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Key Points: 11 

• The applicability of the MHD model for simulating Jupiter's magnetosphere is validated 12 

by reproducing observed tail reconnection events. 13 

• Magnetotail reconnection in Jupiter's magnetosphere shows a strong dawn-dusk 14 

asymmetry that can be intensified by SW compression. 15 

• The broad radial-MLT coverage of magnetotail reconnection implies that Jovian 16 

reconnection is dynamic rather than steady-state.   17 
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Abstract 18 

In this study, we employ the Grid Agnostic Magnetohydrodynamic (MHD) for Extended Research 19 

Applications (GAMERA), a high-resolving power, three-dimensional global MHD model, to 20 

simulate magnetotail reconnection in Jupiter’s magnetosphere. While previous satellite 21 

observations have provided initial statistics on magnetotail reconnection properties at Jupiter, they 22 

have been limited in space-time coverage, leaving the dynamic process of Jovian magnetotail 23 

reconnection and its response to the solar wind (SW) poorly understood. Using MHD simulations, 24 

we quantitatively analyze the temporal evolution and spatial dependence of nightside reconnection 25 

in Jupiter’s magnetotail under ideal quiet and enhanced SW conditions. Our results demonstrate 26 

that magnetotail reconnection tends to occur in the midnight and post-midnight sectors, with a low 27 

occurrence in the pre-midnight sector, consistent with both Galileo and Juno observations and 28 

predictions by Delamere and Bagenal (2013). The MLT-radial distribution of magnetotail 29 

reconnection is broad, indicating that Jovian magnetotail reconnection is always dynamic rather 30 

than steady-state. Enhanced SW ram pressure can decrease the MLT coverage of magnetotail 31 

reconnection by compressing Jupiter’s magnetosphere. However, the occurrence of magnetotail 32 

reconnection near the midnight and post-midnight sectors is enhanced by SW compression beyond 33 

~60 RJ, but is not significantly impacted by SW compression within ~60 RJ. Conversely, SW 34 

compression suppresses reconnection in the pre-midnight sector, leading to a stronger dawn-dusk 35 

asymmetry in the occurrence and location of magnetotail reconnection. This study validates the 36 

applicability of the GAMERA code for simulating Jupiter's magnetosphere and provides 37 

complementary insights into the dynamic structure and the SW response of Jupiter's 38 

magnetosphere.  39 

Plain Language Summary 40 

Magnetic reconnection is a fundamental plasma process that plays a crucial role in rearranging 41 

magnetic fields and converting energy in the planetary magnetosphere. Understanding this process 42 

is pivotal in comprehending the structure and dynamics of planetary magnetospheres, particularly 43 

in the magnetotail region.  In contrast to Earth, where the dynamics in the magnetotail range are 44 

primarily driven by the merging of solar winds, Jupiter's magnetotail dynamics are mostly 45 

dominated by planetary rotation due to its large magnetospheric size, strong magnetic field strength, 46 

and fast rotation speed. Thus, Jupiter's magnetotail is unique and provides valuable insights into 47 
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the interplay between magnetic reconnection and planetary magnetospheres. Although spacecraft 48 

have made direct observations of reconnection events, the dynamic structure of magnetotail 49 

reconnection and its response to the solar wind compression are still not well understood. To gain 50 

a better understanding, this study uses a global MHD code and specifically focuses on the temporal 51 

evolution and spatial variation of Jovian magnetotail reconnection and its dependence on the solar 52 

wind ram pressure.  53 

1 Introduction 54 

Magnetic reconnection is a fundamental process in laboratory and space plasma systems, involving 55 

the rearrangement of magnetic topology and energy conversion (Parker, 1979; Biskamp, 1996; 56 

Priest & Forbes, 2000; Yamada et al., 2010). This process plays a crucial role in shaping the 57 

structure and dynamics of planetary magnetospheres, particularly in the magnetotail region where 58 

the magnetic field lines are stretched out by the solar wind (SW). Among all the known 59 

magnetotails in the solar system, Jupiter's magnetotail stands out as a unique laboratory for 60 

studying space plasma physics due to its unparalleled characteristics such as the largest size, the 61 

strongest magnetic field strength, and the fastest rotation. 62 

In contrast to Earth, where the magnetospheric dynamics are primarily determined by magnetic 63 

reconnection between the SW/interplanetary magnetic field (IMF) and planetary magnetic field, 64 

the dynamics in the Jovian magnetosphere, including its magnetotail region, are mostly driven by 65 

planetary rotation due to the large Jovian corotation potential (e.g., Khurana et al., 2004; McComas 66 

& Bagenal, 2007, 2008) and also affected by the viscous-like solar wind interaction (Delamere & 67 

