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Abstract16

There is growing interest in discovering interpretable, closed-form equations for subgrid-17

scale (SGS) closures/parameterizations of complex processes in Earth system. Here, we18

apply a common equation-discovery technique with expansive libraries to learn closures19

from filtered direct numerical simulations of 2D forced turbulence and Rayleigh-Bénard20

convection (RBC). Across common filters, we robustly discover closures of the same form21

for momentum and heat fluxes. These closures depend on nonlinear combinations of gra-22

dients of filtered variables (velocity, temperature), with constants that are independent of23

the fluid/flow properties and only depend on filter type/size. We show that these closures24

are the nonlinear gradient model (NGM), which is derivable analytically using Taylor-series25

expansions. In fact, we suggest that with common (physics-free) equation-discovery algo-26

rithms, regardless of the system/physics, discovered closures are always consistent with the27

Taylor-series. Like previous studies, we find that large-eddy simulations with NGM closures28

are unstable, despite significant similarities between the true and NGM-predicted fluxes29

(pattern correlations > 0.95). We identify two shortcomings as reasons for these insta-30

bilities: in 2D, NGM produces zero kinetic energy transfer between resolved and subgrid31

scales, lacking both diffusion and backscattering. In RBC, backscattering of potential en-32

ergy is poorly predicted. Moreover, we show that SGS fluxes diagnosed from data, presumed33

the “truth” for discovery, depend on filtering procedures and are not unique. Accordingly,34

to learn accurate, stable closures from high-fidelity data in future work, we propose several35

ideas around using physics-informed libraries, loss functions, and metrics. These findings36

are relevant beyond turbulence to closure modeling of any multi-scale system.37

Plain Language Summary38

Even in state-of-the-art climate models, the effects of many important small-scale pro-39

cesses cannot be directly simulated due to limited computing power. Thus, these effects40

are represented using functions called parameterizations. However, many of the current41

physics-based parameterizations have major shortcomings, leading to biases and uncertain-42

ties in the models’ predictions. Recently, there has been substantial interest in learning43

such parameterizations directly from short but very high-resolution simulations. Most stud-44

ies have focused on using deep neural networks, which while leading to successful param-45

eterizations in some cases, are hard to interpret and explain. A few more recent studies46

have focused on another class of machine-learning methods that discover equations. This47

approach has resulted in fully interpretable but unsuccessful parameterizations that pro-48

duce unphysical results. Here, using widely-used test cases, we 1) explain the reasons for49

these unphysical results, 2) connect the discovered equations to well-known mathematically50

derived parameterizations, and 3) present ideas for learning successful parameterizations51

using equation-discovery methods. Our main finding is that the common loss functions that52

match patterns representing effects of small-scale processes are not enough, as important53

physical phenomena are not properly learned. Based on this, we have proposed a number54

of physics-aware metrics and loss functions for future work.55

1 Introduction56

Turbulent flows are ubiquitous in many geophysical systems, including atmospheric57

and oceanic circulations, and play an important role, e.g., greatly enhancing mixing and58

transport. Direct numerical simulation (DNS) of high-dimensional turbulent flows often59

becomes computationally intractable. Therefore, numerical simulations of most geophysical60

turbulent flows cannot resolve all the relevant scales (Fox-Kemper et al., 2019; Palmer, 2001;61

Schneider, Teixeira, et al., 2017). Large-eddy simulation (LES) is a practical approach62

to balance computational cost and accuracy: the large scales of the flow are explicitly63

resolved, while the effects of the small-scale features which cannot be resolved by the given64

grid resolution, called subgrid-scale (SGS) features, are parameterized as a function of the65
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resolved flow (Pope, 2000; Sagaut, 2006; Smagorinsky, 1963). However, the performance of66

the LES models strongly depends on the accuracy of the employed SGS closure. Over years,67

there have been extensive efforts focused on formulating physics-based and semi-empirical68

SGS closures using various techniques in many turbulent flows (Meneveau & Katz, 2000;69

Moser et al., 2021; Pope, 2000; Sagaut, 2006), including geophysical flows (Alexander &70

Dunkerton, 1999; Anstey & Zanna, 2017; Berner et al., 2017; Cessi, 2008; Gallet & Ferrari,71

2020; Herman & Kuang, 2013; Jansen & Held, 2014; O’Kane & Frederiksen, 2008; Khodkar72

et al., 2019; Sadourny & Basdevant, 1985; Schneider, Teixeira, et al., 2017; Sridhar et al.,73

2022; Sullivan et al., 1994; Tan et al., 2018; Zanna et al., 2017).74

The challenge of modeling SGS closures lies in faithfully representing the two-way75

interactions between the SGS processes and the resolved, large-scale dynamics. There are76

two general approaches to SGS modeling: (a) functional and (b) structural (Sagaut, 2006).77

The functional SGS closures are developed by considering the inter-scale interactions (e.g.,78

energy transfers). This is often achieved by introducing a dissipative term. Hence, functional79

SGS closures generally take an eddy-viscosity form to mimic the average function of the80

SGS eddies. Among the first and most-used functional closures is the Smagorinsky model81

(Smagorinsky, 1963). Later, dynamic formulations of this model were proposed, in which the82

key coefficient is dynamically adjusted to the local structures of the flow (Germano, 1992;83

Lilly, 1992; Ghosal et al., 1993; Chai & Mahesh, 2012). Existing functional closures, most of84

which are the eddy-viscosity type, can be excessively dissipative (Vreman et al., 1996; Guan85

et al., 2022a). Furthermore, they cannot capture the structure of the SGS terms, leading to86

a low correlation coefficient (CC< 0.5) with the true SGS terms, i.e., those diagnosed from87

the DNS data (Carati et al., 2001; Guan et al., 2022a; Moser et al., 2021).88

On the contrary, structural closures tend to have much higher CC with the true SGS89

terms. Structural closures approximate the SGS terms by constructing it from an evaluation90

of large-scale motions or a formal series expansion. One of the most common structural91

closures is the nonlinear gradient model (Leonard, 1975; Clark et al., 1979), referred to92

as NGM hereafter (it is also known as the tensor diffusivity model). The NGM can be93

derived analytically: the SGS term is approximated using a first-order truncated Taylor-94

series expansion of the SGS stress’ convolution integral (details discussed later). However,95

despite CC> 0.9, LES with NGM closure has been found to be unstable in many studies of96

two-dimensional (2D) and three-dimensional (3D) turbulence. These instabilities are often97

attributed to insufficient dissipation and more importantly, to the presence of too-strong98

backscattering in NGM (Leonard, 1997, 2016; Liu et al., 1994; Fabre & Balarac, 2011; Lu99

& Porté-Agel, 2010; Meneveau & Katz, 2000; Prakash et al., 2021; S. Chen et al., 2003,100

2006; Vollant et al., 2016; Moser et al., 2021). As a result, while backscattering (basically101

anti-diffusion or up-gradient flux) is an important process to represent in closure models102

(Grooms et al., 2015; Guan et al., 2022a; Hewitt et al., 2020; Nadiga, 2010; Shutts, 2005),103

it is ignored in most practical SGS closures in favor of stability (though there has been104

some new exciting progress; see, e.g., Jansen et al. (2015) and Juricke et al. (2020)). In105

fact, currently operational climate models do not accounts for backscattering in their ocean106

parameterizations (Hewitt et al., 2020). Consequently, a framework for developing SGS107

closures with the right amount of diffusion and backscattering, that can capture both the108

structure and function of the SGS terms, has remained elusive (Moser et al., 2021; Pope,109

2000; Sagaut, 2006).110

Before moving forward, it should be pointed out that while the discussion so far has111

been focused on closure for geophysical turbulence, many other critical processes in the112

Earth system (in atmosphere, ocean, land, cryosphere, biosphere and at their interfaces)113

require parameterizations in Earth system models (Stensrud, 2009; Schneider, Jeevanjee, &114

Socolow, 2021). Thus, the discussion below and as clarified later, the findings of this paper,115

are broadly relevant to parameterization efforts in Earth science.116

Recently, machine learning (ML) has brought new tools into SGS closure modeling117

(Schneider, Lan, et al., 2017; Zanna & Bolton, 2021; Brunton et al., 2020; Duraisamy, 2021;118
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Gentine et al., 2021; Balaji, 2021). The strength of ML techniques is their ability to handle119

high-dimensional data and learn strongly nonlinear relationships. Therefore, ML techniques120

are attractive tools that might be able to extract more hidden knowledge from data, poten-121

tially providing better SGS closures and even new insights into SGS physics. Data-driven122

SGS closures, e.g., based on deep neural networks trained on high-fidelity simulation data123

such as DNS data, have been developed for canonical geophysical flows such as 2D and quasi-124

geostrophic turbulence (Bolton & Zanna, 2019; Frezat et al., 2022; Guan et al., 2022a, 2023;125

Pawar et al., 2020; Maulik et al., 2018; Srinivasan et al., 2023) and oceanic and atmospheric126

circulations (Beucler et al., 2021; Brenowitz & Bretherton, 2018; Cheng et al., 2022; Guil-127

laumin & Zanna, 2021; Rasp et al., 2018; Yuval & O’Gorman, 2020; X. Zhang et al., 2022).128

While some of these studies found the learned data-driven SGS closures to lead to stable129

and accurate LES (Yuval & O’Gorman, 2020; Guan et al., 2022a, 2023; Frezat et al., 2022),130

a number of major challenges remain (Schneider, Jeevanjee, & Socolow, 2021; Balaji, 2021).131

Perhaps the most important one is interpretability, which is difficult for neural networks,132

despite some recent advances in explainable ML for climate-related applications (Clare et133

al., 2022; Mamalakis et al., 2022), including for SGS modeling (Subel et al., 2023). The134

black-box nature of neural network-based closures aside, there are also challenges related135

to generalizability, computational cost, and even implementation (Balaji, 2021; Chattopad-136

hyay et al., 2020; Guan et al., 2022a; Kurz & Beck, 2020; Maulik et al., 2019; Subel et al.,137

2021; Xie et al., 2019; Zhou et al., 2019), limiting the broad application of such closures in138

operational climate and weather models, at least for now.139

An alternative approach that is rapidly growing in popularity involves using ML tech-140

niques that provide interpretable, closed-form equations, e.g. using sparse linear regression.141

The underlying idea of this equation-discovery approach is that given spatial, temporal, or142

spatio-temporal data from a system, one can discover the governing (algebraic or differential)143

equations of that system (Brunton et al., 2016; Y. Chen et al., 2022; Goyal & Benner, 2022;144

Mojgani et al., 2022b; Schneider et al., 2020; Rudy et al., 2017; Schaeffer, 2017; Schmidt &145

Lipson, 2009; Schneider, Stuart, & Wu, 2021; Schneider et al., 2022; Udrescu & Tegmark,146

2020; S. Zhang & Lin, 2018). Most of the aforementioned studies are focused on discovering147

the entire governing equations from data, though few recent studies have used this approach148

to discover SGS closures (see below). This approach has the following advantages over more149

complex methods such as neural networks in the context of SGS modeling: 1) the learned150

closure is significantly easier to interpret based on physics (Zanna & Bolton, 2020), 2) the151

number of required training samples and the training costs are often considerably lower152

(Brunton et al., 2020; Mojgani et al., 2022b), and 3) the computational cost of implemen-153

tation in conventional solvers is lower, as the discovered closures often involve traditional154

operations, e.g., gradients and Laplacians (Udrescu & Tegmark, 2020; Ross et al., 2023).155

A number of equation-discovery techniques and test cases have been recently employed156

for structural modeling of the SGS stress. In the first study of its kind, Zanna and Bolton157

(2020) used relevance vector machine (RVM), a sparsity-promoting Bayesian linear regres-158

sion technique, with a library of second-order velocity derivatives and their nonlinear com-159

binations, to learn a closed-form closure model for the SGS momentum and buoyancy fluxes160

from filtered high-resolution simulations of ocean mesoscale turbulence. They found a clo-161

sure that resembled the NGM, with close connections to earlier physics-based modeling162

work by Anstey and Zanna (2017). Although, the discovered closure performed well in a163

priori (offline) tests, it was unstable a posteriori (online), i.e., when it was coupled to a164

low-resolution ocean solver. Following the same general approach, more recently, Ross et165

al. (2023) proposed a novel equation-discovery approach combining linear regression and166

genetic programming (GP). This hybrid approach uses GP to discover the structure of the167

equation followed by linear regression to fine-tune the coefficients. In contrast to methods168

such as RVM, GP does not require an explicit library of features, instead, it uses a simple169

set of features and operations, and constructs expressions by successively applying operators170

and combining expressions. Similarly, in other disciplines, Reissmann et al. (2021) and Li171

et al. (2021) recently used gene expression programming (GEP) to discover SGS stress for172
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the Taylor-Green vortex and the 3D isotropic turbulence, respectively. They developed a173

nonlinear closure consisting of the local strain rate and rotation rate tensors, based on what174

is known as Pope tensors (Pope, 1975), which will be discussed later. Overall, these more175

recent studies found that GEP- and GP-based closures often outperform common baselines176

such as the Smagorinsky and the mixed models when turbulence statistics and flow struc-177

tures are considered (Li et al., 2021; Reissmann et al., 2021; Ross et al., 2023). Note that178

there also have been a number of studies focused on equation-discovery for functional mod-179

eling, e.g., using techniques such as Ensemble Kalman inversion (Schneider, Stuart, & Wu,180

