations are smaller993

than white circles, as seen in the longest trace in SC4DVar-Inc results - aligned from North East994

to South West. An explanation may be that the forecasting of ensemble members increases the995

background errors, and in return, the impact of observations increases over the radius of996

influence, hence strongly improving the analysis.997

Toward the low latitudes (<20oN), at about ~ 600 km in altitude, SC4DEnVar impact is strongest998

on the far South East; this remote area is dominated by the oceans without any sensors and close999

to the MBR (the schemes rejects any rays crossing the MBR). The error in such a region is a1000

more cardinal measure of the effectiveness of a scheme than the fit at locations where1001

observations are readily available (for example, the quasi-central continent area). Therefore, it is1002

likely that flow dependence in the ensemble setup introduces adequate weather throughout the1003

region.1004

However, there are inconsistencies within the SC4DEnVar picture, probably due to the ensemble1005

sample space not fully capturing some nonlinear geomagnetic storm ionosphere responses.1006

Moreover, the assumption that observational error statistics, �k , are well-known and defined is1007

ideal - yet in regions without observations, the analysis can be sensitive to infiltration of1008

observation noise if �k and Ben are not well balanced or weighted (Johnson et al., 2006).1009

Furthermore, in the simulation analysis in section 3, even under a short time assimilation window,1010

our simple Gauss Markov prognostic model was found to introduce errors which distort the1011

analysis. A further improvement would be to trade-off some of the computational cost with1012
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improved accuracy and use a simple physics-based model that allows 3D spatial density1013

evolution.1014

4 Discussion and conclusions1015

We have conducted a performance analysis of two in-house developed flavors of strong1016

constraint 4DVar assimilation schemes; SC4DVar-Inc and SC4DEnVar.1017

We ingested only ground-based GNSS observations that are ubiquitous and generally readily1018

available, serving as a base starting point for future improvements. The aim was to assess1019

whether the SC4DEnVar is sufficiently accurate in reconstructing the 4D regional ionosphere1020

during quiet and geomagnetic conditions, compared to the popular SC4DVar-Inc approach. Table1021

2 includes a schematic summary of the comparison between SC4DVar-Inc and SC4DEnVar, with1022

check marks indicating a better scheme.1023

1024
Table 2. Summary of SC4Var-Inc Vs. SC4DEnVar1025

Comparison Factor SC4DVar-Inc SC4DEnVar
Height variation  
Electron density estimation in:
Areas populated with data  
Remote areas  
Severe conditions (geomagnetic storm)  
The whole 3D structure  
Computation expense  
Maintenance  
Parallelization  
Under-sampling and Rank deficiency  
Sensitivities  
* This makes SC4DEnVar a favourable candidate for real-time
applications and remote areas

1026

Through verification with ionosonde data, we first noticed that the SC4DEnVar scheme is1027

surprisingly good at tracking the hmF2 variations, even when the assimilated data contain little1028

information about the ionosphere vertical structuring. This is a critical result since most1029



manuscript submitted to replace this text with name of AGU journal

ionosphere inverse problems that rely solely on ground-based GNSS observations fall short of1030

this realization; the NmF2 values are well estimated but with an incorrect hmF2. Indeed, there1031

are considerations to use the SC4DEnVar analyses as prior information in tomography1032

algorithms intended to add regional fine-scale structures - the accuracy of the background,1033

mainly the peak location, highly influences the fidelity and convergence rate of most of such1034

tomography algorithms (e.g., Ssessanga et al., 2015; 2017).1035

During the quiet period, SC4DVar-Inc and SC4DEnVar performances in reconstructing the1036

vertical structure are nearly identical, but there is a caveat for SC4DVar-Inc that the background1037

state should have a good approximation of hmF2. Since there was no attempt to fine tune the1038

vertical correlations, it is probable that better analyses are attainable with the specification of1039

more localized vertical correlations.1040

In locations where observations are prevalent, specifically at high altitudes in mid-latitudes,1041

SC4DVar-Inc shows a larger impact than SC4DEnVar. This result could be due to a combination1042

of effects. First, the utilized vertical correlations are not optimal (not tuned) for the SC4DEnVar1043

covariance. Second, the 3D covariances in both schemes might suitably be localized at the start1044

of the assimilation window but evolve differently over time; that is, in SC4DVar-Inc, as long as1045

the linear model (�� k) is correct, the time correlations are correct with implicit (�� k� ∘ � �� k)1046

propagating of 3D variances (�) and correlations (�). On the other hand, in SC4DEnVar, the1047

same localization L is persistently used throughout the window even after the ensemble members1048

evolve, �en
k = � ∘ ��k

b ��k
b. This renders the time correlations incorrect, and in areas with dense1049

observations, these discrepancies might as well have a deleterious effect on the analysis1050

increments.1051
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During severe conditions and in remote areas, SC4DEnVar is superior to SC4DVar-Inc, reducing1052

errors by nearly 70%. Because both schemes assume a strong-constraint formulation under the1053

same type of prognostic model, and the corrected background (X�� o
b) is the same, the difference in1054

performance is probably a consequence of SC4DEnVar's better representation of the error1055

covariances and non-linearities (TLMs and MAs). Specifically, the flow-dependency when1056

evolving error covariances introduces adequate information through the 3D electron density field.1057