Bagenal, 2010; Masters, 2018). Although there is some debate about the importance of SW 68 

reconnection in the Jovian magnetosphere (Cowley et al., 2003; Cowley et al., 2008). The unique 69 

dynamics of Jovian magnetotail reconnection can exacerbate the loss of the internal plasma, 70 

particularly from the Io torus, to the far magnetotail (Kurth et al., 1982; Khurana et al., 2004; 71 

Thomas et al., 2004), and may induce distinctive aurora morphology (e.g., Waite et al., 1994; Ajello 72 

et al., 1998; Waite et al., 2001; Mauk et al., 2002; Szego et al., 2016; Connerney et al., 2017; 73 

Gladstone et al., 2017; Gérard et al., 2018; Grodent et al., 2018; Bonfond et al., 2020; Yao et al., 74 

2020; Guo et al., 2021; Yao et al., 2022). Hence, investigating the Jovian magnetotail reconnection 75 

provides valuable insights into the complex interplay between magnetic reconnection and the 76 
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dynamics of planetary magnetospheres, with important implications for our understanding of space 77 

weather and auroral processes in the Jovian magnetosphere. 78 

The Vasyliunas cycle is a well-established theoretical model for describing the average state of 79 

magnetotail reconnection and plasma circulation at Jupiter (Vasyliunas, 1983). In the Jovian 80 

nightside magnetotail, the centrifugal force exerted by the co-rotating plasma can elongate the 81 

internal quasi-dipole magnetic flux tubes. As a result, the antiparallel directions or components of 82 

the stretched magnetic field lines may reconnect near the equatorial plane, resulting in plasmoid 83 

ejections down the magnetotail. Based on this theory and an array of observations and simulations, 84 

Delamere and Bagenal (2013) put forth an enhanced theoretical prediction for the Vasyliunas cycle. 85 

This prediction takes into account the size of the magnetosphere, which is related to strong viscous-86 

like interaction and the momentum transfer rate from the solar wind, and incorporates locations of 87 

various structures, including the tail reconnection X-line. 88 

Direct observations of reconnection events in the Jovian magnetotail have been made by the 89 

Voyager 1 and 2 flybys in 1979 (Nishida, 1983), the Galileo spacecraft from late 1995 to 2003 90 

(e.g., Russell et al., 1998; Woch et al., 2002; Kronberg et al., 2005; Vogt et al., 2010) and the Juno 91 

spacecraft from July 2016 to present (Vogt et al., 2020), providing important statistics of 92 

reconnection event properties such as their spatial extent, recurrence time, and location. Plasma 93 

measurements in Jupiter's magnetotail for ~2000 RJ downstream were also provided by the recent 94 

flyby of Jupiter by the New Horizons spacecraft (McComas & Bagenal, 2007; McNutt et al., 2007), 95 

although without magnetometer data, the periodicities in the energetic particle dispersive events 96 

suggest plasmoid release from magnetotail reconnection (M. E. Hill et al., 2009). However, due to 97 

insufficient data coverage of observations and the inseparability of space-time information in 98 

single-spacecraft measurements, the dynamic structure of magnetotail reconnection and its 99 

response to the SW have not been well understood. In addition, previous studies using 100 

magnetohydrodynamic (MHD) codes have simulated the magnetotail structures at Jupiter (e.g., 101 

Ogino et al., 1998; Miyoshi & Kusano, 2001; Song et al., 2001; Moriguchi et al., 2008; Chané et 102 

al., 2013; Wang et al., 2018; Sarkango et al., 2019; Tanaka et al., 2021), but lacked quantitative 103 

comparison of magnetotail reconnection with Galileo/Juno Observations and the prediction by 104 

Delamere and Bagenal (2013). 105 
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The recent development of the Grid Agnostic MHD for Extended Research Applications 106 

(GAMERA), a high-resolving power, three-dimensional global MHD code (Lyon et al., 2004; 107 

Zhang et al., 2019), has enabled the study of SW-Jupiter interactions with mesoscale-resolving 108 

capabilities (Zhang et al., 2018; Zhang et al., 2021; Feng et al., 2022, Chen et al., 2023). In this 109 

study, we use the GAMERA code to simulate the dynamic structure of Jupiter’s magnetotail and 110 

its response to the SW ram pressure. First, we show the effectiveness of the MHD model on the 111 

Jovian magnetospheric problems by comparing the simulated radial density profile within Jupiter’s 112 

magnetodisc with observations. Then, we quantitatively analyze the temporal evolution and spatial 113 

dependence of nightside reconnection in Jupiter’s magnetotail. Furthermore, the response of the 114 