2021; Schneider et al., 2020); see the Summary and Discussion.181

In this study, we build on the work by Zanna and Bolton (2020) and use 2D-forced182

homogeneous isotropic turbulence (2D-FHIT) and Rayleigh-Bénard convection (RBC) to183

extend and expand their analysis in several directions:184

1. We use RVM with an expansive high-order library to discover closures from DNS185

data for the SGS momentum flux tensor (2D-FHIT and RBC) and the SGS heat flux186

vector (RBC).187

2. We conduct extensive robustness analysis of the discovered closures across a variety188

of flow configurations, filter types, and filter sizes, and examine the potential effects189

of numerical errors.190

3. Further clarify the connections between the robustly discovered SGS momentum and191

heat flux closures, and the SGS closures obtained analytically from the truncated192

Taylor-series expansion of the filter’s convolution integral, the NGM (Leonard, 1975).193

4. Explain the physical reason for the unstable a posteriori LES with the discovered194

SGS closures, despite their high a priori accuracy in some metrics (such as CC).195

5. Present a decomposition of the SGS tensor to the Leonard, cross, and Reynolds196

components, showing their relative importance and dependence on the filter type/size.197

6. Based on these findings, we present a number of ideas for discovering stable and198

accurate SGS closures from the data in future work.199

Note that while we focus on the use of RVM here, our findings and conclusions in (1)-(6)200

are applicable to any equation-discovery effort, and not just for SGS momentum and heat201

fluxes in geophysical turbulence, but for SGS modeling in any nonlinear dynamical system.202

This paper is organized as follows. In Section 2, we provide an introduction to methodol-203

ogy, including the governing equations of test cases (2D-FHIT and RBC), filtering procedure204

for data and equations, RVM algorithm, and the employed library of the basis functions.205

Section 3 includes the discussion on the discovered closures, a priori and a posteriori tests,206

connection with the physics-based closures, and contribution of the Leonard, cross, and207

Reynolds components. Summary and Discussion are in Section 4.208

2 Models, Methods, and Data209

2.1 Filtering Procedure210

In DNS, the velocity field, u(x, t), is resolved using high spatio-temporal resolutions
down to all relevant scales. In LES, a low-pass filtering operation, denoted by (.), is per-
formed on the equations and flow fields. The resulting filtered fields, for example, filtered
velocity, u (x, t), can be adequately resolved using relatively coarse spatio-temporal reso-
lutions: the required grid spacing is proportional to the specified filter width, ∆, which is
analogous to the size of the smallest eddies resolved in the LES (Pope, 2000; Sagaut, 2006).
Using u(x, t) as an example, the general spatial filtering operation is defined by (Sagaut,
2006)

u(x, t) = G ∗ u =

∫ ∞
−∞

G (r)u(x− r, t)dr, (1)
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where ∗ is the convolution operator, and the integration is performed over the entire domain.
The specified filter kernel, G, satisfies the normalization condition∫ ∞

−∞
G (r) dr = 1. (2)

Subsequently, any flow field such as velocity can be decomposed into a filtered (resolved)
part and SGS (residual) part:

u(x, t) = u(x, t) + u′(x, t), (3)

where u′ is the SGS field. While this appears to be analogous to the Reynolds decomposition,211

an important distinction should be noted: the filtered residual field may not be strictly zero212

(u′ 6= 0, thus u 6= u), depending on the choice of the filter function (Sagaut, 2006). Further213

details about the filters used in this work (Gaussian, box, Gaussian + box, and sharp-214

spectral) are given in Appendix A.215

2.2 Two-dimensional Forced Homogeneous Isotropic Turbulence (2D-FHIT)216

We consider 2D-FHIT as the first test case. This canonical flow has been extensively217

used for testing novel physics-based and ML-based SGS closures for geophysical turbulence218

in the past decades (Boffetta & Ecke, 2012; Chandler & Kerswell, 2013; Guan et al., 2022a;219

Tabeling, 2002; Thuburn et al., 2014; Vallis, 2017; Verkley et al., 2019). The dimensionless220

continuity and momentum equations for 2D-FHIT in (x, y) spatial dimensions are:221

∇ · u = 0, (4)
∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u + F + R, (5)

where u = (u, v) is the velocity, p is the pressure, F represents a time-constant external222

forcing, R is the Rayleigh drag, and Re is the Reynolds number. The domain is doubly223

periodic with length L = 2π.224

The equations for LES are obtained by applying a homogeneous 2D filter (Eq. (1)) to225

Eqs. (4)-(5). The filtered continuity and momentum equations are:226

∇ · u = 0, (6)
∂u

∂t
+ (u · ∇)u = −∇ p+

1

Re
∇2u−∇ · τ + F + R, (7)

where τ is the SGS stress tensor:227

τ =

[
τxx τxy
τyx τyy

]
=

[
u2 − u2 uv − u v
uv − u v v2 − v2

]
. (8)

A closure model is needed to represent τxx, τxy (= τyx), and τyy, in terms of the resolved228

flow (u, v, p). However, currently, this is not possible just using the first principles due to229

the presence of the u2, uv, and v2 terms.230

We study three cases of 2D-FHIT (Table 1), creating a variety of flows that differ in231

dominant length scales and energy/enstrophy cascade regimes. For DNS, as discussed in232

Appendix B, Eqs. (4)-(5) are numerically solved at high spatio-temporal resolutions using233

a Fourier-Fourier pseudo-spectral solver. For the LES, the same solver at lower spatio-234

temporal resolution is used (Appendix B).235

2.3 Turbulent Rayleigh-Bénard Convection (RBC)236

As our second test case, we use 2D turbulent RBC, a widely used canonical flow for237

buoyancy-driven turbulence (Chillà & Schumacher, 2012; Dabbagh et al., 2017; Hassanzadeh238
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Table 1. Physical and numerical parameters used in the 2D-FHIT cases. Cases with different

flow regimes are produced by varying forcing wavenumber,
(
fkx , fky

)
, and Re. For each case, we

use several filter types (Gaussian, box, Gaussian + box, and sharp-spectral filters) and filter sizes,

∆ =
2L

NLES
, where NLES = {32, 64, 128, 256} for Cases K1 and K3 and NLES = {128, 256} for Case

K2. Here, NLES and NDNS are the number of points in each direction on the LES and DNS grids,

respectively. L = 2π is the length of the domain. Note that the lowest NLES is chosen such that the

LES resolution resolves at least 80% of the DNS kinetic energy (Pope, 2000). Filters are applied in

both spatial dimensions for 2D-FHIT.

Cases Re (fkx , fky ) NDNS

K1 20,000 (4, 0) 1024
K2 20,000 (25, 25) 1024
K3 100,000 (4, 0) 2048

et al., 2014; Kooloth et al., 2021; Lappa, 2009; Sondak et al., 2015), which in addition to239

the SGS (momentum) stress, requires closure modeling of the SGS heat flux (Pandey et al.,240

2022; Peng & Davidson, 2002; Wang et al., 2008). Under the Oberbeck-Boussinesq approxi-241

mation, the dimensionless governing equations for the flow between horizontal walls at fixed242

temperatures (the bottom wall being warmer than the top) in (x, z) spatial dimensions are:243

∇ · v = 0, (9)
∂v

∂t
+ v · ∇v = −∇p+ Pr∇2v +RaPr θẑ, (10)

∂θ

∂t
+ v · ∇θ − w = ∇2θ, (11)

where v = (u,w) is the velocity, θ is the temperature (T ) departure from the conduction244

state, ẑ is the unit vector in the vertical direction, and Ra and Pr are the Rayleigh and245

Prandtl numbers, respectively. The domain is periodic in the horizontal direction with246

length L = 6π; no-slip boundary conditions are applied at the walls. We use three cases of247

turbulent RBC (Table 2) in which the Ra and Pr are varied.248

To properly resolve the thin boundary layers in turbulent RBC, a pseudo-spectral solver249

with (non-uniform) Chebyshev collocation points in the vertical direction is used. However,250

filtering variables on a non-uniform grid can cause major errors in the diagnosed SGS terms,251

because the filters will not commute with spatial derivatives (Yalla et al., 2021). As a252

result, following the common practice for LES, we only filter the equations in the horizontal253

direction, where (uniform) Fourier collocation points are used. The LES equations obtained254

by applying a 1D filter along the horizontal direction, x, to Eqs. (9)-(11) are:255

∇ · v = 0, (12)
∂v

∂t
+ v · ∇v = −∇ p+ Pr∇2v + PrRa θẑ −∇ · τ, (13)

∂θ

∂t
+ v · ∇θ − w = ∇2θ −∇ · J , (14)

where τ is the SGS (momentum) stress tensor256

τ =

[
τxx τxz
τzx τzz

]
=

[
u2 − u2 uw − uw
uw − uw w2 − w2

]
, (15)

and J is the SGS heat flux vector257

J =

[
Jx
Jz

]
=

[
uθ − u θ
wθ − w θ

]
. (16)
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Table 2. Physical and numerical parameters used in three cases of turbulent RBC. Cases with

different flow regimes are produced by varying Ra and Pr. For each case, we use several filter types

(Gaussian, box, Gaussian + box, and sharp-spectral cutoff filters) and filter size ∆ = ∆x =
2L

NLES
,

where NLES = {128, 256} for Case R1 and NLES = {128, 256, 512} for Cases R2 and R3. Here,

NLES is the number of points on the LES grid in the horizontal direction, x. NDNS
x and NDNS

z are

the number of grid point on the DNS grid in the horizontal and vertical directions, respectively.

L = 6π is the length of the domain in the horizontal direction. Note that the lowest NLES is chosen

such that the LES resolution resolves at least 80% of the DNS kinetic energy (Pope, 2000). Filters

are only applied along the horizontal direction.

Cases Ra Pr
(
NDNS
x , NDNS

z

)
R1 106 100 (2048, 400)
R2 40× 106 7 (2048, 400)
R3 40× 106 100 (2048, 400)

Here, in addition to τ, J needs a closure model too.258

For DNS, as discussed in Appendix C, Eqs. (9)-(11) are numerically solved at high259

spatio-temporal resolutions using a Fourier-Chebyshev pseudo-spectral solver. For LES, the260

same solver with lower spatial resolution is used (Appendix C).261

2.4 Filtered Direct Numerical Simulation (FDNS) Data262

It should be highlighted that in this study with two canonical test cases, we consider263

DNS data as the “truth”, and use filtered DNS (FDNS) data to discover the closures. How-264

ever, in reality, performing DNS for many geophysical flows is computationally prohibitive.265

In such cases, high-resolution LES that adequately resolves the process of interest (e.g.,266

ocean eddies, gravity waves, etc.) is often used as the truth to train the ML algorithms for267

SGS modeling (Yuval & O’Gorman, 2020; Zanna & Bolton, 2021; Shen et al., 2022; Sun et268

al., 2023).269

Here, we compute FDNS variables on the LES grids, which are 4 to 64 times coarser270

than the DNS grid in both spatial dimensions for 2D-FHIT and one spatial dimension for271

RBC (see Tables 1-2). More specifically, we first apply the respective filter’s transfer function272

(Tables A1 and A2) to the DNS data, and then coarse-grain the results onto the LES grid.273

Note that following some of the recent papers (Grooms et al., 2021; Guan et al., 2022a), we274

define “filtering” as an operation that removes the small scales but keeps the grid resolution275

(e.g., DNS), and “coarse-graining” as an operation that changes the grid size, e.g., from the276

DNS resolution to LES resolution. Note that τ and J in Eqs. (7), (13), and (14) need to be277

on the LES grid.278

The filtering and coarse-graining are performed following Sagaut (2006) and Guan et279

al. (2022a). Briefly, using the velocity u (xDNS, t) as an example, and denoting the DNS grid280

and wavenumber as xDNS and kDNS, we first transform the DNS velocity into the spectral281

space û (kDNS, t), where (̂.) means Fourier transformed. This is followed by applying the282

filter in the spectral space:283

û (kDNS, t) = Ĝ (kDNS)� û (kDNS, t) . (17)