Computational-wise, SC4DEnVar abates the major SC4DVar-Inc bottlenecks, which majorly1058

motivated this investigation: there is no need to compute and maintain the cumbersome and high-1059

expense TLMs and MAs. The major inhibition in implementing SC4DEnVar is the cost of1060

forecasting each ensemble member for the length of the assimilation window (see equation 22),1061

but with the current computation resources, this task is efficiently parallelizable. With the spared1062

computation resources (time), a resolve of medium scales structures using a finer grid is possible1063

and reconstructs can be extended to a much larger regional spatial space, which engulfs more1064

observations to assimilate. Since the computation expense scales with the grid size, ensemble1065

size and rank of the localizing matrix, any changes to the grid warrant a further diagnostic to1066

understand whether the current 30-member ensemble is optimal to capture the desired dynamics.1067

Additionally, as the ionosphere becomes more an-isotropic with region expansion, the ensemble1068

members may need to be weighted differently in different local regions. An option is to divide1069

the large area into sub-local regions and parallelly apply the current SC4DEnVar settings, but1070

handling local boundary discontinuities when merging analysis pictures may pose challenges.1071

In conclusion, it is not clear-cut that the SC4DEnVar is always better than SC4DVar-Inc, but it1072

generally provides better ionosphere analyses under extreme stresses and in remote area. These1073
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advantages recognized in the SC4DEnVar system warrant an accelerated upgrade from the1074

orthodox SC4DVar-Inc scheme.1075

Future recommendations: though not mentioned earlier in the text, the aim in maturing these1076

schemes is to transfer the technical know-how and understanding of their limitations from1077

moderately quiet mid-latitudes (pilot project) to high latitudes where ionospheric non-linearities1078

are prevalent. Therefore, the following limitations need redress before extending the SC4DEnVar1079

scheme to high latitudes:1080

 Simplified strong-constraint prognostic model: we have noticed that our simplified1081

model is easily error-infiltrated over short-time assimilation windows, which limits our1082

ability to exploit the full advantages of the 4DVar scheme; the assimilation window1083

should be long enough to allow ample evolution of the background covariances.1084

Additionally, 4DVar performs better with observations widely distributed across the1085

long assimilation window.1086

 Model error correction: with a longer assimilation window, the scheme must account for1087

model errors (ω��� k in equation 1); therefore, in the advanced stage, a weak 4DEnVar1088

formulation could be a suitable candidate. Desroziers et al. (2014) have shown that1089

4DEnVar formulation has an appropriate way to account for different representations of1090

model errors - albeit in ionospheric applications, a description of the ω��� k error1091

covariances is still challenging, particularly for high-resolution models that scale to1092

millions of elements with insufficient data for validation.1093

 Spatial-temporal localization or correlation matrices: of course, under an extensive1094

assimilation window, the assumption of a persistent L can no longer hold, and the need1095

to propagate or compute different spatial-temporal localization or correlation matrices1096
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for time samples “ kt ” is necessary; this is crucial in applications that will involve the1097

tracking of small-scale structures. Moreover, when applying the L matrix, the length1098

scales were the same through the quiet and disturbed periods. This setup might be1099

unrealistic for operational data assimilation involving an ionospheric density field that1100

continuously responds to an injection of a wide spectrum of energy. It could be worth1101

investigating machine learning or deep learning applications to ascertain these1102

correlation parameters for the different solar activities, seasons, day and night, and1103

geomagnetic regions.1104

 Background model inadequacy: the climatological background model (IRI-2016)1105

incorporated into the Gauss Markov filter may be inept at high latitudes, where1106

processes such as particle precipitation are vital drivers of the ionosphere dynamics; a1107

further option is to combine the climatological model with a highly simplified1108

ionosphere physics-based model that allows for 3D advection and processes like1109

precipitation. The expense will remain moderate but with extended applicability. The1110

other feature to consider, especially at high latitudes, is the atmosphere-ionosphere-1111

magnetosphere coupling; lower atmosphere and magnetosphere dynamics can propagate1112

and deposit energy and momentum into the ionosphere system. For a more appropriate1113

representation, the scheme must include such dynamics; we think that interpolating or1114

imposing the current grid boundary conditions to outputs from the observation-driven1115

global magnetosphere and lower atmosphere models might quasi-introduce some of the1116

dynamics in the system but also mitigate the cumbersome process of performing1117

assimilation using a fully coupled system. If the regional and global models target1118

different scales, it would be necessary to monitor if the large-scale dynamics introduced1119
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by the global model do not infiltrate the region domain and shadow or suppress the fine1120

scales.1121

 Ensemble preparation: the current ensembles are a perturbed version of the climatological1122

model. In extreme ionosphere weather conditions (when deriving parameters1123

significantly deviate from climatological normals), such ensembles might inadequately1124

represent the ionosphere variations. Further thorough research is needed to determine1125

the optimal level of stochastic perturbation for different prognostic model driving1126

parameters, the ensemble sizes and associated distributions for different ionospheric1127

conditions.1128

 Hybridization: there are some cases where SC4DVar-Inc outperforms the SC4DEnVar,1129

particularly in areas with dense data points. To exploit the advantages of both schemes,1130

SC4DEnVar needs to extend to a hybrid form: wherein the static-climatological and1131

flow-dependent ensemble covariances are optimally combined (in a weighted form that1132

depends on how well we design and improve each covariance).1133

 Synergistic data assimilation: now that the potential of SC4DEnVar is evident after1134

alleviating the use of TLMS and MAs, as the scheme matures, future assimilation needs1135

to extend beyond ground GNSS data to include synergistic data types such as ionosonde1136

data (as frequency vs virtual height) for the bottom side improvement particularly the E-1137

region, over the satellite TEC to cover the topside and plasmasphere dynamics,1138

ROSTEC - to constraint the vertical structure and also cover the topside up-to LEO1139

satellite orbital altitudes and in situ satellite measurements (such as densities from1140

SWAM satellites).1141
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