Jovian magnetotail reconnection to SW compression is investigated by comparing the magnetotail 115 

structures under ideal quiet and enhanced SW conditions.  116 

2 Methods 117 

2.1 The global MHD model 118 

For simulating the space environment of Jupiter’s magnetosphere, the GAMERA code uses a 119 

finite-volume technique to solve the ideal MHD equations on a non-orthogonal, curvilinear grid 120 

that is adapted to the Jovian magnetospheric problems. The computational grids are based on non-121 

orthogonal stretched spherical grids with 256×256×128 cells corresponding approximately to the 122 

spherical (radial×meridional×azimuthal) coordinate. The grids are oriented in solar-123 

magnetospheric coordinates, where the X, Y, and Z axes correspond to the Sun, east (dusk), and 124 

north, respectively. The grid resolution varies with radial distance to the planetary center, with the 125 

highest radial resolution of ~0.14 Jovian Radii (RJ) near the inner boundary, which is located at a 126 

Jovi-centric distance of 3 RJ. The Jovian magnetospheric simulation extends to 100 RJ in the 127 

sunward direction, -1000 RJ in the anti-sunward direction, and ±300 RJ in directions perpendicular 128 

to the Sun-Jupiter axis. To simplify the analysis by removing hemispheric asymmetries induced 129 

by the tilt, the dipole tilt angle of the Jovian magnetosphere is set to 0. The 10-hour corotation of 130 

the Jovian magnetosphere is implemented by imposing a time-stationary corotation potential onto 131 

the ionospheric potential (Zhang et al., 2018). The simulated heavy-ion massing loading from the 132 

Io plasma torus is 1000 kg/s, added in a ring centered at 6 RJ in the equatorial plane. The output 133 

time step is 600 s. 134 
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 135 
Figure 1. The upstream solar wind (SW)/ interplanetary magnetic field (IMF) conditions as used in the simulation. 136 

Shown from top to bottom are (a) SW density, (b) SW velocity, and (c) IMF.  137 

Figure 1 depicts the upstream SW/ IMF conditions that drive the global MHD model of Jupiter’s 138 

magnetosphere. During the initial 0‒345 hrs simulation time (ST), the upstream SW temperature, 139 

density, velocity, and IMF By are set to quiet-time parameters of 2.0×104 K, 0.25 cm-3, 350 km/s, 140 

and 0.5 nT, respectively, corresponding to Alfvén Mach numbers of 16.0, based on typical SW/IMF 141 

conditions (Blanc et al., 2005; Delamere & Bagenal, 2010; Jackman & Arridge, 2011). It should 142 

be noted that this study analyzes only the simulation data after the start-up transit (~300 hr) when 143 
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the average radial profile of the heavy ion density was settled into a quasi-steady state in a spin-144 

averaged sense. To analyze the response of magnetotail reconnection after an SW compression, 145 

SW density and velocity are set to enhanced parameters of 0.5 cm-3 and 630 km/s during 345:00‒146 

390:00 ST, corresponding to Alfvén Mach numbers of 40.8. For convenience, 300:00‒345:00 ST 147 

is referred the quiet-time period, and 345:00‒390:00 ST is called the SW compression period. 148 

  149 
Figure 2. Radial density profile in the simulation, compared with Figure 1 from Bagenal and Delamere (2011). The 150 

magenta shadow represents the simulated equatorial density data averaged over 300:00‒390:00 ST, while the magenta 151 

line represents the azimuthal-mean density. Density measurements derived from Voyager 1 PLS (black line), Voyager 152 

1 PWS (blue triangles), and Galileo PLS (all orbits) obtained ±30° around noon (green diamonds) and ±30° around 153 

midnight (red circles). The profile from Frank et al. (2002) (pale blue curve) is based on Galileo PLS data from the 154 

G8 orbit data obtained on the nightside. The profile from Bagenal and Delamere (2011) (thick gray curve) is a 155 

composite of three power law profiles (blue, purple, and yellow lines). 156 

Figure 2 compares the radial density profile within Jupiter’s magnetodisc in the MHD simulation 157 

with observations to evaluate the effectiveness of the simulation in addressing Jovian 158 

magnetospheric issues. Within the range of 10‒100 RJ, which encompasses the majority of 159 

observed Jovian magnetotail reconnection events in the range of 37.5–124.2 RJ (Vogt et al., 2010; 160 
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Vogt et al., 2020), our simulated density profiles exhibit an excellent agreement with in situ 161 

measurements and empirical distributions summarized by Bagenal and Delamere (2011). 162 

Furthermore, the simulated density displays significant relative variations, as shown in the 163 

magenta shadow in Figure 2. Schok et al. (2023) found the relative density variations in the 164 

GAMERA simulation between 10‒60 RJ were in agreement with the Juno observations between 165 