Here, Ĝ (kDNS) can be any of the transfer functions listed in Tables A1 and A2, and � is284

the Hadamard (element-wise) multiplication. After the filtering operation, coarse-graining285

is performed to transform the filtered variable from the DNS to the LES grid. In this study,286
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Figure 1. Snapshots of the (a) DNS vorticity field ω (NDNS = 1024) and the (b) FDNS vorticity

field ω (NLES = 128) for Case K2 (see Table 1). The (c) DNS temperature field T (NDNS = 2048),

and the (d) FDNS temperature field T (NLES = 256) for Case R3 (see Table 2). The Gaussian

filter is applied in both cases.

we perform coarse-graining in spectral space with cutoff kc = π/∆, which for example in287

2D, yields288

û(kLES, t) = û (|kDNS,x| < kc, |kDNS,y| < kc, t) . (18)

Hereafter, for brevity, we use the term “filtered” (still denoted by ·) to mean “filtered” and289

then “coarse-grained”.290

Figure 1 shows the effects of filtering on the vorticity and temperature fields for 2D-291

FHIT and RBC, illustrating that the small-scale structures of ω and T are removed due to292

filtering and the fields are smoothed out.293

2.5 The Equation-discovery Method294

In this study, we employ the RVM (Tipping, 2001) to discover closed-form closures295

for each element of the τ tensor and J vector from the FDNS data. RVM is a sparsity-296
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promoting Bayesian (linear) regression technique that has shown promise in applications297

involving dynamical systems (S. Zhang & Lin, 2018; Zanna & Bolton, 2020; Mojgani et298

al., 2022b). RVM relies on a pre-specified library of basis functions Φ; each column of this299

matrix is a basis, e.g., a linear or nonlinear combination of relevant variables such as velocity300

and temperature and/or their derivatives. The library should be expressive enough so that301

s, a vectorized snapshot of a element of any τ or J , could be completely represented as302

sRVM = Φc. (19)

The vector of regression weights, c, is computed by minimizing the mean-squared error303

(MSE)304

MSE = ‖SRVM − SFDNS‖22, (20)

where vector S consists of n samples of s stacked together. RVM assumes Gaussian prior305

distributions for each weight, and the width of the Gaussian posterior provides a measure of306

the weight’s uncertainty. Sparsity is enforced via an iterative process: basis functions whose307

weights’ uncertainties exceed a pre-specified hyperparameter (threshold), α, are removed308

(pruned), and Eq. (20) is minimized again. The iterations stop when all the remaining basis309

functions have uncertainties smaller than α. Larger α results in lower MSE but more terms310

in the discovered model (see below).311

A critical step in using RVM (and most equation-discovery methods) is the choice of312

the library. Here, we have chosen the following libraries. For momentum stress, we use313 [
∂(q1+q2)A

∂xq1∂yq2

]p1 [
∂(q4+q5)B

∂xq4∂yq5

]p2
or

[
∂(q1+q2)C

∂xq1∂zq2

]p1 [
∂(q4+q5)D

∂xq4∂zq5

]p2
; (21)

where A,B = u or v (2D-FHIT) and C,D = u or w (RBC). Note that experiments with314

including θ in D yield the same results. For heat flux, we use315 [
∂(q1+q2)A

∂xq1∂zq2

]p1 [
∂(q4+q5)θ

∂xq4∂zq5

]p2
, (22)

where A = u,w, or θ (RBC). These libraries are expansive, with integers 0 ≤ q ≤ 8 and316

0 ≤ p ≤ 2, though the total derivative order is limited to 8th (there are a total of 546 and317

614 terms in the libraries used for momentum and heat fluxes, respectively). The form of318

these libraries is motivated by the Galilean-invariant property of the SGS terms, and by319

past studies. For example, these libraries include Pope’s tensors (Pope, 1975), which have320

been used in physics-based (Anstey & Zanna, 2017; Gatski & Speziale, 1993; Jongen &321

Gatski, 1998; Lund & Novikov, 1993) and equation-discovery (Li et al., 2021; Reissmann322

et al., 2021; Ross et al., 2023) approaches in the past (and include the structure of the323

Smagorinsky model; see below). Our library also includes the basis functions used by Zanna324

and Bolton (2020).325

Note that all calculations for the libraries (and any computation in this work) is per-326

formed using the same spectral methods used for DNS and LES.327

We have found it useful for interpretability of the outcome and improving the robust-328

ness of the algorithm to remove redundant terms using the continuity equation (e.g., using329

∂v/∂y = −∂u/∂x, ∂2v/∂y∂x = −∂2u/∂x2, etc.). Also, we have found it essential to nor-330

malize each basis in Φ to have a zero mean and a unit variance, because the amplitude of331

higher-order derivatives can be much larger than that of the lower-order ones.332

Like any method, equation discovery using RVM has a number of strengths and weak-333

nesses:334

1. It is data efficient (Zanna & Bolton, 2020; Mojgani et al., 2022b). For example, here,335

we report the results with n = 100 FDNS samples, but even with n = 1, the results336

remain pratically the same.337
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2. It is more robust, in terms of convergence, compared to similar sparsity-promoting338

techniques (S. Zhang & Lin, 2018; Zanna & Bolton, 2020).339

3. A pre-specified library is needed and it is assumed that the true answer (e.g., the SGS340

stress) can be represented as a linear combination of the chosen basis functions.341

4. The pre-specified hyper-parameter α determines how parsimonious the discovered342

model is. Decreasing α leads to a smaller (likely, more interpretable) model at the343

expense of increasing the MSE. Here, we follow the model-selection literature (Mangan344

et al., 2017; Mojgani et al., 2022b) and objectively choose α using the L-curve, as345

shown later.346

5. The answer can depend on the choice of the loss function. The RVM’s MSE loss347

(Eq. (20)) is strictly following the principle of structural modeling, matching the flux348

between the FDNS and discovered model.349

Note that the above strengths (1)-(2) are highly desirable while these weaknesses (3)-(5)350

are common among many equation-discovery methods, although techniques such as GP and351

GEP can address (3) and (5), for example using an evolving library. We will further discuss352

(3)-(5) in Section 4.353

3 Results354

In this section, we present and discuss the discovered closures, and analyze them a355

priori (offline) and a posteriori (online, coupled with LES). We then uncover the connections356

between the discovered closure and the NGM. For all results presented here, we use n = 100357

FDNS samples from a training set and 20 FDNS samples from an independent testing set.358

3.1 The Discovered Closures for SGS Momentum and Heat Fluxes359

For each of the six cases in Tables 1-2, we separately discover closures for three elements360

of the SGS stress tensor, i.e., τxx, τxy = τyx, and τyy for 2D-FHIT, and τxx, τxz = τzx, and361

τzz for RBC. Additionally, we discover two elements of the SGS heat flux vector, i.e., Jx362

and Jz for RBC. We discover individual closures for 4 filter types: Gaussian, box, sharp-363

spectral, and Gaussian + box. The first three are common filter types, while the last one364

is motivated by a few recent studies (Zanna & Bolton, 2020; Guillaumin & Zanna, 2021).365

We also examine several filter sizes, ∆ (see Tables 1-2), and the effect of varying α, which366

as mentioned earlier, is a key hyper-parameter in RVM.367

We analyze the a priori performance of the discovered closures using the most com-368

monly used metric: the average of CCs for testing samples (Sagaut, 2006; Maulik et al.,369

2019; Guan et al., 2023). For each element of τ or J , denoted below by τ for convenience,370

the CC for each testing sample is calculated between 2D patterns of τ from FDNS and τ371

predicted by the RVM-discovered closure for the corresponding filtered flow variables (e.g.,372

u, v etc.):373

CC =
〈
(
τRVM − 〈τRVM〉

) (
τFDNS − 〈τFDNS〉

)
〉√

〈(τRVM − 〈τRVM〉)2〉
√
〈(τFDNS − 〈τFDNS〉)2〉

, (23)

where 〈·〉 is domain averaging. The same equation is also used for computing CC values of374

2D patterns of inter-scale energy or enstrophy transfer, P (defined later).375

As a representative example of the findings, Fig. 2(a)-(b) shows the averaged CC for376

τyy (K1-K3) and Jx (R1-R3) as α is increased. Figure 2(c)-(d) presents the number of terms377

in the discovered closures. With small α, the discovery is unsuccessful (CC=0; zero term).378

However, as α is further increased, for all cases, CC abruptly jumps to above 0.8−0.9 with 1-2379

discovered terms, and then gradually converges to 1 but with exponentially growing number380

of terms in the discovered closure. The CC-α relationship forms an “L-curve”. The elbow381

of this curve indicates the α that balances accuracy and model size, and is extensively used382
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in the model-selection and equation-discovery literature to objectively choose α (Lawson &383

Hanson, 1995; Calvetti et al., 2000; Mangan et al., 2017; Goyal & Benner, 2022; Mojgani384

et al., 2022b). Examining all cases with other filter sizes and filter types reveals the same385

behavior as shown in Fig. 2, with the exception of the sharp-spectral filter. For this filter,386

the discovery is unsuccessful, leading to low CC and non-robust results; we will explain the387

reason of this failure later in this section.388

We use the L-curve to determine the optimal α. In 2D-FHIT, there are two kinks in389

the curve around the elbow, corresponding to the discovery of closures with 1 and 2 terms,390

respectively (Fig. 2(a), (c)). Given the robust and asymptotic behavior in α after the second391

kink, we use the corresponding α to identify the discovered closure (see the black circles).392

We find that consistently, across Cases K1-K3, filter types, and filter sizes, this closure is of393

the form394

τ =

[
τxx τxy
τyx τyy

]
= ∆2

axx
(
∂u

∂x

)2

+ bxx

(
∂u

∂y

)2

axy
∂u

∂x

∂v

∂x
+ bxy

∂u

∂y

∂v

∂y

axy
∂u

∂x

∂v

∂x
+ bxy

∂u

∂y

∂v

∂y
ayy

(
∂v

∂x

)2

+ byy

(
∂v

∂y

)2

 , (24)

where axx, bxx, axy, bxy, ayy, and byy are the discovered coefficients (∆2 is factored out to395

further highlight the independence of these coefficients from the filter size). Table 3 shows396

that these 6 coefficients are the same, and the same for Cases K1-K3, although they can397

depend on the filter type. This table also shows the average CC values of the discovered398

closure, which are around 0.99, demonstrating the accurate prediction of each element of399

the stress tensor and the excellent a priori (offline) performance of the discovered closure400

for a broad range of LES resolutions.401

Following the same approach, we discover basically the same closure for τ in RBC402

τ =

[
τxx τxz
τzx τzz

]
= ∆2

dxx
(
∂u

∂x

)2

dxz
∂u

∂x

∂w

∂x

dxz
∂u

∂x

∂w

∂x
dzz

(
∂w

∂x

)2

 , (25)

where, as before, dxx, dxz, and dzz are the coefficients with ∆2 factored out. Note that403

Eq. (25) is the same as Eq. (24), except that here, there is one term rather than two in404

each element of the tensor, which is a result of filtering (in RBC) performed only in the405

horizontal, x, direction. As before, Table 4 shows that these d coefficients are the same,406

and the same for Cases R1-R3, though varying with filter type. Like before, the discovered407

closure has fairly high CC values.408

Again, following the same approach, we determine the optimal α for discovering the409

closure of J . In Fig. 2(b), Case R1 has a clear elbow while Cases R2-R3 have two kinks410

around the elbow. Examining all cases and the number of discovered terms (Fig. 2(d)), we411

find that the single-term closures discovered at the first kink (circled) provide consistent412

and robust results. This closure is413

J =

[
Jx
Jz

]
= ∆2


dx
∂u

∂x

∂θ

∂x

dz
∂w

∂x

∂θ

∂x

 , (26)

where dx and dz are the discovered coefficients with ∆2 factored out. Table 5 shows that414

these d coefficients are the same, and the same for Cases R1-R3, but varying with filter415

type. As before, the discovered closure has a good a priori performance.416

To summarize the findings, Eqs. (24)-(26) and Tables 3-5 show that417
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1. Closures of the same form are robustly discovered for τ in two vastly different systems,418

2D-FHIT and RBC. Even the closure for J overall has the same form, consisting of419

the products of the first-order derivatives of the variables involved in the nonlinearity420

of the SGS term.421

2. Not just the form, but even the coefficients of the terms in the closures, are con-422

sistently the same as parameters such as Re, forcing wavenumber, Ra, or Pr are423

changed in Cases K1-K3 and R1-R3, leading to different dynamics. The coefficients424

are independent of the fluid and even the flow properties.425

3. The form of the closures is independent of the filter type unless the sharp-spectral426

filter is used. The coefficients, once normalized by ∆2, are independent of filter size,427

but depend on filter type.428

4. The discovered closures have outstanding a priori performance, often with CC> 0.95429

and even as high as 0.99. It should be noted that the CCs reported in these tables are430

averaged over a broad range of NLES. The values of CC are higher for larger NLES,431

i.e., smaller ∆.432
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Figure 2. Representative examples of the the effects of increasing the sparsity-level hyper-

parameter, α, on the CC and number of terms in the discovered closure. (a), (c): τyy (2D-FHIT)

and (b), (d): Jx (RBC). A Gaussian filter with NLES = 128 (K1-K3) and NLES = 256 (R1-R3)

is used, but the same behavior is observed with any other NLES and filter type (except for the

sharp-spectral, see the text). In general, for small α (< 1), no closure is discovered (CC=0, zero

term). With increasing α, the CC converges to ∼ 1 (a more accurate a priori closure) but at the

expense of a larger closure with many more terms (note the logarithmic scale of the y axes in panels

(c)-(d)). However, the CC-α relationship forms an “L-curve”, whose elbow indicates the α that

balances accuracy and model size (see the text).
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3.2 The Nonlinear Gradient Model (NGM): Taylor-series Expansion of the433

SGS Term434

A closer examination of Eq. (24) reveals that this closure is indeed the NGM (this435

includes both the form and the coefficients, within the uncertainty range). This connection436

was already pointed out by Zanna and Bolton (2020), although the implications and findings437

such as 1-4 mentioned in the previous subsection were not further discussed in their short438

letter.439

First, let’s briefly review the NGM (Leonard, 1975; Clark et al., 1979; Sagaut, 2006).440

As a simple illustration of the idea behind this model, Appendix D presents the derivation441

of the NGM using a 1D arbitrary field, a(x). Taylor-series expansion of a(x − rx) around442

a(x) (Eq. (D2)) simplifies the convolution integral of the filtering operation (Eq. (D1)) such443

that a(x) can be written in terms of a(x) and its derivatives, with coefficients that depend444

only on the moments of the the filter’s kernel, G (Eq. (D4)). Using u2 and u2 as a(x), we445

eventually arrive at an analytically derived closure for τxx with error O
(
∆4
)

(Eq. (D12)).446

In 2D with filtering applied in both directions (like our 2D-FHIT), the NGM is (Sagaut,447

2006)448

τNGM
2D =

[
τxx τxy
τyx τyy

]
= cτ∆2


(
∂u

∂x

)2

+

(
∂u

∂y

)2
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

(
∂v

∂x

)2

+

(
∂v

∂y

)2

+O
(
∆4
)
, (27)

where cτ depends on the filter’s kernel. Similarly, for the 2D RBC with filtering only in the449

x direction, the NGM is450

τNGM
1D =

[
τxx τxz
τzx τzz

]
= dτ∆2


(
∂u

∂x

)2
∂u

∂x

∂w

∂x
∂u

∂x

∂w

∂x

(
∂w

∂x

)2

+O
(
∆4
)
. (28)

As emphasized in Appendix D, there is nothing specific to momentum flux or even turbulence451

(or even physical systems) in the derivation of NGM. In fact, for the filtered quadratic452

nonlinearity of any two arbitrary variables, one arrives at the same expression with O
(
∆4
)

453

accuracy. For example, following this derivation, for the SGS heat flux, we obtain454

JNGM =

[
Jx
Jz

]
= dJ∆2


∂u

∂x

∂θ

∂x

∂w

∂x

∂θ

∂x

+O
(
∆4
)
, (29)

where like cτ and dτ , dJ only depends on the filter’s kernel.455

Computing cτ , dτ , dJ for each of the filter types used in this study, we confirm that456

the discovered closures for the SGS stress are basically the NGM (Eqs. (27)-(28)), and in457

the case of the SGS heat flux, an NGM-like (Eq. (29)) closure (see Tables 3–5).458

Based on the above analyses, we can now explain the findings (1)-(4) in Section 3.1.459

Closures of the same structure are robustly discovered for both SGS momentum and heat460

fluxes in two vastly different turbulent flows (and independent of parameters such as Re,461

Ra, Pr, and forcing) because the first term in the Taylor-series expansion dominates the462

SGS flux. As a result, in equation-discovery using common loss functions such as MSE and463

evaluation metrics such as CC, which aim at closely matching τ or J , NGM or NGM-like464

closures are discovered (if the library is expansive enough to include all the relevant terms).465

We emphasize that this would be the case with discovering the representation of the filtered466

nonlinearity of any two arbitrary variables. As already observed, the coefficients of the467

discovered closure become even closer to those of NGM as ∆ is decreased (thus reducing468

potential contributions from the truncated O
(
∆4
)

terms).469
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Table 4. Coefficients in Eq. (25), the robustly discovered closure for τ for RBC (note that ∆2

is included in the coefficients). For Cases R1-R3 and different filter types, the mean and standard

deviation of the discovered coefficients over different NLES are reported (see Table 2). The average

CC of the closure for each element of τ is shown in parentheses. The last column shows the

analytically derived coefficients for the NGM (see Section 3.2).

Case Filter
τxx τxy τyy Mean NGM(
∂u

∂x

)2
∂u

∂x

∂w

∂x

(
∂w

∂x

)2

R1

Gaussian

∆2

10.89± 0.39

∆2

11.01± 0.41

∆2

10.55± 0.75

∆2

10.98± 0.49

∆2

12
(0.98) (0.97) (0.92) (0.95)

Box

∆2

10.45± 0.94

∆2

10.21± 0.93

∆2

10.32± 0.87

∆2

10.35± 0.97

∆2

12
(0.98) (0.94) (0.91) (0.93)

Gaussian + box

∆2

5.35± 0.56

∆2

5.37± 0.35

∆2

5.21± 0.48

∆2

5.29± 0.66

∆2

6
(0.93) (0.94) (0.89) (0.91)

R2

Gaussian

∆2

11.35± 0.41

∆2

11.82± 0.36

∆2

9.7± 0.54

∆2

10.62± 0.79

∆2

12
(0.98) (0.88) (0.81) (0.89)

Box

∆2

10.52± 0.65

∆2

9.38± 0.5

∆2

9.11± 0.59

∆2

10.01± 0.44

∆2

12
(0.97) (0.90) (0.86) (0.91)

Gaussian + box

∆2

5.48± 0.24

∆2

5.33± 0.12

∆2

5.00± 0.23

∆2

5.27± 0.28

∆2

6
(0.98) (0.92) (0.93) (0.94)

R3

Gaussian

∆2

11.22± 0.16

∆2

11.34± 0.41

∆2

10.51± 1.03

∆2

11.02± 0.79

∆2

12
(0.94) (0.93) (0.91) (0.93)

Box

∆2

10.17± 0.32

∆2

9.94± 0.64

∆2

9.44± 1.32

∆2

9.85± 0.95

∆2

12
(0.93) (0.93) (0.92) (0.92)

Gaussian + box

∆2

5.46± 0.10

∆2

5.55± 0.12

∆2

4.87± 0.66

∆2

5.3± 0.54

∆2

6
(0.93) (0.90) (0.88) (0.90)
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Table 5. Coefficients in Eq. (26), the robustly discovered closure for J for RBC (note that ∆2

is included in the coefficients). For Cases R1-R3 and different filter types, the mean and standard

deviation of the discovered coefficients over different NLES are reported (see Table 2). The average

CC of the closure for each element of J is shown in parentheses. The last column shows the

analytically derived coefficients for the NGM (see Section 3.2)

Case Filter
Jx Jz Mean NGM

∂u

∂x

∂θ

∂x

∂w

∂x

∂θ

∂x

R1

Gaussian

∆2

10.54± 0.66

∆2

10.3± 0.87

∆2

10.88± 1.3

∆2

12
(0.93) (0.90) (0.92)

Box

∆2

9.11± 0.86

∆2

9.00± 0.65

∆2

9.05± 0.80

∆2

12
(0.93) (0.92) (0.93)

Gaussian + box

∆2

5.32± 0.3

∆2

5.31± 0.5

∆2

5.31± 0.45

∆2

6
(0.96) (0.90) (0.93)

R2

Gaussian

∆2

11.27± 0.2

∆2

10.9± 0.4

∆2

11.12± 0.37

∆2

12
(0.89) (0.85) (0.87)

Box

∆2

9.7± 0.11

∆2

9.3± 0.23

∆2

9.5± 0.67

∆2

12
(0.90) (0.84) (0.87)

Gaussian + box

∆2

5.55± 0.08

∆2

5.1± 0.22

∆2

5.32± 0.78

∆2

6
(0.91) (0.85) (0.88)

R3

Gaussian

∆2

9.75± 0.47

∆2

9.21± 0.34

∆2

9.46± 0.97

∆2

12
(0.84) (0.83) (0.83)

Box

∆2

9.87± 0.23

∆2

9.5± 0.22

∆2

9.68± 0.57

∆2

12
(0.80) (0.81) (0.81)

Gaussian + box

∆2

4.78± 0.12

∆2

4.52± 0.34

∆2

4.65± 0.77

∆2

6
(0.83) (0.80) (0.81)
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The connection to the analytical derivation also explains why the coefficients in the470

discovered models are independent of the fluid or even the flow properties (Ra, Re, Pr)471

and only depend on the filter size (∆) and filter type. For the Gaussian and box filters472

we obtain cτ = dτ = dJ = 1/12: this is because the parameters of the Gaussian filter are473

chosen such that Gaussian and box filters’ kernels have the same second moment (Pope,474

2000). For Gaussian + box filter, the coefficients are 1/6 because the kernel of this filter is475

convolution of the Gaussian and box filter kernels. For the sharp-spectral filter, the moments476

are indefinite, this is why there is no NGM discovery with this filter (and we will discuss477

later why the discovery fails altogether). Note that coarse-graining done here via cutoff in478

the spectral space does not change cτ , dτ and dτ ; however, if coarse-graining is done by other479

techniques such as box averaging, then the coefficients might change (note that the NGM480

coefficient for Gaussian + box filter is half of the coefficient of either filter; see Tables 3-5).481

In short, one can explain the effects of different filter kernels and coarse-graining strate-482

gies on the discovered closures following the analytically derivable NGM (see Appendix D483

and Sagaut (2006)).484

An important implication of the above findings and discussions is that the discovered485

closure may not be unique and can depend on the filtering and coarse-graining procedure:486

it depends on the filter type (and up to a factor, on the filter size). This is not a problem487

of equation-discovery; in fact, the SGS fluxes diagnosed from FDNS are not unique and488

depend on the filtering and coarse-graining procedure (this is further shown in Fig. 4 and489

discussed at the end of this section). This has implications not just for equation-discovery,490

but more broadly, for the ongoing efforts on learning SGS parameterizations for various491

processes from high-fidelity data using ML. See Sun et al. (2023) for extensive discussions492

about this issue focused on the data-driven SGS modeling of atmospheric gravity waves.493

The next key question is about the accuracy and stability of LES of the 2D-FHIT and494

RBC with the NGM closures, τNGM and JNGM. However, before discussing the a posteriori495

(online) performance of NGM closures, we address one more issue, and that is about any496

potential influence from numerical calculations in our equation discovery.497

3.2.1 Effects of numerical discretization498

The appearance of gradients of velocity (or temperature) in Eqs. (27)-(29) might sug-499

gest to some that the discovered equations represent the truncated terms of finite differ-500

ence/volume discretization schemes (the methods used in Zanna and Bolton (2020)). The501

discussions in their paper and the comprehensive analyses here should leave no ambigu-502

ity that Eqs. (27)-(29) represent the physics of the SGS fluxes, rather than any numerical503

error. Still, we wish to discuss a few more points here, as numerical errors from finite504

difference/volume discretizations or from aliasing (in spectral calculations) can certainly505

contaminate equation discovery.506

All numerical calculations in this study are performed using Fourier and Chebyshev507

spectral methods. Moreover, we have repeated our calculations of the SGS fluxes and of508

the basis functions in the library after de-aliasing based on the 2/3 rule (Orszag, 1971).509

Furthermore, we have performed discovery on fluxes that are only filtered but not coarse-510

grained (thus they remain on the high-resolution DNS grid). The outcomes of all these511

experiments are Eqs. (27)-(29), demonstrating that the discovered closures do not contain512

any contributions from numerical errors.513

3.3 A posteriori (Online) Tests and Inter-scale Energy/Enstrophy Transfer514

For all 6 cases and all tested NLES, the LES runs with NGM closures are unstable:515

high-wave number features appear and the simulations eventually blow up (not shown).516

This is consistent with the findings of Zanna and Bolton (2020), who only found stable LES517

once the SGS momentum fluxes predicted by the discovered closure were attenuated. More518
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generally, this is also consistent with extensive studies in the 1990s (though mainly focused519

on 3D turbulence), which found that LES with the NGM closure is unstable (Liu et al.,520

1994; Leonard, 1997; Vreman et al., 1997; Borue & Orszag, 1998; Meneveau & Katz, 2000;521