30‒50 RJ (Huscher et al., 2021). These observation-simulation agreements validate that the MHD 166 

model is a suitable tool for investigating the dynamic evolution of the Jovian magnetosphre, 167 

including the magnetotail reconnection process. 168 

Note that magnetic reconnection in the MHD simulation is enabled by numerical resistivity, i.e., 169 

when opposing magnetic flux enters a single computational cell and is then averaged out of 170 

existence (Brambles et al., 2011). The rate of reconnection is determined only by the conditions 171 

external to the actual reconnection region through the conservation of mass, momentum, and 172 

magnetic flux (Lyon et al., 2004; Zhang et al., 2016; Zhang et al., 2017). In the simulation of the 173 

terrestrial magnetosphere, Ouellette et al. (2013) have shown that when reconnection is induced 174 

by convergent flow, the nightside reconnection rate in the simulation is constrained by a Petschek-175 

like inflow condition to be a fraction (≈ 0.1) of the Alfven speed in the inflow, regardless of the 176 

grid size. Thus we expect that the global MHD simulation is capable of reproducing large-scale 177 

configuration of Jovian magnetotail reconnection, although micro-physics has not been 178 

implemented into the Jovian magnetosphere simulation.  179 

2.2 Locating the Bz reversal positions  180 

In a planetary magnetosphere without dipole tilt and significant hemispheric asymmetry, 181 

magnetotail reconnection at the equatorial plane can be identified in the magnetic field by tracking 182 

changes in the north-south component of the magnetic field (Bz), such as field dipolarizations or 183 

Bz reversals (Vogt et al., 2010). In this study, we used a similar method as suggested by Vogt et al. 184 

(2010) to find the positions of magnetotail reconnection, but applied it to the high-resolution 185 

simulation data. Specifically, we sliced the data at the equatorial plane (Z = 0) at evenly 600-186 

second spaced steps during 300:00‒390:00 ST and identified positions where Bz reversed from 187 

southward (parallel to the background field) to northward (antiparallel) as radial distance increases 188 

for each azimuthal index on the nightside (X < 0). Figure S1 provides an example of Bz reversal 189 

positions at 300:00 ST. It is important to note that the identified Bz reversal positions may not 190 
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necessarily correspond to the actual locations where reconnection first occurs when there are radial 191 

outflow transports in the magnetotail (Movie S1); however, this method allows for a useful 192 

comparison between simulations and observations.  193 

 194 
Figure 3. (left) The simulated distribution of Bz (positive northward) and plasma flow at the equatorial plane of 195 

Jupiter’s magnetosphere at 300:00 ST. Black/gray lines indicate the Bz zero lines, “X” patterns mark approximate 196 

locations of the X-line, and green arrows represent plasma flows. Additionally, a magenta solid line represents the 197 

average location of the X-line based on Galileo magnetic field data from Vogt et al. (2010), and a magenta dashed 198 

line denotes the average location of the X-line based on Galileo particle flow data from Woch et al. (2002), excluding 199 

the premidnight results with large uncertainty. (right) A schematic of theoretical prediction of the equatorial meridians 200 

for the Vasyliunas cycle, adapted from Delamere and Bagenal (2013), showing the average plasma flow (green), the 201 

predicted locations of the X-line (“X” pattern), and the regions of closed magnetic flux (light blue). The wings of 202 

closed flux on the dawn and dusk flanks are taken from global MHD simulations (Song et al., 2001; Jia et al., 2012) 203 

and based on New Horizons dispersive events (McNutt et al., 2007; M. E. Hill et al., 2009). 204 

3 Results 205 

3.1 Global configuration of Jovian magnetotail reconnection 206 

Figure 3 depicts (left) an instantaneous distribution of the simulated Bz and plasma flow in the 207 

equatorial plane of the Jovian magnetosphere, compared with the Galileo-observed X-lines based 208 

on Bz (magenta solid lines) and plasma flow data (magenta dashed line) and (right) a theoretical 209 

prediction for the Vasyliunas cycle in Delamere and Bagenal (2013). Besides Bz reversals, 210 

magnetotail reconnection may also be identified by the reversals of the disturbances in the radial 211 
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and azimuthal components of the particle flow (Woch et al., 2002). As shown in the left panel of 212 

Figure 3, the two Galileo-observed X-lines from Bz (magenta solid line) and plasma flow data 213 

(magenta) generally correspond with each other. In the following we mainly compare the MHD 214 

results with the Galileo Bz X-line. Within approximately Jovi-centric 100 RJ of the simulated 215 

Jovian magnetotail near the midnight meridian, where Bz is parallel with the southward component 216 

of internal planetary dipole fields, and magnetospheric plasma corotates in the counterclockwise 217 

direction when viewed above the North Pole. Near the midnight meridian outside Jovi-centric 100 218 