Pope, 2000; S. Chen et al., 2003, 2006). The exact reason(s) for the instabilities remain522

unclear but these studies found that in general, in 3D turbulence, NGM has insufficient523

dissipation and/or too much backscattering; see, e.g., the discussions in Leonard (1997,524

2016) and Sagaut (2006). As a result, later studies focused more on eddy-viscosity closures,525

or on NGM with backscattering removed or combined with eddy-viscosity, the so-called526

mixed models (Winckelmans et al., 1998; Cottet, 1996; Balarac et al., 2013). Such versions527

of NGM have been used in some geophysical flows, e.g., for atmospheric boundary layer (Lu528

& Porté-Agel, 2010, 2014; Khani & Porté-Agel, 2017; Khani & Waite, 2020; Khani & Porté-529

Agel, 2022) and oceanography (Khani & Dawson, 2023).530

In 2D turbulence with filtering done in both directions, such as our 2D-FHIT cases, the531

NGM has a clear major shortcoming: it cannot capture any energy transfer between the532

subgrid and resolved scales, despite capturing the enstrophy transfer well (S. Chen et al.,533

2003, 2006; Nadiga, 2008). To further explore this issue, first note that the rate of kinetic534

energy transfer between the resolved and subgrid scales, Pτ , is (Pope, 2000)535

Pτ = −τ rijSij , (30)

where summation over repeated indices is implied. S and τ r are the 2D filtered rate of strain536

tensor and the anisotropic part of the SGS stress tensor (see Appendix E for details). In 2D537

turbulence with filtering done in both directions, using τNGM in the above equation shows538

that PNGM
τ (x, y, t) is identically zero (see Appendix E). This is demonstrated numerically539

in Table 6, which also shows that NGM captures both forward transfer and backscatter of540

SGS enstrophy fairly well (CC> 0.95). Therefore, despite the high CC of τNGM with τFDNS,541

and even a fairly accurate inter-scale enstrophy transfer, NGM cannot capture any inter-542

scale energy transfer, indicating a major failure from a functional modeling perspective543

(note that in this context, “inter-scale” means between the resolved and subgrid scales).544

A physical/mathematical interpretation of this failure is that while NGM reproduces the545

structure of τ remarkably well, it does not at all capture the correlations between the τ and546

S tensors, e.g., the angles between their principle directions (Leonard, 2016).547

This inability to represent any inter-scale energy transfer is likely the reason for the548

instabilities of LES with NGM closure in Cases K1-K3 (and generally, in 2D turbulence). But549

how about in RBC? In Cases R1-R3, filtering is conducted only in the horizontal direction,550

and as a result, PNGM
τ is not identically zero. In fact, in these cases, the forward transfer and551

backscatter of both kinetic energy and enstrophy are captured fairly well by NGM, with CC552

often above 0.95 (Table 7). However, a deeper examination shows that the backscatter (anti-553

diffusion) of inter-scale SGS potential energy, measured as PJ (see Appendix E), may not554

be captured well, specially at low NLES (Table 7). Poor representation of backscattering555

can certainly lead to instabilities, as for example shown by Guan et al. (2022a) for 2D556

turbulence.557

To further explore other potential shortcomings of NGM, we have also examined the558

spectra of elements of τNGM and JNGM in comparison to those from FDNS (Figure 3).559

This analysis shows that the spectra of SGS momentum and heat fluxes are captured well560

across wavenumbers, even at high wavenumbers, indicating that NGM performs well in this561

a priori (offline) metric.562

To summarize the above analyses: we find all LES with NGM closures for 2D-FHIT and563

RBC cases to become unstable even at high LES resolutions. Understanding the reason(s)564

for this poor a posteriori (online) performance is essential to make further progress. Ex-565

amining a few functional and structural metrics beyond CC of SGS fluxes (e.g., inter-scale566

energy/enstrophy transfers, spectra) point to only one major shortcoming that is relevant to567

2D-FHIT (and any 2D turbulent flow): NGM cannot capture any inter-scale kinetic energy568

transfer, which is likely the reason for the instabilities. This is not an issue in RBC, for569
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Table 6. The average correlation coefficient (CC) between inter-scale energy transfer (Pτ ) or

enstrophy transfer (PZ) patterns of the SGS momentum stresses from FDNS and from NGM closure

for Cases K1-K3 and different NLES. The CC of Pτ for both forward transfer (> 0) and backscatter

(< 0) of SGS energy is “undefined” since PNGMτ = 0 everywhere for 2D-FHIT (in general, PFDNSτ 6=
0). On the contrary, the forward transfer and backscatter of SGS enstrophy are captured well by

the NGM. The Gaussian filter is used in FDNS.

Cases NLES = 32 NLES = 64 NLES = 128 NLES = 256

CC for Pτ (Pτ > 0, Pτ < 0)

K1
K2 undefined (undefined, undefined)
K3

CC for PZ (PZ > 0, PZ < 0)

K1 0.98 (0.98, 0.97) 0.98 (0.98, 0.97) 0.98 (0.98, 0.97) 0.98 (0.98, 0.96)
K2 - - 0.98 (0.98, 0.97) 0.99 (0.99, 0.98)
K3 0.98 (0.98, 0.97) 0.98 (0.98, 0.96) 0.97 (0.97, 0.95) 0.96 (0.97, 0.93)

which we only identify one shortcoming, and that is the poor representation of backscatter570

(anti-diffusion) of potential energy, specially at low LES resolution. These findings indi-571

cate that the poor a posteriori (online) performance of NGM might have different causes in572

different flows and requires more extensive investigations.573

Before discussing ideas for addressing these challenges in future work, we present more574

analyses in two areas: a closer examination of the physics included in the library (Subsec-575

tion 3.4) and the decomposition of the SGS fluxes and the sensitivity of the diagnosed fluxes576

to the filter type/size (Subsection 3.5).577

3.4 A Physics-guided Library: Pope Tensors578

In Section 3.1, we consider an expansive library of basis functions combining the low-579

and high-order derivatives and polynomials of velocity and temperature. Under certain as-580

sumptions, smaller but physics-informed libraries can be devised. For example, Boussinesq581

(1877) hypothesized that for a nearly homogeneous, incompressible, high-Re flow, the582

anisotropic SGS stress τr (Eq. (E2)) is only a function of the filtered rates of strain S583

(Eq. (E1)) and rotation Ω (Eq. (32)) tensors:584

τr = τr
(
S,Ω

)
, (31)

Ω =
1

2

 0
∂u

∂y
− ∂v

∂x
∂v

∂x
− ∂u

∂y
0

 . (32)

Note that in Eqs. (7) and (13) and in general, only ∇ · τr has to be parameterized as the585

rest of ∇ · τ can be absorbed into ∇p (Sagaut, 2006). Owing to Cayley-Hamilton theorem586

(Gantmakher, 2000), τr can be represented as a linear combination of a finite number of587

tensors, the so-called Pope tensors (Pope, 1975). In 2D, there are only 3 Pope tensors Z,588

thus589

τr =

2∑
n=0

ζ(n) (I1, I2) Z(n). (33)
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Table 7. The average correlation coefficient (CC) between inter-scale kinetic energy transfer

(Pτ ) or enstrophy transfer (PZ) or potential energy transfer (PJ) patterns of the SGS fluxes from

FDNS and from NGM closure for Cases R1-R3 and different NLES. Note that for RBC, filtering is

conducted in only one direction (x), therefore, Pτ is not identically zero. Here, the forward transfer

and backscatter of SGS kinetic energy and enstrophy are overall captured well, specially as NLES

increases. However, the backscatter of SGS potential energy is not well captured, specially at low

LES resolutions. The Gaussian filter is used in FDNS. See Appendix E for the definition of PJ .

Cases NLES = 128 NLES = 256 NLES = 512

CC for Pτ (Pτ > 0, Pτ < 0)

R1 0.94 (0.96, 0.85) 0.99 (0.99, 0.98) −
R2 0.97 (0.81, 0.98) 0.98 (0.91, 0.98) 0.99 (0.97, 1.00)
R3 0.79 (0.81, 0.74) 0.88 (0.92, 0.81) 0.96 (0.97, 0.93)

CC for PZ (PZ > 0, PZ < 0)

R1 1.00 (1.00, 0.99) 1.00 (1.00, 1.00) −
R2 0.99 (0.96, 1.00) 0.99 (0.98, 1.00) 1.00 (1.00, 1.00)
R3 0.96 (0.95, 0.96) 0.99 (0.99, 0.98) 1.00 (1.00, 0.99)

CC for PJ (PJ > 0, PJ < 0)

R1 0.89 (0.89, 0.15) 0.97(0.97, 0.46) −
R2 0.76 (0.75, 0.65) 0.91 (0.91, 0.63) 0.98 (0.98, 0.76)
R3 0.77 (0.75, 0.40) 0.87 (0.86, 0.39) 0.94 (0.94, 0.44)

The three Pope’s tensors are Z(0) = I, Z(1) = S, and590

Z(2) = S Ω−Ω S = −1

2


(
∂u

∂y

)2

−
(
∂v

∂x

)2

2

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
2

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
−
(
∂u

∂y

)2

+

(
∂v

∂x

)2

 , (34)

which is related to the anisotropic part of the NGM stress. In fact, τNGM−r = −∆2Z(2)/12591

(see Eq. (E3)). Note that this is also the physics-based closure derived in Anstey and Zanna592

(2017). Coefficients ζ(n) are functions of invariants I1 = tr(S
2
) and I2 = tr(Ω

2
). The593

standard Smagorinsky model is ζ(1)(I1)Z1.594

Our expansive library, described in Eqs. (21)-(22), includes the individual terms to595

discover Z(n) (n = 1, 2, 3); however, we have always found the NGM stress, τNGM. To see596

whether the results will change with a discovery only done on the anisotropic SGS stress,597

τr, and with a smaller library that only has the terms relevant to the Pope tensors, we598

have conducted more experiments with 3 libraries for Cases K1-K3. The first library only599

includes the 3 Pope tensors {Z(1),Z(2),Z(3)}, the second library only includes the 6 non-zero600

elements of these tensors, and the third library only includes the 8 terms that compromise601

these 6:602 {
1,
∂u

∂x
,
∂u

∂y
,
∂v

∂x
,

(
∂u

∂y

)2

,

(
∂v

∂x

)2

,
∂u

∂x

∂v

∂x
,
∂u

∂y

∂v

∂y

}
. (35)

The RVM with any of these libraries robustly discovers τNGM−r = −∆2Z(2)/12, without603

Z(1) (or Z(0)) showing up (thus, no Smagorinsky/eddy viscosity-like term). Needless to say,604

LES with this closure in unstable.605

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 3. Examples of the spectra of SGS fluxes predicted using NGM compared to those diag-

nosed using FDNS (the truth). (a) τxy from Case K1 and (b) Jz from Case R1 for 3 different NLES.

A Gaussian filter is used for FDNS, but the same behavior is observed for box and Gaussian+box

filters. Here, |̂·| is the modulus of Fourier coefficients.