RJ, Bz has significant south-to-north reversals with the order of 1‒4 nT in a cavity (red ranges 219 

enclosed by the black line), where plasma flows are generally radially outward and have clockwise 220 

azimuthal components. The coverage of the Bz-reversed cavity shows a dawn-dusk asymmetry 221 

that is wider on the dawnside than on the duskside. Beyond the Bz-reversed cavity, there are wing 222 

structures of southward Bz on the dawn flank and of disturbed Bz on the dusk flank. The simulated 223 

large-scale structure of corotation ranges, Bz-reversed cavity and Bz-southward/disturbed wings in 224 

Jupiter’s internal magnetotail is generally consistent with the theoretical picture (the right panel of 225 

Figure 3). Specifically, the “X” patterns in the left panel of Figure 3 represent approximate 226 

locations of magnetotail reconnection in the simulation, which are located at the “inner” side of 227 

the magnetotail Bz-zero line. The simulated X-line has a radial distribution similar to those 228 

predicted by Delamere and Bagenal (2013) (“X” patterns in the right panel) and observed by the 229 

Galileo satellite (magenta line in the left panel). However, the MHD simulation and the theoretical 230 

prediction in Figure 3 differ in terms of the magnetospheric size and duskside wings. This 231 

difference is a consequence of the fact that the MHD result shown in Figure 3 is just an 232 

instantaneous snapshot of the highly dynamic Jovian magnetosphere under ideal SW conditions as 233 

shown in Movie S1, whereas the theoretical prediction is based on an average of the statistical data 234 

with changing real SW conditions. 235 
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 236 
Figure 4. The distribution of (a) Bz (positive northward), (b) plasma number density (N), (c) azimuthal flow (𝑉!, 237 

positive anticlockwise), and (d) radial flow (𝑉", positive outflow) at the equatorial plane of Jupiter’s magnetosphere 238 

at 300:00 ST from the MHD simulation. The same snapshot is shown in Figure 3a. The contours of Bz = 0 are 239 

represented by black/white and gray lines in each panel, “X” patterns denote the approximate locations of the X-line. 240 

To further understand the magnetotail reconnection process, Figure 4 presents distributions of Bz, 241 

plasma number density, azimuthal and radial flow speeds derived from the same snapshot (300:00 242 

ST) as in the left panel of Figure 3. Figures 4a‒4b show a dense disc-like structure of magnetic 243 

field and plasma density within Jovi-centric 30 RJ, referred to as the magnetodisc (Delamere et al., 244 

2015; Huscher et al., 2021). Notably, the magnetodisc displays periodic finger-like density-245 

enhanced structures between Jovi-centric 6‒40 RJ that corotate with Jupiter and extend outward 246 

(see the plasma velocity in Figures 4c‒4d). These periodic structures are believed to be generated 247 

by the centrifugal force arising from planetary rotation, which was also seen in drift-kinetic 248 

simulations of the Jovian magnetosphere (Yang et al., 2019; Wang et al., 2023). Near the 249 

magnetotail reconnection locations (marked by “X” patterns), enhancements in clockwise/Jupiter-250 

ward flows and in anticlockwise/tailward flows are evident (Figures 4c‒4d). The consistency of 251 

the enhancements in radial and azimuthal flows is also observed in the observation (Woch et al., 252 
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2002). These enhanced flow speeds are signatures of reconnection exhaust flows due to 253 

magnetotail reconnection. The anticlockwise/outward flows generated by magnetotail 254 

reconnection can transport the plasma mass and magnetic flux to distant magnetotail, which is 255 

known as the plasmoid release process (Kronberg et al., 2005; Vogt et al., 2014). The dynamics of 256 

this process are visualized in Movie S1. 257 

3.2 Statistical analysis of the magnetotail reconnection 258 

Movie S1 reveals that the magnetosphere of Jupiter exhibits three distinct phases over 300:00‒259 

390:00 ST. The first phase occurs during the period of quiet-time SW between 300:00 and 345:00 260 

ST, during which the magnetosphere extends to approximately 60‒70 RJ on the dayside and 261 

undergoes relatively stable but dynamic variations. The second phase occurs during the early 262 

stages of SW compression between 345:00 and 360:00 ST, during which the magnetosphere is 263 

rapidly compressed and the dayside scale is reduced from ~60‒70 RJ to ~40‒45 RJ. This transient 264 

phase is characterized by highly unstable energy and mass release processes in the magnetotail. 265 

The third phase occurs during the later stages of SW compression between 360:00‒390:00 ST, in 266 

which the magnetosphere remains compressed to a relatively stable scale of 40‒45 RJ on the 267 

dayside. In this subsection, we focused primarily on the first and third phases, during which 268 

Jupiter’s magnetosphere exhibited a relatively quasi-steady state rather than a transient state. The 269 

second phase will be mentioned in the discussion. 270 

The highly dynamic evolution of the Jovian magnetotail reconnection process exhibits a broad 271 

radial-MLT coverage in the equatorial plane (Movie S1). To analyze the statistical distribution of 272 

magnetotail reconnection, we performed a statistical analysis of the occurrence rate of Bz-reversal 273 

cases following a similar method used in Figure 9 of Vogt et al. (2010). This statistical distribution 274 

of the magnetotail reconnection is based on radial distance and MLT during quiet-time periods 275 

(300:00‒345:00 ST) and the later phase of SW compression periods (360:00‒390:00 ST). Initially, 276 

we segregated the equatorial Bz data from the MHD simulation into bins with a radial distance of 277 

5 RJ and a 0.5-hr interval in MLT. Within each bin, if at least one grid showed a Bz reversal, we 278 

identified that bin as a Bz reversal case and incremented the count by one. The occurrence rate was 279 

computed as the number of steps with Bz reversal cases in each bin divided by the total steps 280 

during the considered period, given that the output time step was 600 s.  281 
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 282 
Figure 5. The occurrence rate of Bz reversal cases in the MHD simulation for bins of 5 RJ in the radial distance and 283 

0.5 hr in MLT during (a) quiet-time periods between 300:00‒345:00 ST, and (b) the later phase of SW compression 284 

between 360‒390 ST. The occurrence rate is computed as the step counts with Bz reversal cases in each bin divided 285 

by the total steps, given that the output time step is 600 s. The count of Bz-reversal cases is incremented by 1 for each 286 

bin whenever at least one point in the bin exhibits Bz reversal. The magenta lines represent the average location of the 287 

X-line based on Galileo data, adapted from Vogt et al. (2010). 288 

Figure 5 illustrates the spatial dependence in the occurrence of the Bz reversal cases during quiet-289 

time periods and the later phase of SW compression periods. For both SW conditions, the simulated 290 

Bz reversal events are mostly outside Jovi-centric 35 RJ, which is consistent with the fact that Bz 291 

reversal events were observed by Galileo between 44.09–124.2 RJ (Vogt et al., 2010) and Juno 292 

between 37.5‒112.7 RJ (Vogt et al., 2020). Most Bz reversal cases occur near the midnight 293 

meridian around 0:00 MLT. The occurrence rate of Bz reversal cases in the post‐midnight sector 294 

(0:00‒6:00 MLT) is much higher than that in the pre-midnight sector (18:00‒24:00 MLT). This 295 
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dawn-dusk asymmetry is also seen in the Galileo data that has coverage on both dawnside and 296 

duskside for Bz (Vogt et al., 2010) and plasma flow (Woch et al., 2002). As MLT changes from 297 

0:00 to 5:00, the radial position with the maximum occurrence rate decreases from ~120 RJ to ~80 298 

RJ under SW quiet conditions (Figure 5a), and it decreases from ~110 RJ to ~70 RJ during SW 299 

compression (Figure 5b). This radial distance-MLT relationship is generally consistent with the 300 

average location of the Galileo-observed X-line (magenta line).  301 

In comparison to the quiet-time condition shown in Figure 5a, the enhanced SW ram pressure 302 

results in a higher occurrence of reconnection beyond 60 RJ and a slight concentration of 303 

magnetotail reconnection slightly near the midnight sector, as illustrated in Figure 5b. This could 304 

be a result of the impact of SW compression on the equatorial current sheets of giant planets (Smith 305 

et al., 1978; Jackman et al., 2010). Meanwhile, as magnetic reconnection occurs more frequently 306 

at positions closer to Jupiter, which may correspond to greater magnetic energy and a stronger 307 

reconnection energy flux, ultimately resulting in the observed dawn storm auroras during SW 308 

compression periods (Nichols et al., 2007; Nichols et al., 2019; Yao et al., 2022). However, the 309 

changing of the SW ram pressure has a limited impact on magnetotail reconnection during post-310 

midnight within 60 RJ, indicating that the generation of Jovian magnetotail reconnection is mostly 311 

driven by the planetary corotation rather than SW effects. In addition, Figure 5 implies that the SW 312 

compression can suppress the reconnection on the duskside (18:00‒21:00 MLT), which induces a 313 

stronger dawn-dusk asymmetry of the magnetotail reconnection. This may be attributed to the 314 

smaller volume in the 18:00‒21:00 MLT sector in the SW-compressed magnetosphere, which does 315 

not support the centrifugal force to generate sufficient magnetic field line stretching to enable 316 

magnetotail reconnection. 317 

To further analyze the distribution of magnetotail reconnection, we statistically analyze the 318 

distribution of the dominant Bθ signature, based on a similar method used in Figures 10‒11 of Vogt 319 

et al. (2010). Here, Bθ represents the meridional component of magnetic fields, which is positive 320 

southward at the equatorial plane, i.e., parallel with Jupiter’s dipole magnetic field and opposite to 321 

the Bz definition. Based on the common Bθ directions during a long-term period, each grid point 322 

at the equatorial planes was then assigned one of three Bθ signatures, defined as: 323 