The above analyses show the prevalence of NGM: it emerges whether the full or just606

the anisotropic part of the SGS stress tensor is discovered, and whether an expansive or a607

small physics-guided library is used.608

3.5 Decomposition of SGS Fluxes: Leonard, Cross, and Reynolds Stresses609

As discussed earlier, whether a closure could be successfully discovered from FDNS610

data or if the NGM could be derived depend on the choice of the filter. The latter was611

explained based on the dependence of the derived closure on the moments’ of the filter612

kernel. Furthermore, the coefficients of the discovered closure and the analytically derived613

coefficients of the NGM depend on the choice of the filters (Tables 3-5). Here, we further614

demonstrate the sensitivity of the diagnosed FDNS SGS flux (which is treated as truth in615

offline/supervised learning data-driven modeling approaches) to the choice of the filter, and616

then decompose the flux into its three components to gain further insight.617
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The top row of Fig. 4 show examples of SGS τ in 2D-FHIT diagnosed from the FDNS618

data using different filter types. It is clear that the diagnosed fluxes are not unique and par-619

ticularly different between Gaussian/box filters and sharp-spectral filter (similar differences620

can be seen in SGS momentum and heat fluxes in RBC). This sensitivity, which has impor-621

tant implications for data-driven SGS modeling efforts (Sun et al., 2023), has been known622

for a long time in the LES community (Leonard, 1975; Sagaut, 2006). The Gaussian and box623

filters extract fairly similar features, even of the almost the same amplitude (which is due to624

their matched kernels’ second moments). The Gaussian+box filter captures similar features625

but with a factor of ∼ 2 difference in amplitude (related to the factor of 2 difference in NGM626

coefficients). However, the sharp-spectral filter captures very different features that have627

much smaller length scales and amplitudes. This is the reason that RVM fails to discover628

any closure from these FDNS data. We also point out that in Guan et al. (2022a, 2023),629

deep convolutional neural networks (CNNs) could not be successfully trained on FDNS data630

obtained using sharp-spectral cutoff filters, while high CC and stable/accurate LES runs in631

different systems were achieved using CNNs trained on FDNS data obtained through the632

Gaussian filter. Note that Ross et al. (2023) successfully trained CNNs (and performed633

equation-discovery) using a “smoothed” sharp-spectral filter that had exponential decay at634

high wavenumbers (rather than a cutoff). These findings further show the importance of635

how the “true” SGS fluxes are diagnosed for offline/supervised learning.636

To see the reason for this difference, we decompose the SGS tensor using u = u +637

u′. Leonard (1975) introduced a decomposition of the SGS tensor into three components.638

However, since two of these components were not Galilean-invariant (Speziale, 1985), a639

Galilean-invariant decomposition was later proposed by Germano (1986):640

τ = L + C + R. (36)

Here, L, C, and R are the Leonard, cross, and Reynolds stresses, which in 2D-FHIT are641

L =

[
Lxx Lxy
Lyx Lyy

]
=

[
u 2 − u 2

u v − u v
u v − u v v 2 − v 2

]
, (37)

642

C =

[
Cxx Cxy
Cyx Cyy

]
=

[
2
(
uu′ − uu′

)
uv′ + u′ v − u v′ − u′ v

uv′ + u′ v − u v′ − u′ v 2
(
vv′ − v v′

) ]
, (38)

643

R =

[
Rxx Rxy
Ryx Ryy

]
=

[
u′ 2 − u′ 2 u′v′ − u′ v′

u′v′ − u′ v′ v′ 2 − v′ 2

]
. (39)

τ and J of RBC can be decomposed in the same fashion. The most familiar component,644

the Reynolds stress, represents interactions in the unresolved scales that project onto the645

resolved scale. The cross stress represents the direct interactions between the unresolved and646

resolved scales that project onto the resolved scale. The Leonard stress includes interactions647

between the resolved scales not captured by the low-resolution LES grid. See Leonard (1975)648

and McDonough (2007) for more discussions.649

The relative importance of these three components in τ and J depends on the filter650

type and size (and even the flow characteristics). Rows 2-4 of Fig. 4 show examples of651

the Leonard, cross, and Reynolds stress components of τxy. For Gaussian, box, and Gaus-652

sian+box filters, the Leonard stress dominates, followed by cross and then Reynolds stress.653

However, for sharp-spectral, only the Reynolds stress has coherent structures that more654

or less resemble the Reynolds stress from Gaussian/box filters. The strong dependence on655

filter type comes from the fact that for Gaussian and box filters, u′ 6= 0 and u 6= u, leading656

to non-zero Leonard and cross stresses. However, for the sharp-spetcral filters, u′ = 0 and657

u = u, resulting in Reynolds stress as the only non-zero component, except for potential658

contributions from numerical errors.659
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Figure 4. The first row shows examples of snapshots of the SGS stress, τxy, for Case K1,

diagnosed from FNDS data using different filters and NLES = 128 (see Table 1). Rows 2-4 show

the three components of this τxy: the Leonard stress, Lxy, cross stress, Cxy, and Reynolds stress,

Rxy. Note the substantially different ranges of the colorbars.

As for the dependency on filter size, as ∆ increases, the relative importance of Reynolds660

stress increases: See Fig. 5 for examples from Cases K3 (τxx) and R3 (Jz). Finally, note661

that the relative importance of these three components might depend on the flow itself. For662

example, in 3 km-resolution regional simulations of the tropics, Sun et al. (2023) found that663

the vertical (horizontal) flux of the SGS zonal momentum is dominated by the Reynolds664

(Leonard) stress, which was attributed to the substantial differences of the filtered vertical665

wind and the filtered zonal or meridional winds.666

The above analyses further explain the strong dependency of the diagnosed “true” SGS667

flux and the discovered closures on the filter type and size. These analyses also show that668

depending on the filter type/size, the Reynolds stress may not be the only component of669

the SGS flux that needs to be parameterized. In fact, the Leonard and cross stresses might670

be even larger and have to be included in the calculation of the total SGS flux and in the671

closure. Needless to say, these sensitivities have major implications for the “true” SGS flux672

that is fed into the RVM or any equation-discovery algorithm (and more broadly, any ML673

algorithm).674
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Figure 5. The L2-norm of the SGS components versus NLES. (a) τxx from Case K3. (b) Jz

from Case R3. The contribution of SGS components is dependent on filter size: as NLES decreases,

i.e., ∆ increases, the relative importance of Reynolds stress (Leonard stress) increases (decreases).

Norm of all the SGS components are normalized by the respective SGS flux’s norm. A Gaussian

filter is used, but the same behavior is observed for the box and Gauassian+box filters.

4 Summary and Discussion675

In this work, we have used relevance vector machine (RVM) to discover subgrid-scale676

(SGS) closures from filtered direct numerical simulation (DNS) data for both the SGS677

momentum flux tensor (in 2D forced homogeneous isotropic turbulence, 2D-FHIT, and678

Rayleigh-Bénard convection, RBC) and the SGS heat flux vector (in RBC). The expansive679

library includes derivatives of velocity (and temperature) up to 8th order (calculated using680

spectral methods) and their quadratic combinations. We have conducted extensive robust-681

ness analysis of the discovered closures across a variety of flow configurations (changing682

Re,Ra, Pr, and the forcing wavenumber), filter types (Gaussian, box, Gaussian + box, and683

sharp-spectral cutoff), and filter sizes.684

Based on these analyses, except for when the sharp-spectral filter is used (see below),685

we have robustly discovered the same closure for the SGS stress in 2D-FHIT and RBC.686

We have further shown that this closure model is in fact the NGM, which can be derived687

analytically from the first term of the Taylor-series expansion of the convolution integral.688

The discovered SGS heat flux in RBC is also consistent with the truncated Taylor-series689

expansion. We have demonstrated a few important points about these discovered closures:690

1. They all have high CC (often > 0.9 − 0.95) with the true SGS terms obtained from691

filtered DNS data, i.e., excellent performance based on this commonly used a priori692

test metric. The same closure is discovered regardless of the system because the693

expansion’s first term dominates the MSE loss function of RVM.694

2. Despite this high CC, all a posteriori (online) tests result in unstable LES. This is695

consistent with the past findings about the NGM in the LES community (mainly for696

3D turbulence) and in the climate community (for geophysical turbulence). Here, we697

argue that the inability of NGM to capture any inter-scale kinetic energy transfer698

in 2D-FHIT (or any 2D flow filtered in both directions) is likely the reason for the699

instability. For RBC, where filtering is done only in one direction, deeper investiga-700

tions into the spectra of the SGS fluxes and inter-scale enstrophy and potential energy701
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transfer, pointed to another likely reason for the instability: poor representation of702

the backscatter of SGS potential energy. This suggests that the poor a posteriori703

(online) performance of NGM might have different reasons in different flows.704

3. The exact form of the discovered closure depends on the filter type and the filter size,705

∆. For filters with compact support (i.e., all filters used here except for sharp-spectral706

cutoff), the structure of the closures is the same, but coefficients are different (still,707

consistent with the Taylor-series expansion, as shown in the appendices). For the708

sharp-spectral cutoff filter, the equation discovery fails, again, consistent with the709

fact that the Taylor-series expansion cannot be conducted, a known issue in the LES710

literature (Sagaut, 2006). Again, note that with a smoothed sharp-spectral filter,711

Ross et al. (2023) successfully performed equation-discovery.712

As a side note, while the terms of the discovered closures might look like truncation error of713

finite difference/volume discretization, in our work, all calculations (DNS solver, SGS terms,714

library) are done using spectral methods. This further shows, along with the Taylor-series715

expansion results, that the discovered closures are indeed representing the physics of the716

SGS terms, rather than any numerical error.717

As an additional piece of analysis, we also present the decomposition of the SGS terms718

to the Leonard, cross, and Reynolds terms. We show that the Leonard and then cross terms719

often dominate the total SGS term, though the relative amplitude of these terms decreases720

as the filter size increases. However, this analysis shows that only computing the Reynolds721

momentum stress or heat flux can lead to discovering an inaccurate closure (and in general,722

in data-driven SGS modeling, in too-small SGS fluxes). That said, the relative importance723

of these 3 terms depends on the filter type and size, and likely, on the flow’s spatial spectrum724

(Sun et al., 2023).725

The analyses presented in this paper are aimed at highlighting the promises and chal-726

lenges of the equation-discovery approach to SGS modeling. On one hand, it is promising727

that this approach robustly discovers closures that could be closely connected with those728

mathematically derived, and could be easily interpreted and analyzed in terms of turbulence729

physics. On the other hand,730

a) The commonly used MSE loss function, or similar loss functions, will be always domi-731

nated by the leading term(s) of the Taylor-series expansion. Thus, sparsity-promoting732

equation-discovery techniques, at least with the common derivative/polynomial-based733

libraries, will always find the NGM (if all the relevant terms exists in the library).734

Note that this is true for the closure of any SGS process, as the Taylor-series expansion735

applies to any compact filter. Thus, this point and many of the main points of this736

paper are relevant beyond just SGS modeling for turbulence, but also SGS modeling737

of other nonlinear, multi-scale processes in the Earth system.738

b) Given that our diagnoses show shortcomings of the NGM with functional modeling739

metrics (e.g., inter-scale energy transfer), one idea is to include such physics con-740

strains in the loss function. For example, Guan et al. (2023) demonstrated that a741

loss functions that combines structural and functional modeling constraints can en-742

hance the a priori and a posteriori performance of the data-driven closure model743

in the small-data regime. More functional-modeling physics constraints (as domain744

averaged or wavenumber-dependent quantities) can be included in the loss function,745

which can potentially close the gap between a priori (offline) and a posteriori (on-746

line) performance. While the loss function of some techniques such as RVM may747

not be flexible to change beyond MSE, other methods such as GP/GEP or symbolic748

regression provide such flexibility (Ross et al., 2023; Cranmer, 2023). Also, equation-749

discovery using neural network-based algorithms has gained popularity recently, as750

for example, their loss functions can be very flexible given the use of backpropagation751

for training (Z. Chen et al., 2021). That said, “spectral bias” (Xu et al., 2019), the752

fundamental challenge of neural networks in learning high wavenumbers, can become753
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an issue when equation-discovery is the goal; see Mojgani et al. (2022a) for an example754

and a solution in a quasi-geostrophic turbulence testcase.755

c) The fault may not entirely (or at all) lie with the MSE loss function. Guan et al.756

(2022a) showed that a deep CNN with basically the same MSE loss function as the757

one used here (which only accounts for structural modeling) can learn a closure for 2D758

turbulence that has CC> 0.95 and leads to stable and accurate LES (and accurate759

inter-scale transfers; see Guan et al. (2023)). But a major difference between the760

CNN and RVM is that the former does not use a pre-defined set of basis functions,761

but rather, learns them. Recent work by Subel et al. (2023) has shown that the762

CNN of Guan et al. (2022a) learned a set of low-pass, high-pass, and band-pass763

Gabor filters. As another major difference, the CNN’s sparsity is not user-defined,764

but rather, comes from over-parameterization.765

d) Related to (c), the discovered closures can depend on the choice of the library. This766

issue can be addressed by trying more expansive libraries (though this can lead to767

non-robust discoveries) or as mentioned earlier, by using methods such as GP or768

GEP, which allow the library to evolve (see Schmidt and Lipson (2009); Udrescu and769

Tegmark (2020); Ross et al. (2023)). Libraries inspired by the CNNs’ basis functions770

or distilled from other deep neural networks could be explored as well (Subel et al.,771

2023; Cranmer et al., 2020). Furthermore, there are studies, e.g., based on the Mori-772

Zwanzig formalism, suggesting that memory has to be included in closures (Wouters773

& Lucarini, 2013; Parish & Duraisamy, 2017). Hence, basis functions that include774

temporal information (as already used in Ross et al. (2023)) should be further explored775

in future work.776

e) Choosing the hyper-parameter(s) that determine the level of sparsity might require777

more thoughts too. While the L-curve criterion has shown success in many problems,778

the metrics for which the curve is calculated for should be further investigated. The779

common a priori metrics such as CC of SGS fluxes are completely incapable of identi-780

fying shortcomings from a functional modeling perspective, such as lack of inter-scale781

energy transfer or poor representation of backscattering, which can be diagnosed us-782

ing additional metrics. Note that a high CC of SGS fluxes has been found as the783

necessary but not sufficient condition for a successful closure (Meneveau, 1994).784

f) Aside from all of the above issues related to the discovery algorithm, what needs785

to be discovered (the “truth”) should be further examined. The discovered closures786

can depend on the filter type/size and the methodology (e.g., calculating Reynolds787

stress or the full SGS stress), because what is diagnosed as the “true” SGS flux from788

DNS has such dependencies. This has important implications for any data-driven SGS789

modeling approach, including those using deep neural networks or any other statistical790

learning method (Fatkullin & Vanden-Eijnden, 2004; Zanna & Bolton, 2021; Guan et791

al., 2022a; Sun et al., 2023).792

We point out that there are other approaches to equation-discovery of SGS closures793

that are more directly focused on functional modeling. One is based on learning a closure794

from the differences between the evolved states of a high-resolution and a low-resolution795

simulation (Lang et al., 2016; Mojgani et al., 2022a, 2022b). The other is to learn from796

the differences between the evolved long-term statistics of such simulations (Schneider et797

al., 2020; Schneider, Stuart, & Wu, 2021; Schneider et al., 2022). These approaches would798

partially or entirely resolve the issues (a), (b), and (f) mentioned above, although challenges799

(d) and (e) would remain. Furthermore, the a priori performance of such closures and800

challenges in interpretability arising from numerical errors accumulated during evolutions801

are left to be further investigated.802

In summary, equation-discovery is a promising approach to developing interpretable,803

practical, stable, and accurate SGS closures for various complex processes. However, further804

work, particularly on physics-guided loss functions (that for example, contain both structural805
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Table A1. List of 1D filters and their kernel and transfer functions. All filters are implemented in

the spectral space, i.e., by applying their transfer function on Fourier-transformed variables. Here,

r and k are coordinates in the physical space and spectral space, respectively. � is the Hadamard

product and (̂.) is the Fourier transform.