1) Bθ positive events: Bθ is positive for more than 85% of the event duration, which is the 324 

same definition in Vogt et al. (2010). 325 
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2) Bθ negative events: Bθ is negative for more than 50% of the event duration. We do not 326 

use the same threshold of 85% in Vogt et al. (2010), since few events qualify the 85% 327 

threshold due to the significant dynamic evolution in the magnetotail (as shown in 328 

Movie S1). 329 

3) Bθ bipolar events: the rest of situations that are neither Bθ positive nor negative events. 330 

 331 
Figure 6. Distribution of the dominant Bθ signature in the MHD simulation during (a) quiet-time periods between 332 

300:00‒345:00 ST and (b) the later phase of SW compression between 360:00‒390:00 ST. The colored ranges indicate 333 

the prevalence of different types of events at the calculation grids. Red ranges signify where positive Bθ events are 334 
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most common (>85%), blue ranges indicate where negative Bθ events are most common (>50%), and green ranges 335 

indicate where neither positive nor negative Bθ events are dominated. The magenta lines represent the Galileo X-line. 336 

This is an equatorial view with the sun positioned to the left. 337 

Figure 6 illustrates the distribution of the dominant Bθ signature and the location of an inferred X‐338 

line during (a) periods of SW quiet time and (b) the later phase of SW compression. Under SW 339 

quiet-time conditions (Figure 6a), the equatorial regions are mostly colored red across most MLTs 340 

and within Jovi-centric 60 RJ, indicating positive Bθ events or inferred inward flows dominate. 341 

Between 21:00 and 5:30 MLT, the inner magnetotail experiences bipolar Bθ dominance (green). It 342 

should be noted that the green ranges near the outer boundary of the magnetosphere, which is just 343 

a numerical consequence of the dynamic variation in the size of the magnetosphere. The boundary 344 

between Bθ positive and bipolar ranges near the inner magnetotail increases from ~60 RJ to ~120 345 

RJ with MLT shifting from 5:30 to 21:00, while the boundary between Bθ bipolar and negative 346 

ranges near the inner magnetotail increases from ~100 RJ to ~180 RJ with MLT shifting from 2:00 347 

to 23:30. Moreover, the average locations of the Galileo X-line (magenta line) are located within 348 

the simulated bipolar Bθ-dominated ranges, indicating the consistency of the reconnection 349 

positions between the quiet-time MHD simulations and the average satellite observations.  350 

When the SW ram pressure is enhanced and the Jovian magnetosphere is significantly compressed 351 

(Figure 6b), the MLT coverage of the bipolar Bθ-dominated ranges in the inner magnetotail is 352 

reduced from 21:00‒5:30 MLT to 22:30‒3:30 MLT. The boundary between Bθ positive and bipolar 353 

ranges near the inner magnetotail during SW compression periods is slightly more planetward by 354 

0‒10 RJ near and after midnight (after 23:40 MLT), but significantly more tailward by 10‒50 RJ 355 

during pre-midnight (before 23:40 MLT) with respect to quiet-time condition (Figure 6a) and the 356 

average Galieo X-line (magenta line in Figure 6). This indicates that the SW compression does not 357 

significantly affect the radial distribution of the average reconnection position near and after 358 

midnight but suppresses reconnection during the pre-midnight. In general, the enhanced ram 359 

pressure can decrease the MLT coverage and induce a larger dawn-dusk asymmetry in the radial 360 

distribution of magnetotail reconnection.  361 
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Figure 7. Comparison of magnetospheric magnetic field lines associated with magnetotail reconnection at Jupiter and 363 

Earth. Panel (a) depicts the Jovian results obtained from the MHD data with the eastward IMF at 300:00 ST, which is 364 

the same snapshot shown in Figures 3a and 4. Panel (b) shows the terrestrial results from the MHD data with southward 365 

IMF at 23:40 MLT, as used in Zhang et al. (2020). The blue lines indicate the magnetic fields near the inner 366 

magnetosphere, while the green lines represent the lobe magnetic lines through the midnight meridian. The black lines 367 

denote the plasmoid magnetic fields passing through areas outside the locations of the X-line (magenta line). 368 