Filter Kernel function Transfer function

General G (r) Ĝ (k) =

∫ ∞
−∞

ei2πkrG (r) dr

Gaussian (GG)

(
6

π∆2

) 1
2

exp

(
−6r2

∆2

)
exp

(
−k

2∆2

24

)

Box (GB)


1

∆
, if r ≤ ∆

2
0, otherwise

sin( 1
2k∆)

1
2k∆

Gaussian + box GG (r) ∗GB (r) ĜG (k)� ĜB (k)
(GGB)

Sharp-spectral cutoff
sin
(
πr
∆

)
πr

1, if
(
kc − |k| ≥ 0

)
, kc =

2π

∆
0, otherwise

(GS)

and functional modeling components), physics- and data-guided libraries, and better metrics806

are needed.807

Appendix A Filtering Procedure808

In this work, we explore the most commonly used filters in LES and climate modeling:809

the Gaussian filter, the box filter, the Gaussian + box filter, and the sharp-spectral filter810

(Sagaut, 2006; Grooms et al., 2021). The box filter (also known as the top-hat filter) is811

simply the average of a variable over a box of dimension ∆; for instance, in 1D space,812

u (x, t) is the average of u (x◦, t) over x−∆/2 < x◦ < x+ ∆/2. The Gaussian filter’s kernel813

is G (r) =
1

σ
√

2π
exp

(
−1

2

(
r − µ
σ

)2
)

, with zero mean, µ = 0, and variance, σ2 = ∆2/12.814

These values are chosen to match the second moments of the Gaussian and box filters815

following Leonard (1975). The kernel for Gaussian + box filter is the convolution of the816

Gaussian and box filter kernels, which is equivalent to using a Gaussian filter followed by a817

box filter. The sharp-spectral cutoff filter simply removes the wavenumbers beyond a cutoff,818

kc. The 1D filters used in this work are listed in Table A1, and the 2D filters are listed in819

Table A2. Note that all of these 4 filters commute with the spatial and temporal derivative820

operators on uniform grids (Pope, 2000; Sagaut, 2006).821

Appendix B The 2D-FHIT Numerical Solver822

The numerical solver is the same as the one used in Guan et al. (2022a). Briefly, we823

solve Eqs. (4)-(5) in the vorticity-streamfunction, ω − ψ, formulation, where824

ω = (∇× u) · ẑ. (B1)
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Table A2. List of 2D filters and their kernel and transfer functions. All filters are implemented in

the spectral space, i.e., by applying their transfer function on Fourier-transformed variables. Here,

r and k are coordinates in the physical space and spectral space, respectively, with r = (rx, ry),

|r|2 = r2x + r2y, k = (kx, ky), and |k|2 = k2x + k2y. � is the Hadamard product and (̂.) is the Fourier

transform.

Filter Kernel function Transfer function

General G (r) Ĝ (k) =

∫ ∞
−∞

∫ ∞
−∞

ei2π(kxrx+kyry)G (r) dr

Gaussian (GG)
6

π∆2
exp

(
−6 |r|2

∆2

)
exp

(
−|k|

2
∆2

24

)

Box (GB)


1

∆2
, if (rx, ry) ≤ ∆

2
0, otherwise

sin( 1
2kx∆) sin

(
1
2ky∆

)(
1
2kx∆

) (
1
2ky∆

)
Gaussian + box GG (r) ∗GB (r) ĜG (k)� ĜB (k)

(GGB)

Sharp-spectral
sin
(
π|r|
∆

)
π |r|

1, if
(
kc − |k| ≥ 0

)
, kc =

2π

∆
0, otherwise

(GS)

With this formulation, the governing equations are825

∇2ψ = −ω, (B2)
∂ω

∂t
+N (ω, ψ) =

1

Re
∇2ω − χω − f, (B3)

where N (ω, ψ) is826

N (ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (B4)

f is a deterministic forcing (Chandler & Kerswell, 2013; Kochkov et al., 2021):827

f = fkx cos(fkxx) + fky cos(fkyy), (B5)

where fkx and fky are the forcing wavenumbers and χ = 0.1 represents the Rayleigh drag828

coefficient. Comparing Eq. (5) with Eq. (B3), it is evident that ∇ × R = −χω and829

∇×F = −f .830

In DNS, Eqs. (B2)-(B3) are solved in a doubly periodic domain using a Fourier-831

Fourier pseudo-spectral solver with second-order Adams-Bashforth and Crank Nicholson832

time-integration schemes for the advection and viscous terms, respectively (time step ∆tDNS).833

For LES, we use the same solver with lower spatio-temporal resolution: We use NLES that834

is 8 to 64 times smaller than NDNS, and ∆tLES = 10∆tDNS.835

Appendix C The RBC Numerical Solver836

We solve Eqs. (9)-(11) using a Fourier-Chebyshev pseudo-spectral solver (Khodkar et837

al., 2019; Khodkar & Hassanzadeh, 2018). Briefly, using the ω − ψ formulation, the dimen-838
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sionless governing equations become839

∇2ψ = −ω (C1)
∂ω

∂t
+N (ω, ψ) = Pr∇2ω + PrRa θẑ, (C2)

∂θ

∂t
+M (θ, ψ) +

∂ψ

∂x
= ∇2θ, (C3)

where N (ω, ψ) and M (θ, ψ) are840

N (ω, ψ) =
∂ψ

∂z

∂ω

∂x
− ∂ψ

∂x

∂ω

∂z
, M(θ, ψ) =

∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z
. (C4)

For DNS, we solve Eqs. (C1)-(C3) in domain (6π, 1). Periodic boundary conditions are841

imposed in the horizontal direction and no-slip and fixed temperature boundary conditions842

are imposed on the horizontal walls. Second-order Adams-Bashforth and Crank Nicholson843

time integration schemes are used for the advection and viscous terms, respectively. Table 2844

presents the NDNS and NLES for each case. For LES, we use the same solver but with lower845

resolution in the horizontal direction.846

Appendix D Taylor-series Expansion of the SGS Flux for a 1D Field847

Let’s focus on a spatially 1D field a(x) (dependence on t is not explicitly written for848

brevity). The filtering operation’s convolution integral (Eq. (1)) becomes849

a(x) = G ∗ a =

∫ ∞
−∞

G (rx) a (x− rx) drx, (D1)

The Taylor-series expansion of a(x− rx) around a(x) gives850

a (x− rx) = a (x)− 1

1!

∂a (x)

∂x
rx +

1

2!

∂2a (x)

∂x2
r2
x + . . . (D2)

Substituting this into Eq. (D1) and using a = a(x), a = a(x) for brevity yields851

a =

∫ ∞
−∞

G (rx) adrx −
∫ ∞
−∞

G (rx)
∂a

∂x
rxdrx +

1

2!

∫ ∞
−∞

G (rx)
∂2a

∂x2
r2
xdrx + . . . (D3)

= a

∫ ∞
−∞

G (rx) drx −
∂a

∂x

∫ ∞
−∞

G (rx) rxdrx +
1

2!

∂2a

∂x2

∫ ∞
−∞

G (rx) r2
xdrx + . . . (D4)

The second line follows the first line considering that a and its derivatives do not depend852

on the variable of integration, rx. In Eq. (D4), a depends on a and its derivatives, with853

coefficients that only depend on the filter type and size through moments of the kernel, G.854

For example, for a Gaussian filter (Table A1)855 ∫ ∞
−∞

G (rx) drx = 1,

∫ ∞
−∞

G (rx) rxdrx = 0,

∫ ∞
−∞

G (rx) r2
xdrx =

∆2

12
. (D5)

Note that all the odd moments are 0, resulting in O
(
∆4
)

as the order of the truncated856

terms once the moments in Eq. (D5) are substituted in Eq. (D4):857

a = a+
1

2!

∆2

12

∂2a

∂x2
+O

(
∆4
)
. (D6)

To calculate a term like τxx = u2 − u2, we first use a = u in Eq. (D6) and then square it to858

arrive at859

u2 = u2 + 2u

(
1

2!

∆2

12

∂2u

∂x2

)
+O

(
∆4
)
. (D7)
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Next, we use a = u2 in Eq. (D6) to obtain860

u2 = u2 +
1

2!

∆2

12

∂2u2

∂x2
+O

(
∆4
)
, (D8)

= u2 +
2

2!

∆2

12

((
∂u

∂x

)2

+ u
∂2u

∂x2

)
+O

(
∆4
)
. (D9)

Using Eq. (D7) and Eq. (D9) we find861

τxx = u2 − u2 =
∆2

12

(
∂u

∂x

)2

+O
(
∆4
)
. (D10)

Note that this expression depends on u rather than u, which is what we desire. Next, we862

use a = ∂u/∂x in Eq. (D6) to obtain863

∂u

∂x
=
∂u

∂x
+

1

2!

∆2

12

∂3u

∂x3
+O

(
∆4
)
. (D11)

Using this expression in Eq. (D10) yields an analytically derived closure for τxx with error864

O
(
∆4
)

865

τNGM
xx = u2 − u2 =

∆2

12

(
∂u

∂x

)2

. (D12)

This is the NGM (Leonard, 1975; Sagaut, 2006). Four issues should be emphasized here866

i. This procedure can be followed for any filter type. However, the Taylor series is867

divergent for filters such as sharp-spectral, whose kernel’s second-order moment is868

indefinite; for such filters, NGM does not exist (Meneveau & Katz, 2000; Sagaut,869

2006).870

ii. The same procedure can be followed to derive NGM for higher dimensions, e.g., τNGM
xx ,871

τNGM
xy , and τNGM

yy in 2D; see Sagaut (2006).872

iii. The coefficients in NGM depend on the filter’ kernel and its moments (Eq. (D5)).873

For Gaussian and top-hat, the parameters of the kernels are chosen to match their874

first moment, leading to ∆2/12 coefficient for both. However the coefficients differ875

for higher-order terms (Sagaut, 2006).876

iv. The procedure presented above is not specific to turbulence or even dynamical sys-877

tems. The procedure and its outcome are valid for the filtered quadratic nonlinearity878

of any two variables, even random variables.879

Appendix E Subgrid-scale Energy and Enstrophy Transfers880

The filtered rate of train tensor S and the anisotropic part of the SGS stress tensor τr
881

are882

S =


∂u

∂x

1

2

(
∂u

∂y
+
∂v

∂x

)
1

2

(
∂u

∂y
+
∂v

∂x

)
∂v

∂y

 , (E1)

τr = τ− 1

2
tr (τ) I, (E2)

where I is the identity matrix. In 2D with filtering in both directions, the anisotropic part883

of the SGS stress tensor from the NGM is884

τNGM-r = τNGM − 1

2
tr
(
τNGM

)
I. (E3)

τNGM-r
2D =

∆2

12


1

2

((
∂u

∂y

)2

−
(
∂v

∂x

)2
)

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
−1

2

((
∂u

∂y

)2

−
(
∂v

∂x

)2
)
 . (E4)
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Inserting this and S (Eq. (E1)) into Eq. (30) shows zero point-wise inter-scale (kinetic)885

energy transfer in NGM: PNGM
τ (x, y, t) = 0.886

In buoyancy-driven turbulence such as RBC, the total inter-scale energy transfer rate887

PE is the sum of the rate of transfer of kinetic energy (Pτ ) due to SGS momentum fluxes888

and potential energy (PJ) due to SGS heat fluxes (Eidson, 1985; Peng & Davidson, 2002):889

PE = Pτ + PJ

= −τ rijSij −RaPr Jz. (E5)

Given the 1D filtering used in RBC, τNGM-r
1D becomes890

τNGM-r
1D =

∆2

12


1

2

((
∂u

∂x

)2

−
(
∂w

∂x

)2
)

∂u

∂x

∂w

∂x

∂u

∂x

∂w

∂x
−1

2

((
∂u

∂x

)2

−
(
∂w

∂x

)2
)
 , (E6)

and PNGM
τ is not strictly zero: The resulting production of subgrid-scale (SGS) energy891

transfer for NGM is892

PNGM
τ = −∆2

12

(
∂3u

∂x3
+
∂u

∂x

∂u

∂z

∂w

∂x

)
. (E7)

PNGM
J = −RaPr ∆2

12

∂w

∂x

∂θ

∂x
(E8)

Similarly, one can define the inter-scale enstrophy transfer for 2D-FHIT and RBC as893

(S. Chen et al., 2003)894

PZ = −∇ω · (uω − uω) . (E9)
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Pandey, S., Teutsch, P., Mäder, P., & Schumacher, J. (2022). Direct data-driven forecast1156

of local turbulent heat flux in Rayleigh–Bénard convection. Physics of Fluids, 34 (4),1157

045106.1158

Parish, E. J., & Duraisamy, K. (2017). Non-Markovian closure models for large eddy1159

simulations using the Mori-Zwanzig formalism. Physical Review Fluids, 2 (1), 014604.1160

Pawar, S., San, O., Rasheed, A., & Vedula, P. (2020). A priori analysis on deep learning of1161

subgrid-scale parameterizations for Kraichnan turbulence. Theoretical and Computa-1162

tional Fluid Dynamics, 34 (4), 429–455.1163

Peng, S.-H., & Davidson, L. (2002). On a subgrid-scale heat flux model for large eddy sim-1164

ulation of turbulent thermal flow. International Journal of Heat and Mass Transfer ,1165

45 (7), 1393–1405.1166

Pope, S. (1975). A more general effective-viscosity hypothesis. Journal of Fluid Mechanics,1167

72 (2), 331–340.1168

Pope, S. (2000). Turbulent flows. Cambridge university press.1169

Prakash, A., Jansen, K. E., & Evans, J. A. (2021). Optimal clipping of the gradient model1170

for subgrid stress closure. In Aiaa scitech 2021 forum (p. 1665).1171

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid pro-1172

cesses in climate models. Proceedings of the National Academy of Sciences, 115 (39),1173

9684–9689.1174

Reissmann, M., Hasslberger, J., Sandberg, R. D., & Klein, M. (2021). Application of1175

gene expression programming to a-posteriori LES modeling of a Taylor Green vortex.1176

Journal of Computational Physics, 424 , 109859.1177

Ross, A., Li, Z., Perezhogin, P., Fernandez-Granda, C., & Zanna, L. (2023). Benchmarking1178

of machine learning ocean subgrid parameterizations in an idealized model. Journal1179

of Advances in Modeling Earth Systems, 15 (1), e2022MS003258.1180

Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2017). Data-driven discovery of1181

partial differential equations. Science advances, 3 (4), e1602614.1182

Sadourny, R., & Basdevant, C. (1985). Parameterization of subgrid scale barotropic and1183

baroclinic eddies in quasi-geostrophic models: Anticipated potential vorticity method.1184

Journal of Atmospheric Sciences, 42 (13), 1353–1363.1185

Sagaut, P. (2006). Large eddy simulation for incompressible flows: an introduction. Springer1186

Science & Business Media.1187

Schaeffer, H. (2017). Learning partial differential equations via data discovery and sparse1188

optimization. Proceedings of the Royal Society A: Mathematical, Physical and Engi-1189

–38–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

neering Sciences, 473 (2197), 20160446.1190

Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data.1191

science, 324 (5923), 81–85.1192

Schneider, T., Jeevanjee, N., & Socolow, R. (2021). Accelerating progress in climate science.1193

Physics Today , 74 (6), 44–51.1194

Schneider, T., Lan, S., Stuart, A., & Teixeira, J. (2017). Earth system modeling 2.0: A1195

blueprint for models that learn from observations and targeted high-resolution simu-1196

lations. Geophysical Research Letters, 44 (24), 12–396.1197

Schneider, T., Stuart, A. M., & Wu, J.-L. (2020). Imposing sparsity within ensemble Kalman1198

inversion. arXiv preprint arXiv:2007.06175 .1199

Schneider, T., Stuart, A. M., & Wu, J.-L. (2021). Learning stochastic closures using1200

ensemble Kalman inversion. Transactions of Mathematics and Its Applications, 5 (1),1201

tnab003.1202

Schneider, T., Stuart, A. M., & Wu, J.-L. (2022). Ensemble Kalman inversion for sparse1203

learning of dynamical systems from time-averaged data. Journal of Computational1204

Physics, 111559.1205

Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F., Pressel, K. G., Schär, C., &1206

Siebesma, A. P. (2017). Climate goals and computing the future of clouds. Nature1207

Climate Change, 7 (1), 3–5.1208

Shen, Z., Sridhar, A., Tan, Z., Jaruga, A., & Schneider, T. (2022). A library of large-eddy1209

simulations forced by global climate models. Journal of Advances in Modeling Earth1210

Systems, 14 (3), e2021MS002631.1211

Shutts, G. (2005). A kinetic energy backscatter algorithm for use in ensemble prediction1212

systems. Quarterly Journal of the Royal Meteorological Society: A journal of the1213

atmospheric sciences, applied meteorology and physical oceanography , 131 (612), 3079–1214

3102.1215

Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I.1216

the basic experiment. Monthly weather review , 91 (3), 99–164.1217

Sondak, D., Smith, L. M., & Waleffe, F. (2015). Optimal heat transport solutions for1218

Rayleigh–Bénard convection. Journal of Fluid Mechanics, 784 , 565–595.1219

Speziale, C. G. (1985). Galilean invariance of subgrid-scale stress models in the large-eddy1220

simulation of turbulence. Journal of fluid mechanics, 156 , 55–62.1221

Sridhar, A., Tissaoui, Y., Marras, S., Shen, Z., Kawczynski, C., Byrne, S., . . . others1222

(2022). Large-eddy simulations with climatemachine v0. 2.0: A new open-source code1223

for atmospheric simulations on GPUs and CPUs. Geoscientific Model Development ,1224

15 (15), 6259–6284.1225

Srinivasan, K., Chekroun, M. D., & McWilliams, J. C. (2023). Turbulence closure with small,1226

local neural networks: Forced two-dimensional and \β-plane flows. arXiv preprint1227

arXiv:2304.05029 .1228

Stensrud, D. J. (2009). Parameterization schemes: Keys to understanding numerical weather1229

prediction models. Cambridge University Press.1230

Subel, A., Chattopadhyay, A., Guan, Y., & Hassanzadeh, P. (2021). Data-driven subgrid-1231

scale modeling of forced Burgers turbulence using deep learning with generalization1232

to higher Reynolds numbers via transfer learning. Physics of Fluids, 33 (3), 031702.1233

Subel, A., Guan, Y., Chattopadhyay, A., & Hassanzadeh, P. (2023). Explaining the physics1234

of transfer learning in data-driven turbulence modeling. PNAS Nexus, pgad015.1235

Sullivan, P. P., McWilliams, J. C., & Moeng, C.-H. (1994). A subgrid-scale model for1236

large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorology ,1237

71 (3), 247–276.1238

Sun, Y. Q., Hassanzadeh, P., Alexander, M. J., & Kruse, C. G. (2023). Quantifying 3D1239

gravity wave drag in a library of tropical convection-permitting simulations for data-1240

driven parameterizations. Journal of Advances in Modeling Earth Systems (in press).1241

Retrieved from https://doi.org/10.22541/essoar.167126083.37839360/v11242

Tabeling, P. (2002). Two-dimensional turbulence: A physicist approach. Physics reports,1243

362 (1), 1–62.1244

–39–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Tan, Z., Kaul, C. M., Pressel, K. G., Cohen, Y., Schneider, T., & Teixeira, J. (2018). An1245

extended eddy-diffusivity mass-flux scheme for unified representation of subgrid-scale1246

turbulence and convection. Journal of Advances in Modeling Earth Systems, 10 (3),1247

770–800.1248

Thuburn, J., Kent, J., & Wood, N. (2014). Cascades, backscatter and conservation in1249

numerical models of two-dimensional turbulence. Quarterly Journal of the Royal Me-1250

teorological Society , 140 (679), 626–638.1251

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal1252

of machine learning research, 1 (Jun), 211–244.1253

Udrescu, S.-M., & Tegmark, M. (2020). Ai Feynman: A physics-inspired method for1254

symbolic regression. Science Advances, 6 (16), eaay2631.1255

Vallis, G. K. (2017). Atmospheric and oceanic fluid dynamics. Cambridge University Press.1256

Verkley, W. T., Severijns, C. A., & Zwaal, B. A. (2019). A maximum entropy approach to the1257

interaction between small and large scales in two-dimensional turbulence. Quarterly1258

Journal of the Royal Meteorological Society , 145 (722), 2221–2236.1259

Vollant, A., Balarac, G., & Corre, C. (2016). A dynamic regularized gradient model of1260

the subgrid-scale stress tensor for large-eddy simulation. Physics of Fluids, 28 (2),1261

025114.1262

Vreman, B., Geurts, B., & Kuerten, H. (1996). Large-eddy simulation of the temporal1263

mixing layer using the Clark model. Theoretical and Computational Fluid Dynamics,1264

8 (4), 309–324.1265

Vreman, B., Geurts, B., & Kuerten, H. (1997). Large-eddy simulation of the turbulent1266

mixing layer. Journal of fluid mechanics, 339 , 357–390.1267

Wang, B. C., Yee, E., Bergstrom, D. J., & Iida, O. (2008). New dynamic subgrid-scale1268

heat flux models for large-eddy simulation of thermal convection based on the general1269

gradient diffusion hypothesis. Journal of Fluid Mechanics, 604 , 125–163.1270

Winckelmans, G., Wray, A., & Vasilyev, O. (1998). Testing of a new mixed model for1271

les: The leonard model supplemented by a dynamic smagorinsky term. In Summer1272

program (pp. 367–388).1273

Wouters, J., & Lucarini, V. (2013). Multi-level dynamical systems: Connecting the Ru-1274

elle response theory and the Mori-Zwanzig approach. Journal of Statistical Physics,1275

151 (5), 850–860.1276

Xie, C., Wang, J., Li, H., Wan, M., & Chen, S. (2019). Artificial neural network mixed1277

model for large eddy simulation of compressible isotropic turbulence. Physics of Fluids,1278

31 (8), 085112.1279

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., & Ma, Z. (2019). Frequency principle: Fourier1280

analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523 .1281

Yalla, G. R., Oliver, T. A., Haering, S. W., Engquist, B., & Moser, R. D. (2021). Effects1282

of resolution inhomogeneity in large-eddy simulation. Physical Review Fluids, 6 (7),1283

074604.1284

Yuval, J., & O’Gorman, P. A. (2020). Stable machine-learning parameterization of subgrid1285

processes for climate modeling at a range of resolutions. Nature communications,1286

11 (1), 1–10.1287

Zanna, L., & Bolton, T. (2020). Data-driven equation discovery of ocean mesoscale closures.1288

Geophysical Research Letters, 47 (17), e2020GL088376.1289

Zanna, L., & Bolton, T. (2021). Deep learning of unresolved turbulent ocean processes in1290

climate models. Deep Learning for the Earth Sciences: A Comprehensive Approach to1291

Remote Sensing, Climate Science, and Geosciences, 298–306.1292

Zanna, L., Mana, P. P., Anstey, J., David, T., & Bolton, T. (2017). Scale-aware deterministic1293

and stochastic parametrizations of eddy-mean flow interaction. Ocean Modelling , 111 ,1294

66–80.1295

Zhang, S., & Lin, G. (2018). Robust data-driven discovery of governing physical laws with1296

error bars. Proceedings of the Royal Society A: Mathematical, Physical and Engineering1297

Sciences, 474 (2217), 20180305.1298

Zhang, X., Schneider, T., Shen, Z., Pressel, K. G., & Eisenman, I. (2022). Seasonal cycle of1299

–40–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

idealized polar clouds: Large eddy simulations driven by a GCM. Journal of Advances1300

in Modeling Earth Systems, 14 (1), e2021MS002671.1301

Zhou, Z., He, G., Wang, S., & Jin, G. (2019). Subgrid-scale model for large-eddy simulation1302

of isotropic turbulent flows using an artificial neural network. Computers & Fluids,1303

195 , 104319.1304

–41–