Additionally, the contours of Bz = 0 at the equatorial plane are represented by cyan lines. The colorful spheres 369 

represent the inner boundaries at Jovi-centric 3 RJ in the Jovian run and at geocentric 2 Earth radii (RE) in the terrestrial 370 

run. 371 

In Figure 7, the inner magnetic field lines (blue lines) on the planetward side of the X-line are 372 

closed at both planets, but these lines extend from the north to south poles at Jupiter and display 373 

opposite directions at Earth. The plasmoid magnetic field lines (black lines) on the tailward side 374 

of the X-line exhibit turbulent and flux rope structures with multiple twists, indicating that these 375 

complex configurations are a consequence of multiple magnetotail reconnections at different times, 376 

rather than just a single isolated reconnection. These simulations reveal a significant difference 377 

between Jupiter and Earth. Specifically, at Earth, the plasmoid flux rope occurs outside the X-line, 378 

whereas in the Jovian simulation, most of these magnetic field lines revolve around the X-line 379 

itself. This implies the equatorial Bz zero lines, which are used to define the approximate locations 380 

of the X-line in this study and previous observations, may not correspond strictly to the X-line in 381 

the Jovian magnetotail. This discrepancy likely arises from the significant dynamic nature of the 382 

Jovian rotation-driven magnetotail, which lacks the ideal north-south symmetry in the terrestrial 383 

magnetotail. Additionally, different planetary rotation speeds at Jupiter and Earth also cause 384 

significant differences in lobe magnetic field lines near the X-line. Specifically, at Earth, the lobe 385 

magnetic field lines near the X-line through the midnight meridian are open, but in Jupiter, they 386 

exhibit a helical structure and are mostly closed, extending from the polar regions to the distant 387 

tail without east-west components. This unique feature is dominated by Jovian fast rotation, as 388 

demonstrated in the simulation work by Chen et al. (2023) and predicted by the theoretical 389 

frameworks by T. W. Hill (1979) and Isbell et al. (1984). 390 

Although most features of the simulated Jovian magnetotail are consistent with satellite 391 

observations and theoretical predictions, other factors, such as dynamic changes in upstream SW 392 

conditions and the presence of hot plasma populations, may also have a significant impact. While 393 

the Jovian magnetosphere remains relatively stable (although still dynamic) during the quiet SW 394 
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period and the later stages of SW compression (300:00‒345:00 and 360:00‒390:00 ST), Movie S1 395 

displays largely unstable states during the early stages of SW compression at 345:00‒360:00 ST. 396 

During this period, the magnetosphere experiences rapid compression by the enhanced SW ram 397 

pressure, similar to a pressed sponge. Energy and mass are also rapidly released into the far 398 

magnetotail. Besides the significantly dynamic response in the Jovian magnetosphere, the field-399 

aligned current and Alfvénic power in the inner magnetosphere or ionosphere also display complex 400 

responses (Feng et al., 2022). It is important to note that although this simulation study uses ideal 401 

upstream SW conditions, the Jovian magnetospheric responses are still highly dynamic. Therefore, 402 

it is expected that Jupiter's magnetosphere is even more complex under changing real SW 403 

conditions, though there is not enough upstream SW data available. On the other hand, the MHD 404 

simulation does not consider hot plasma populations, resulting in a slightly smaller Jovian 405 

magnetosphere (Figure 3) that may influence magnetotail reconnection, especially in the 406 

premidnight sector in Figures 5‒6. Overall, further investigations are required to fully understand 407 

these two effects. 408 

4. Conclusion 409 

In this study, we utilized a three-dimensional global MHD model to simulate Jovian magnetotail 410 

reconnection and compared our results with observations from the Galileo and Juno spacecrafts. 411 

Our simulations generally reproduce the distribution and occurrence of magnetotail reconnection 412 

as observed by both spacecrafts. We discovered that magnetotail reconnection is more frequent in 413 

the midnight and post-midnight sectors, but less so in the pre-midnight sector. This is generally 414 

consistent with both Galileo and Juno observations and predictions by Delamere and Bagenal 415 

(2013). Our simulations indicate that Jovian magnetotail reconnection is dynamic rather than 416 

steady-state, with a broad distribution in both MLT and radial distance. The enhanced SW ram 417 

pressure can decrease the MLT coverage of magnetotail reconnection by compressing the Jovian 418 

magnetosphere. Near the midnight and post-midnight sectors, the occurrence of magnetotail 419 

reconnection is enhanced by SW compression beyond ~60 RJ but is not significantly impacted by 420 

SW compression within ~60 RJ. On the other hand, SW compression may suppress reconnection 421 

in the pre-midnight sector, leading to a stronger dawn-dusk asymmetry in the occurrence and 422 

location of magnetotail reconnection.  423 
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